Effects of amlodipine on sympathetic nerve traffic and baroreflex control of circulation in heart failure. (1/1596)

Short-acting calcium antagonists exert a sympathoexcitation that in heart failure further enhances an already elevated sympathetic activity. Whether this is also the case for long-acting formulations is not yet established, despite the prognostic importance of sympathetic activation in heart failure. It is also undetermined whether in this condition long-acting calcium antagonists favorably affect a mechanism potentially responsible for the sympathetic activation, ie, the baroreflex impairment. In 28 heart failure patients (NYHA functional class II) under conventional treatment we measured plasma norepinephrine and efferent postganglionic muscle sympathetic nerve activity (microneurography) at rest and during arterial baroreceptor stimulation and deactivation induced by stepwise intravenous infusions of phenylephrine and nitroprusside, respectively. Measurements were performed at baseline and after 8 weeks of daily oral amlodipine administration (10 mg/d, 14 patients) or before and after an 8-week period without calcium antagonist administration (14 patients). Amlodipine caused a small and insignificant blood pressure reduction. Heart rate, left ventricular ejection fraction, and plasma renin and aldosterone concentrations were not affected. This was the case also for plasma norepinephrine (from 2.43+/-0.41 to 2.50+/-0.34 nmol/L, mean+/-SEM), muscle sympathetic nerve activity (from 54.4+/-5.9 to 51.0+/-4.3 bursts/min), and arterial baroreflex responses. No change in the above-mentioned variables was seen in the control group. Thus, in mild heart failure amlodipine treatment does not adversely affect sympathetic activity and baroreflex control of the heart and sympathetic tone. This implies that in this condition long-acting calcium antagonists can be administered without untoward neurohumoral effects anytime conventional treatment needs to be complemented by drugs causing additional vasodilatation.  (+info)

A method for determining baroreflex-mediated sympathetic and parasympathetic control of the heart in pregnant and non-pregnant sheep. (2/1596)

1. The cardiac baroreflex was measured in four non-pregnant and six pregnant ewes before and during beta-adrenoreceptor blockade with propranolol and before and during vagal blockade with atropine. Arterial pressure was raised by phenylephrine and lowered by sodium nitroprusside. The relationships between mean arterial pressure (MAP) and heart rate (HR), between MAP and heart rate variability (HRV) measured as the coefficient of variation (c.v.) of the mean pulse interval (PI), and between MAP and HRV measured by power spectral analysis were determined. 2. The MAP-HR relationship showed that in pregnant ewes the gain of the cardiac baroreflex was reduced when compared with non-pregnant ewes. Threshold and saturation pressures were higher, maximum achievable HR was lower and there was a decrease in the operating range. 3. V-shaped relationships were obtained between MAP and HRV (measured as the c.v. of PI) and between MAP and power spectral density in the frequency range 0.04-0. 08 Hz. Using selective autonomic blockade the negative, or downward, slope of the V shape was shown to be a measure of baroreceptor-induced, sympathetically mediated effects on HRV. The upward, or positive, slope of the V shape was a measure of baroreceptor-induced, vagally mediated effects. Similar results were also obtained from the cardiac power spectrum, but it was less sensitive. The MAP at which the two slopes intersected was the same as the resting MAP. 4. In pregnant ewes, the slope of the downward limb of the V-shaped relationship between HRV (when measured as the c.v. of PI) and MAP was less than in non-pregnant ewes. 5. The relationship between MAP and the coefficient of variation of the mean pulse interval can therefore be used to measure the degree to which baroreceptor-induced sympathetic and parasympathetic activity affects the heart. 6. The resting MAP is the pressure at which the net effect of these sympathetic and parasympathetic influences on the heart is at a minimum. Studies of both the MAP-HR and MAP-HRV relationships in pregnant and non-pregnant sheep show that in pregnant sheep, there is attenuation of baroreceptor-mediated sympathetic effects on the heart.  (+info)

Vasopressin V2 receptor enhances gain of baroreflex in conscious spontaneously hypertensive rats. (3/1596)

The aim of the present study was to determine the receptor subtype involved in arginine vasopressin (AVP)-induced modulation of baroreflex function in spontaneously hypertensive rats (SHR) and Wistar-Kyoto (WKY) rats using novel nonpeptide AVP V1- and V2-receptor antagonists. Baroreceptor heart rate (HR) reflex was investigated in both SHR and WKY rats which were intravenously administered the selective V1- and V2-receptor antagonists OPC-21268 and OPC-31260, respectively. Baroreflex function was assessed by obtaining alternate pressor and depressor responses to phenylephrine and sodium nitroprusside, respectively, to construct baroreflex curves. In both SHR and WKY rats baroreflex activity was tested before and after intravenous administration of vehicle (20% DMSO), OPC-21268 (10 mg/kg), and OPC-31260 (1 and 10 mg/kg). Vehicle did not significantly alter basal mean arterial pressure (MAP) and HR values or baroreflex function in SHR or WKY rats. The V1-receptor antagonist had no significant effect on resting MAP or HR values or on baroreflex parameters in both groups of rats, although this dose was shown to significantly inhibit the pressor response to AVP (5 ng iv; ANOVA, P < 0.05). In SHR but not WKY rats the V2-receptor antagonist significantly attenuated the gain (or slope) of the baroreflex curve (to 73 +/- 3 and 79 +/- 7% of control for 1 and 10 mg/kg, respectively), although AVP-induced pressor responses were also attenuated with the higher dose of the V2-receptor antagonist. These findings suggest that AVP tonically enhances baroreflex function through a V2 receptor in the SHR.  (+info)

Cardiac baroreflex during the postoperative period in patients with hypertension: effect of clonidine. (4/1596)

BACKGROUND: Patients with essential hypertension show altered baroreflex control of heart rate, and during the perioperative period they demonstrate increased circulatory instability. Clonidine has been shown to reduce perioperative circulatory instability. This study documents changes in measures of heart rate control after surgery in patients with essential hypertension and determines the effects of clonidine on postoperative heart rate control in these patients. METHODS: Using a randomized double-blind placebo-controlled design, 20 patients with essential hypertension (systolic pressure >160 mm Hg or diastolic pressure >95 mm Hg for > or =1 yr) were assigned to receive clonidine (or placebo), 6 microg/kg orally 120 min before anesthesia and 3 microg/kg intravenously over 60 min before the end of surgery. The spontaneous baroreflex ("sequence") technique and analysis of heart rate variability were used to quantify control of heart rate at baseline, before induction of anesthesia, and 1 and 3 h postoperatively. RESULTS: Baroreflex slope and heart rate variability were reduced postoperatively in patients given placebo but not those given clonidine. Clonidine resulted in greater postoperative baroreflex slope and power at all frequency ranges compared with placebo (4.9+/-2.9 vs. 2.2+/-2.1 ms/mm Hg for baroreflex slope, 354+/-685 vs. 30+/-37 ms2/Hz for high frequency variability). Clonidine also resulted in lower concentrations of catecholamine, decreased mean heart rate and blood pressure, and decreased perioperative tachycardia and hypertension. CONCLUSIONS: Patients with hypertension exhibit reduced heart rate control during the recovery period after elective surgery. Clonidine prevents this reduction in heart rate control. This may represent a basis for the improved circulatory stability seen with perioperative administration of clonidine.  (+info)

Hypoxia inhibits baroreflex vagal bradycardia via a central action in anaesthetized rats. (5/1596)

It is known that arterial baroreflexes are suppressed in stressful conditions. The present study was designed to determine whether and how hypoxia affects arterial baroreflexes, especially the heart rate component, baroreflex vagal bradycardia. In chloralose-urethane-anaesthetized rats, baroreflex vagal bradycardia was evoked by electrical stimulation of the aortic depressor nerve, and the effect of 15 s inhalation of hypoxic gas (4% O2) was studied. Inhalation of hypoxic gas was found to inhibit baroreflex vagal bradycardia. The inhibition persisted after bilateral transection of the carotid sinus nerve. Cervical vagus nerves were cut bilaterally and their peripheral cut ends were stimulated to provoke vagal bradycardia of peripheral origin so as to determine whether hypoxia could inhibit vagal bradycardia by acting on a peripheral site. In contrast to baroreflex vagal bradycardia, the vagus-induced bradycardia was not affected by hypoxic gas inhalation. It is concluded that baroreflex vagal bradycardia is inhibited by hypoxia and the inhibition is largely mediated by its direct central action.  (+info)

Prognostic value of nocturnal Cheyne-Stokes respiration in chronic heart failure. (6/1596)

BACKGROUND: Nocturnal Cheyne-Stokes respiration (CSR) occurs frequently in patients with chronic heart failure (CHF), and it may be associated with sympathetic activation. The aim of the present study was to evaluate whether CSR could affect prognosis in patients with CHF. METHODS AND RESULTS: Sixty-two CHF patients with left ventricular ejection fraction /=30/h and left atria >/=25 cm2. CONCLUSIONS: The AHI is a powerful independent predictor of poor prognosis in clinically stable patients with CHF. The presence of an AHI >/=30/h adds prognostic information compared with other clinical, echocardiographic, and autonomic data and identifies patients at very high risk for subsequent cardiac death.  (+info)

The rostral ventrolateral medulla mediates the sympathoactivation produced by chemical stimulation of the rat nasal mucosa. (7/1596)

1. We sought to outline the brainstem circuit responsible for the increase in sympathetic tone caused by chemical stimulation of the nasal passages with ammonia vapour. Experiments were performed in alpha-chloralose-anaesthetized, paralysed and artificially ventilated rats. 2. Stimulation of the nasal mucosa increased splanchnic sympathetic nerve discharge (SND), elevated arterial blood pressure (ABP), raised heart rate slightly and inhibited phrenic nerve discharge. 3. Bilateral injections of the broad-spectrum excitatory amino acid receptor antagonist kynurenate (Kyn) into the rostral part of the ventrolateral medulla (RVLM; rostral C1 area) greatly reduced the effects of nasal mucosa stimulation on SND (-80 %). These injections had no effect on resting ABP, resting SND or the sympathetic baroreflex. 4. Bilateral injections of Kyn into the ventrolateral medulla at the level of the obex (caudal C1 area) or into the nucleus tractus solitarii (NTS) greatly attenuated the baroreflex and significantly increased the baseline levels of both SND and ABP. However they did not reduce the effect of nasal mucosa stimulation on SND. 5. Single-unit recordings were made from 39 putative sympathoexcitatory neurons within the rostral C1 area. Most neurons (24 of 39) were activated by nasal mucosa stimulation (+65.8 % rise in discharge rate). Responding neurons had a wide range of conduction velocities and included slow-conducting neurons identified previously as C1 cells. The remaining putative sympathoexcitatory neurons were either unaffected (n = 8 neurons) or inhibited (n = 7) during nasal stimulation. We also recorded from ten respiratory-related neurons, all of which were silenced by nasal stimulation. 6. In conclusion, the sympathoexcitatory response to nasal stimulation is largely due to activation of bulbospinal presympathetic neurons within the RVLM. We suggest that these neurons receive convergent and directionally opposite polysynaptic inputs from arterial baroreceptors and trigeminal afferents. These inputs are integrated within the rostral C1 area as opposed to the NTS or the caudal C1 area.  (+info)

Investigating feed-forward neural regulation of circulation from analysis of spontaneous arterial pressure and heart rate fluctuations. (8/1596)

BACKGROUND: Analysis of spontaneous fluctuations in systolic arterial pressure (SAP) and pulse interval (PI) reveals the occurrence of sequences of consecutive beats characterized by SAP and PI changing in the same (+PI/+SAP and -PI/-SAP) or opposite (-PI/+SAP and +PI/-SAP) direction. Although the former reflects baroreflex regulatory mechanisms, the physiological meaning of -PI/+SAP and +PI/-SAP is unclear. We tested the hypothesis that -PI/+SAP and +PI/-SAP "nonbaroreflex" sequences represent a phenomenon modulated by the autonomic nervous system reflecting a feed-forward mechanism of cardiovascular regulation. METHODS AND RESULTS: We studied anesthetized rabbits before and after (1) complete autonomic blockade (guanethidine+propranolol+atropine, n=13; CAB), (2) sympathetic blockade (guanethidine+propranolol, n=15; SB), (3) parasympathetic blockade (atropine, n=16), (4) sinoaortic denervation (n=10; SAD), and (5) controlled respiration (n=10; CR). Nonbaroreflex sequences were defined as >/=3 beats in which SAP and PI of the following beat changed in the opposite direction. CAB reduced the number of nonbaroreflex sequences (19. 1+/-12.3 versus 88.7+/-36.6, P<0.05), as did SB (25.3+/-11.7 versus 84.6+/-23.9, P<0.001) and atropine (11.2+/-6.8 versus 94.1+/-32.4, P<0.05). SB concomitantly increased baroreflex sensitivity (1.18+/-0. 11 versus 0.47+/-0.09 ms/mm Hg, P<0.01). SAD and CR did not significantly affect their occurrence. CONCLUSIONS: These results suggest that nonbaroreflex sequences represent the expression of an integrated, neurally mediated, feed-forward type of short-term cardiovascular regulation able to interact dynamically with the feedback mechanisms of baroreflex origin in the control of heart period.  (+info)