(1/350) Gene conversion and hypermutation during diversification of VH sequences in developing splenic germinal centers of immunized rabbits.

The young rabbit appendix and the chicken bursa of Fabricius are primary lymphoid organs where the B cell Ab repertoire develops in germinal centers (GCs) mainly by a gene conversion-like process. In human and mouse, V-gene diversification by somatic hypermutation in GCs of secondary lymphoid organs leads to affinity maturation. We asked whether gene conversion, somatic hypermutation, or both occur in rabbit splenic GCs during responses to the hapten DNP. We determined DNA sequences of rearranged heavy and light chain V region gene segments in single cells from developing DNP-specific GCs after immunization with DNP-bovine gamma-globulin and conclude that the changes at the DNA level that may lead to affinity maturation occur by both gene conversion and hypermutation. Selection was suggested by finding some recurrent amino acid replacements that may contribute increased affinity for antigen in the complementarity-determining region sequences of independently evolved clones, and a narrower range of complementarity-determining region 3 lengths at day 15. Some of the alterations of sequence may also lead to new members of the B cell repertoire in adult rabbits comparable with those produced in gut associated lymphoid tissues of young rabbits.  (+info)

(2/350) Antigen-induced somatic diversification of rabbit IgH genes: gene conversion and point mutation.

During T cell-dependent immune responses in mouse and human, Ig genes diversify by somatic hypermutation within germinal centers. Rabbits, in addition to using somatic hypermutation to diversify their IgH genes, use a somatic gene conversion-like mechanism, which involves homologous recombination between upstream VH gene segments and the rearranged VDJ genes. Somatic gene conversion and somatic hypermutation occur in young rabbit gut-associated lymphoid tissue and are thought to diversify a primary Ab repertoire that is otherwise limited by preferential VH gene segment utilization. Because somatic gene conversion is rarely found within Ig genes during immune responses in mouse and human, we investigated whether gene conversion in rabbit also occurs during specific immune responses, in a location other than gut-associated lymphoid tissue. We analyzed clonally related VDJ genes from popliteal lymph node B cells responding to primary, secondary, and tertiary immunization with the hapten FITC coupled to a protein carrier. Clonally related VDJ gene sequences were derived from FITC-specific hybridomas, as well as from Ag-induced germinal centers of the popliteal lymph node. By analyzing the nature of mutations within these clonally related VDJ gene sequences, we found evidence not only of ongoing somatic hypermutation, but also of ongoing somatic gene conversion. Thus in rabbit, both somatic gene conversion and somatic hypermutation occur during the course of an immune response.  (+info)

(3/350) Secondary rearrangements and hypermutation generate sufficient B cell diversity to mount protective antiviral immunoglobulin responses.

Variable (V) region gene replacement was recently implicated in B cell repertoire diversification, but the contribution of this mechanism to antibody responses is still unknown. To investigate the role of V gene replacements in the generation of antigen-specific antibodies, we analyzed antiviral immunoglobulin responses of "quasimonoclonal" (QM) mice. The B cells of QM mice are genetically committed to exclusively express the anti-(4-hydroxy-3-nitrophenyl) acetyl specificity. However, approximately 20% of the peripheral B cells of QM mice undergo secondary rearrangements and thereby potentially acquire new specificities. QM mice infected with vesicular stomatitis virus (VSV), lymphocytic choriomeningitis virus, or poliovirus mounted virus-specific neutralizing antibody responses. In general, kinetics of the antiviral immunoglobulin responses were delayed in QM mice; however, titers similar to control animals were eventually produced that were sufficient to protect against VSV-induced lethal disease. VSV neutralizing single-chain Fv fragments isolated from phage display libraries constructed from QM mice showed VH gene replacements and extensive hypermutation. Thus, our data demonstrate that secondary rearrangements and hypermutation can generate sufficient B cell diversity in QM mice to mount protective antiviral antibody responses, suggesting that these mechanisms might also contribute to the diversification of the B cell repertoire of normal mice.  (+info)

(4/350) Increased junctional diversity in fetal B cells results in a loss of protective anti-phosphorylcholine antibodies in adult mice.

Fetal Igs are less diverse than adult Igs, largely because of the lack of N addition in the absence of Tdt. To test whether the absence of Tdt is essential, we generated Tg mice that express Tdt and add N regions in fetal B cells. When challenged as adults with PC-containing Streptococcus pneumoniae, these mice fail to make the hallmark T15 anti-PC Ab encoded by canonical rearrangements of Ig H and L chain genes. The anti-PC Abs from these mice are altered by premature N addition and do not protect against death from virulent pneumococcal infection. These results show that maintenance of lower Ig diversity in early life is essential for the acquisition of a complete functional adult repertoire.  (+info)

(5/350) Functional diversity of natural IgM.

This paper proposes a method for the quantitative characterization of repertoire diversity of an unknown mixture of antibodies on the basis of its reactivity profile in the quantitative immunoblot (QIB). The QIB is calibrated by measuring the reactivity profiles of supernatants of known 'diversity' (i.e. known numbers of B cell clones). We define a quantitative 'index of variability' (IV) which decreases regularly as the diversity increases and the profiles tend towards a common 'convergence profile'. The calibration procedure is consolidated by a mathematical model based on the Poisson distribution; this theoretical model accounts correctly for the observed convergence behavior. On the basis of this calibration curve, it is possible to estimate the diversity of an unknown antibody mixture from a measure of its IV. We conclude that the functional diversity of natural serum IgM in mice can be estimated at approximately 16,000 clones.  (+info)

(6/350) B cell repertoire diversity and clonal expansion in multiple sclerosis brain lesions.

Multiple sclerosis (MS) lesions in the CNS are characterized by disseminated demyelination with perivascular infiltrates of macrophages, T cells, and B cells. To investigate the origin and characteristics of the B cell population found in MS plaque tissue, we performed molecular studies in 10 MS patients and 4 non-MS control samples. Ig transcripts from the perivascular infiltrated brain lesions were analyzed by complementary-determining region 3 spectratyping to ascertain the B cell heavy chain gene rearrangement repertoire expressed in MS brains. Significant rearrangement diversity and deviation from the normal Ig heavy (H) chain repertoire was observed. The cloning and sequencing of RT-PCR products from families VH1 and VH4 showed a correlation with the profiles obtained by spectratyping. Generally, restricted spectratyping patterns concurred with repetition of in-frame complementary-determining region 3 identical sequences. The analysis of heavy chain variable (VH), diversity (D), and joining (JH) gene segments revealed the increased usage of VH1-69, VH4-34, and VH4-39. Similarly, gene segments from families D2, D3, and JH4 were over-represented. The presence of restricted patterns of rearranged Ig mRNA within the plaque lesion suggests that Ab production in the demyelinating plaque is a local phenomenon and supports the idea that in MS an Ag-driven immune response might be responsible for demyelination.  (+info)

(7/350) Efficient antibody diversification by gene conversion in vivo in the absence of selection for V(D)J-encoded determinants.

Antibody diversification in the bursa of Fabricius occurs by gene conversion: pseudogene-derived sequences replace homologous sequences in rearranged immunoglobulin genes. Bursal cells expressing a truncated immunoglobulin mu heavy chain, introduced by retroviral gene transfer, bypass normal requirements for endogenous surface immunoglobulin expression. Immunoglobulin light chain rearrangements in such cells undergo gene conversion under conditions where the products are not selected based on their ability to encode a functional protein. The efficiency with which gene conversion maintains a productive reading frame exceeds 97% under such non-selective conditions. By analysis of donor pseudogene usage we demonstrate that bursal cell development is not driven by a restricted set of antigenic specificities. We further demonstrate that gene conversion can restore a productive reading frame to out-of-frame VJ(L) junctions, providing a rationale for the elimination of cells containing non-productive VJ(L) rearrangements prior to the onset of gene conversion in normal bursal cell development.  (+info)

(8/350) Antibody repertoires of four- and five-feature translocus mice carrying human immunoglobulin heavy chain and kappa and lambda light chain yeast artificial chromosomes.

We have produced mice that carry the human Ig heavy (IgH) and both kappa and lambda light chain transloci in a background in which the endogenous IgH and kappa loci have been inactivated. The B lymphocyte population in these translocus mice is restored to about one-third of normal levels, with preferential (3:1) expression of human lambda over human kappa. Human IgM is found in the serum at levels between 50 and 400 microg/ml and is elevated following immunization. This primary human Ab repertoire is sufficient to yield diverse Ag-specific responses as judged by analysis of mAbs. The use of DH and J segments is similar to that seen in human B cells, with an analogous pattern of N nucleotide insertion. Maturation of the response is accompanied by somatic hypermutation, which is particularly effective in the light chain transloci. These mice therefore allow the production of Ag-specific repertoires of both IgM,kappa and IgM,lambda Abs and should prove useful for the production of human mAbs for clinical use.  (+info)