Loading...
(1/71063) Inducible NO synthase: role in cellular signalling.

The discovery of endothelium-derived relaxing factor and its identification as nitric oxide (NO) was one of the most exciting discoveries of biomedical research in the 1980s. Besides its potent vasodilatory effects, NO was found under certain circumstances to be responsible for the killing of microorganisms and tumour cells by activated macrophages and to act as a novel, unconventional type of neurotransmitter. In 1992, Science picked NO as the 'Molecule of the Year', and over the past years NO has become established as a universal intercellular messenger that acutely affects important signalling pathways and, on a more long-term scale, modulates gene expression in target cells. These actions will form the focus of the present review.  (+info)

(2/71063) VEGF is required for growth and survival in neonatal mice.

We employed two independent approaches to inactivate the angiogenic protein VEGF in newborn mice: inducible, Cre-loxP- mediated gene targeting, or administration of mFlt(1-3)-IgG, a soluble VEGF receptor chimeric protein. Partial inhibition of VEGF achieved by inducible gene targeting resulted in increased mortality, stunted body growth and impaired organ development, most notably of the liver. Administration of mFlt(1-3)-IgG, which achieves a higher degree of VEGF inhibition, resulted in nearly complete growth arrest and lethality. Ultrastructural analysis documented alterations in endothelial and other cell types. Histological and biochemical changes consistent with liver and renal failure were observed. Endothelial cells isolated from the liver of mFlt(1-3)-IgG-treated neonates demonstrated an increased apoptotic index, indicating that VEGF is required not only for proliferation but also for survival of endothelial cells. However, such treatment resulted in less significant alterations as the animal matured, and the dependence on VEGF was eventually lost some time after the fourth postnatal week. Administration of mFlt(1-3)-IgG to juvenile mice failed to induce apoptosis in liver endothelial cells. Thus, VEGF is essential for growth and survival in early postnatal life. However, in the fully developed animal, VEGF is likely to be involved primarily in active angiogenesis processes such as corpus luteum development.  (+info)

(3/71063) A Drosophila doublesex-related gene, terra, is involved in somitogenesis in vertebrates.

The Drosophila doublesex (dsx) gene encodes a transcription factor that mediates sex determination. We describe the characterization of a novel zebrafish zinc-finger gene, terra, which contains a DNA binding domain similar to that of the Drosophila dsx gene. However, unlike dsx, terra is transiently expressed in the presomitic mesoderm and newly formed somites. Expression of terra in presomitic mesoderm is restricted to cells that lack expression of MyoD. In vivo, terra expression is reduced by hedgehog but enhanced by BMP signals. Overexpression of terra induces rapid apoptosis both in vitro and in vivo, suggesting that a tight regulation of terra expression is required during embryogenesis. Terra has both human and mouse homologs and is specifically expressed in mouse somites. Taken together, our findings suggest that terra is a highly conserved protein that plays specific roles in early somitogenesis of vertebrates.  (+info)

(4/71063) Alzheimer's disease: clues from flies and worms.

Presenilin mutations give rise to familial Alzheimer's disease and result in elevated production of amyloid beta peptide. Recent evidence that presenilins act in developmental signalling pathways may be the key to understanding how senile plaques, neurofibrillary tangles and apoptosis are all biochemically linked.  (+info)

(5/71063) Cell-mediated immunity: dealing a direct blow to pathogens.

Cytotoxic T lymphocytes are essential for defence against viral infections. Recent data demonstrating direct killing of intracellular bacteria by granulysin, a protein released from the granules of cytotoxic T lymphocytes, emphasize the contribution of these lymphocytes to the control of tuberculosis.  (+info)

(6/71063) JNK2 is required for efficient T-cell activation and apoptosis but not for normal lymphocyte development.

BACKGROUND: The Jun N-terminal kinase (JNK) signaling pathway has been implicated in cell proliferation and apoptosis, but its function seems to depend on the cell type and inducing signal. In T cells, JNK has been implicated in both antigen-induced activation and apoptosis. RESULTS: We generated mice lacking the JNK2 isozymes. The mutant mice were healthy and fertile but defective in peripheral T-cell activation induced by antibody to the CD3 component of the T-cell receptor (TCR) complex - proliferation and production of interleukin-2 (IL-2), IL-4 and interferon-gamma (IFN-gamma) were reduced. The proliferation defect was restored by exogenous IL-2. B-cell activation was normal in the absence of JNK2. Activation-induced peripheral T-cell apoptosis was comparable between mutant and wild-type mice, but immature (CD4(+) CD8(+)) thymocytes lacking JNK2 were resistant to apoptosis induced by administration of anti-CD3 antibody in vivo. The lack of JNK2 also resulted in partial resistance of thymocytes to anti-CD3 antibody in vitro, but had little or no effect on apoptosis induced by anti-Fas antibody, dexamethasone or ultraviolet-C (UVC) radiation. CONCLUSIONS: JNK2 is essential for efficient activation of peripheral T cells but not B cells. Peripheral T-cell activation is probably required indirectly for induction of thymocyte apoptosis resulting from administration of anti-CD3 antibody in vivo. JNK2 functions in a cell-type-specific and stimulus-dependent manner, being required for apoptosis of immature thymocytes induced by anti-CD3 antibody but not for apoptosis induced by anti-Fas antibody, UVC or dexamethasone. JNK2 is not required for activation-induced cell death of mature T cells.  (+info)

(7/71063) Bcl-2 regulates amplification of caspase activation by cytochrome c.

Caspases, a family of specific proteases, have central roles in apoptosis [1]. Caspase activation in response to diverse apoptotic stimuli involves the relocalisation of cytochrome c from mitochondria to the cytoplasm where it stimulates the proteolytic processing of caspase precursors. Cytochrome c release is controlled by members of the Bcl-2 family of apoptosis regulators [2] [3]. The anti-apoptotic members Bcl-2 and Bcl-xL may also control caspase activation independently of cytochrome c relocalisation or may inhibit a positive feedback mechanism [4] [5] [6] [7]. Here, we investigate the role of Bcl-2 family proteins in the regulation of caspase activation using a model cell-free system. We found that Bcl-2 and Bcl-xL set a threshold in the amount of cytochrome c required to activate caspases, even in soluble extracts lacking mitochondria. Addition of dATP (which stimulates the procaspase-processing factor Apaf-1 [8] [9]) overcame inhibition of caspase activation by Bcl-2, but did not prevent the control of cytochrome c release from mitochondria by Bcl-2. Cytochrome c release was accelerated by active caspase-3 and this positive feedback was negatively regulated by Bcl-2. These results provide evidence for a mechanism to amplify caspase activation that is suppressed at several distinct steps by Bcl-2, even after cytochrome c is released from mitochondria.  (+info)

(8/71063) Bcl-2 and Bcl-XL serve an anti-inflammatory function in endothelial cells through inhibition of NF-kappaB.

To maintain the integrity of the vascular barrier, endothelial cells (EC) are resistant to cell death. The molecular basis of this resistance may be explained by the function of antiapoptotic genes such as bcl family members. Overexpression of Bcl-2 or Bcl-XL protects EC from tumor necrosis factor (TNF)-mediated apoptosis. In addition, Bcl-2 or Bcl-XL inhibits activation of NF-kappaB and thus upregulation of proinflammatory genes. Bcl-2-mediated inhibition of NF-kappaB in EC occurs upstream of IkappaBalpha degradation without affecting p65-mediated transactivation. Overexpression of bcl genes in EC does not affect other transcription factors. Using deletion mutants of Bcl-2, the NF-kappaB inhibitory function of Bcl-2 was mapped to bcl homology domains BH2 and BH4, whereas all BH domains were required for the antiapoptotic function. These data suggest that Bcl-2 and Bcl-XL belong to a cytoprotective response that counteracts proapoptotic and proinflammatory insults and restores the physiological anti-inflammatory phenotype to the EC. By inhibiting NF-kappaB without sensitizing the cells (as with IkappaBalpha) to TNF-mediated apoptosis, Bcl-2 and Bcl-XL are prime candidates for genetic engineering of EC in pathological conditions where EC loss and unfettered activation are undesirable.  (+info)