Phylogenetic analysis and possible function of bro-like genes, a multigene family widespread among large double-stranded DNA viruses of invertebrates and bacteria. (1/16)

Baculovirus repeated open reading frame (bro) genes and their relatives constitute a multigene family, typically with multiple copies per genome, known to occur among certain insect dsDNA viruses and bacteriophages. Little is known about the evolutionary history and function of the proteins encoded by these genes. Here we have shown that bro and bro-like (bro-l) genes occur among viruses of two additional invertebrate viral families, Ascoviridae and Iridoviridae, and in prokaryotic class II transposons. Analysis of over 100 sequences showed that the N-terminal region, consisting of two subdomains, is the most conserved region and contains a DNA-binding motif that has been characterized previously. Phylogenetic analysis indicated that these proteins are distributed among eight groups, Groups 1-7 consisting of invertebrate virus proteins and Group 8 of proteins in bacteriophages and bacterial transposons. No bro genes were identified in databases of invertebrate or vertebrate genomes, vertebrate viruses and transposons, nor in prokaryotic genomes, except in prophages or transposons of the latter. The phylogenetic relationship between bro genes suggests that they have resulted from recombination of viral genomes that allowed the duplication and loss of genes, but also the acquisition of genes by horizontal transfer over evolutionary time. In addition, the maintenance and diversity of bro-l genes in different types of invertebrate dsDNA viruses, but not in vertebrate viruses, suggests that these proteins play an important role in invertebrate virus biology. Experiments with the unique orf2 bro gene of Autographa californica multicapsid nucleopolyhedrovirus showed that it is not required for replication, but may enhance replication during the occlusion phase of reproduction.  (+info)

Evidence for the evolution of ascoviruses from iridoviruses. (2/16)

Ascoviruses (family Ascoviridae) are large, enveloped, double-stranded (ds)DNA viruses that attack lepidopteran larvae and pupae, and are unusual in that they are transmitted by parasitic wasps during oviposition. Previous comparisons of DNA polymerase sequences from vertebrate and invertebrate viruses suggested that ascoviruses are closely related to iridoviruses. This relationship was unexpected because these viruses differ markedly in virion symmetry, genome configuration and cellular pathology. Here we present evidence based on sequence comparisons and phylogenetic analyses of a greater range of ascovirus proteins and their homologues in other large dsDNA viruses that ascoviruses evolved from iridoviruses. Consensus trees for the major capsid protein, DNA polymerase, thymidine kinase and ATPase III from representative ascoviruses, algal viruses (family Phycodnaviridae), vertebrate and invertebrate iridoviruses (family Iridoviridae) and African swine fever virus (ASFV; family Asfarviridae) showed that ascovirus proteins clustered most closely with those of the lepidopteran iridovirus Chilo iridescent virus (CIV) (Invertebrate iridescent virus 6). Moreover, analysis of the presence or absence of homologues of an additional 50 proteins encoded in the genome of Spodoptera frugiperda ascovirus (SfAV-1a) showed that about 40 % occurred in CIV, with lower percentages encoded by the genomes of, respectively, vertebrate iridoviruses, phycodnaviruses and ASFV. The occurrence of three of these genes in SfAV-1a but not CIV was indicative of the evolutionary differentiation of ascoviruses from invertebrate iridoviruses.  (+info)

A viral caspase contributes to modified apoptosis for virus transmission. (3/16)

The Spodoptera frugiperda ascovirus, a DNA virus that attacks lepidopterans, codes for an executioner caspase synthesized by 9 h after infection of Sf21 cells. This caspase alone induces apoptosis in insect cells and, during viral replication in vivo, contributes to a novel cell cleavage process in which developing apoptotic bodies are rescued by the virus and differentiate to form large vesicles in which virions assemble. These viral vesicles disseminate to the blood, where they are acquired during egg-laying by parasitic wasps that transmit the virus. No other viruses encode caspases or form such modified apoptotic bodies, suggesting this caspase plays a direct role in cell partitioning that facilitates viral reproduction and transmission.  (+info)

Sequence and organization of the Trichoplusia ni ascovirus 2c (Ascoviridae) genome. (4/16)

The complete Trichoplusia ni ascovirus 2c (TnAV-2c) genome sequence was determined. The circular genome contains 174,059 bp with 165 open reading frames (ORFs) of greater than 180 bp and two major homologous regions (hrs). The genome is quite A+T rich at 64.6%. Fifty-four ORFs had homologues in other insect viruses, such as ascoviruses, iridoviruses, baculoviruses and entomopoxviruses; 30 ORFs showed low identities with those from different parasitic protozoa and 12 ORFs were unique to TnAV-2c. TnAV-2c has 15 ORFs that could be grouped into six gene families. Three major conserved repeating sequences were identified and were interspersed in two regions. BLAST analyses revealed that there were 16 enzymes involved in gene transcription, DNA replication, and nucleotide metabolism. TnAV-2c has 12 and 25 ORFs sharing high identities with ascovirus and iridovirus homologues, respectively. The codon usage bias appears to be more similar to Spodoptera frugiperda ascovirus 1a than to iridoviruses.  (+info)

Genomic sequence of Spodoptera frugiperda Ascovirus 1a, an enveloped, double-stranded DNA insect virus that manipulates apoptosis for viral reproduction. (5/16)

Ascoviruses (family Ascoviridae) are double-stranded DNA viruses with circular genomes that attack lepidopterans, where they produce large, enveloped virions, 150 by 400 nm, and cause a chronic, fatal disease with a cytopathology resembling that of apoptosis. After infection, host cell DNA is degraded, the nucleus fragments, and the cell then cleaves into large virion-containing vesicles. These vesicles and virions circulate in the hemolymph, where they are acquired by parasitic wasps during oviposition and subsequently transmitted to new hosts. To develop a better understanding of ascovirus biology, we sequenced the genome of the type species Spodoptera frugiperda ascovirus 1a (SfAV-1a). The genome consisted of 156,922 bp, with a G+C ratio of 49.2%, and contained 123 putative open reading frames coding for a variety of enzymes and virion structural proteins, of which tentative functions were assigned to 44. Among the most interesting enzymes, due to their potential role in apoptosis and viral vesicle formation, were a caspase, a cathepsin B, several kinases, E3 ubiquitin ligases, and especially several enzymes involved in lipid metabolism, including a fatty acid elongase, a sphingomyelinase, a phosphate acyltransferase, and a patatin-like phospholipase. Comparison of SfAV-1a proteins with those of other viruses showed that 10% were orthologs of Chilo iridescent virus proteins, the highest correspondence with any virus, providing further evidence that ascoviruses evolved from a lepidopteran iridovirus. The SfAV-1a genome sequence will facilitate the determination of how ascoviruses manipulate apoptosis to generate the novel virion-containing vesicles characteristic of these viruses and enable study of their origin and evolution.  (+info)

Sequence and organization of the Heliothis virescens ascovirus genome. (6/16)

The nucleotide sequence of the Heliothis virescens ascovirus (HvAV-3e) DNA genome was determined and characterized in this study. The circular genome consists of 186,262 bp, has a G+C content of 45.8 mol% and encodes 180 potential open reading frames (ORFs). Five unique homologous regions (hrs), 23 'baculovirus repeat ORFs' (bro) and genes encoding a caspase homologue and several enzymes involved in nucleotide replication and metabolism were found in the genome. Several ascovirus (AV)-, iridovirus- and baculovirus-homologous genes were identified. The genome is significantly larger than the recently sequenced genomes of Trichoplusia ni AV (TnAV-2c) and Spodoptera frugiperda AV (SfAV-1a). Gene-parity plots and overall similarity of ORFs indicate that HvAV-3e is related more closely to SfAV-1a than to TnAV-2c.  (+info)

Identification of Trichoplusia ni ascovirus 2c virion structural proteins. (7/16)

Ascoviruses are a family of insect viruses with circular, double-stranded DNA genomes. With the sequencing of the Trichoplusia ni ascovirus 2c (TnAV-2c) genome, the virion structural proteins were identified by using tandem mass spectrometry. From at least eight protein bands visible on a Coomassie blue-stained gel of TnAV-2c virion proteins, seven bands generated protein sequences that matched predicted open reading frames (ORFs) in the genome, i.e. ORFs 2, 43, 115, 141, 142, 147 and 153. Among these ORFs, only ORF153, encoding the major capsid protein, has been characterized previously.  (+info)

An insect virus-encoded microRNA regulates viral replication. (8/16)

 (+info)