Karyotype identity of two subspecies of Eld's deer [Cervus eldi (Cervinae, Artiodactyla)] and its consequences for conservation. (1/277)

Among the three subspecies generally recognized within the Eld's deer (Cervus eldi)--C. e. eldi, C. e. thamin, and C. e. siamensis--C. e. siamensis is considered to be particularly endangered following its disappearance from a major portion of its original range. The only captive breeding population of this subspecies is in the zoological parks at the Paris Museum of Natural History. Taking into account its low effective population size (Ne = 7) and the increasing levels of inbreeding, the continued breeding of this "micropopulation" in isolation from closely related subspecies and in particular from C. e. thamin, which is much more common in zoos as well as in the nature, is questioned. As an initial step in determining if crosses between these subspecies could be performed without risk of outbreeding depression due, in part, to gross differences in their karyotypes, a comparative chromosome banding analysis (RBG-bands) of C. e. siamensis and C. e. thamin was undertaken. No chromosomal differences were identified between the taxa at the level of resolution obtained. The study suggests that, at least from a karyotypic perspective, no obvious differences delimit the two subspecies, and hybridization between endangered C. e. siamensis and C. e. thamin is not likely to lead to impaired fertility in hybrid animals.  (+info)

CFU-S(11) activity does not localize solely with the aorta in the aorta-gonad-mesonephros region. (2/277)

The aorta-gonad-mesonephros (AGM) region is a potent hematopoietic site in the midgestation mouse conceptus and first contains colony-forming units-spleen day 11 (CFU-S(11)) at embryonic day 10 (E10). Because CFU-S(11) activity is present in the AGM region before the onset of hematopoietic stem cell (HSC) activity, CFU-S(11) activity in the complex developing vascular and urogenital regions of the AGM was localized. From E10 onward, CFU-S(11) activity is associated with the aortic vasculature, and is found also in the urogenital ridges (UGRs). Together with data obtained from organ explant cultures, in which up to a 16-fold increase in CFU-S(11) activity was observed, it was determined that CFU-S(11) can be increased autonomously both in vascular sites and in UGRs. Furthermore, CFU-S(11) activity is present in vitelline and umbilical vessels. This, together with the presence of CFU-S(11) in the UGRs 2 days before HSC activity, suggests both temporally and spatially distinct emergent sources of CFU-S(11). (Blood. 2000;96:2902-2904)  (+info)

Genes in the first and fourth inversions of the mouse t complex synergistically mediate sperm capacitation and interactions with the oocyte. (3/277)

The t haplotypes (t) are recent evolutionary derivatives of an alternate form of the mouse t complex region located at the proximal end of chromosome 17. This variant form of approximately 1% of the mouse genome is a source of mutations altering numerous sperm functions crucial for fertilization. Males that carry two t haplotypes (t/t) are invariably sterile. t haplotypes contain four inversions relative to the wild-type t complex (+), so that in matings involving a +/t heterozygote, t is usually transmitted as a single unit. However, rare recombinants have been recovered, which carry only part of the t genotype and express only some of the t-dependent phenotypes. Use of these partial t haplotypes in genetic crosses has resulted in the general location of the two major t male sterility factors, S1 and S2, within inversions 1 and 4, respectively. Since sterility can result from a plethora of sperm defects, we have made a detailed study of various functional parameters of sperm from mice carrying S1 or S2 heterozygously or homozygously or in combination. Both S1 and S2 contain mutations altering sperm functions, including motility, capacitation, binding to the zona pellucida, binding to the oocyte membrane, and penetration of the zona pellucida-free oocyte. Therefore it seems clear that each of these factors contains multiple genes contributing to sterility. Furthermore, our results indicate that genes within S1 interact with genes in S2 for all sperm functions examined. However, S1 and S2 genes affecting motility interact in a purely additive fashion, while S1 and S2 genes affecting most other sperm characteristics interact in a synergistic manner. Additionally, the patterns of synergism between S1 and S2 for abnormalities in capacitation, sperm-oolemma binding, and zona-free oocyte penetration are nearly identical. This suggests that these three defects are caused by mutation of the same gene within each sterility factor. These findings will not only be instrumental in matching the various t haplotype sperm defects to candidate genes for S1 and S2, but will facilitate a more comprehensive understanding of the cellular and genetic mechanisms underlying t haplotype male sterility.  (+info)

The rate and the type of orthodontic tooth movement is influenced by bone turnover in a rat model. (4/277)

The influence of bone metabolism on both the rate and the type of orthodontic tooth movement was investigated. A rat model in which high (n = 16) and low (n = 17) bone turnover was pharmacologically induced was used. A non-pharmacologically treated group (n = 19) served as the control. A mesially directed constant single force of 25 cN was applied to the upper left first molar for a period of 3 weeks. The study was performed as a split-mouth design, the contralateral side of each animal serving as its control. The displacement of the molar crown was measured with an electronic calliper, while changes in inclination of the teeth were measured from micro-CT scans of the excised maxillae. The bone turnover significantly affected the rate of tooth movement. In the case of high turnover, the rate of tooth movement was increased while it was reduced in the case of low turnover. A controlled mesial tipping in all three groups was observed, but the actual location of the centre of rotation seemed to be influenced by the metabolic state of the bone. Based on the results it can be concluded that deviations in bone turnover influence the response to orthodontic forces, and should be taken into consideration when planning orthodontic treatment in patients with metabolic bone disease or those on chronic medication influencing bone metabolism.  (+info)

Group B Streptococcus induces apoptosis in macrophages. (5/277)

Group B Streptococcus (GBS) is a pathogen that has developed some strategies to resist host immune defenses. Because phagocytic killing is an important pathogenetic mechanism for bacteria, we investigated whether GBS induces apoptosis in murine macrophages. GBS type III strain COH31 r/s (GBS-III) first causes a defect in cell membrane permeability, then at 24 h, apoptosis. Apoptosis was confirmed by several techniques based on morphological changes and DNA fragmentation. Cytochalasin D does not affect apoptosis, suggesting that GBS-III needs not be within the macrophage cytoplasm to promote apoptosis. Inhibition of host protein synthesis prevents apoptosis, whereas inhibition of caspase-1 or -3, does not. Therefore, GBS can trigger an apoptotic pathway independent of caspase-1 and -3, but dependent on protein synthesis. Inhibition of apoptosis by EGTA and PMA, and enhancement of apoptosis by calphostin C and GF109203X suggests that an increase in the cytosolic calcium level and protein kinase C activity status are important in GBS-induced apoptosis. Neither alteration of plasma membrane permeability nor apoptosis were induced by GBS grown in conditions impeding hemolysin expression or when we used dipalmitoylphosphatidylcholine, which inhibited GBS beta-hemolytic activity, suggesting that GBS beta-hemolysin could be involved in apoptosis. beta-Hemolysin, by causing membrane permeability defects, could allow calcium influx, which initiates macrophage apoptosis. GBS also induces apoptosis in human monocytes but not in tumor lines demonstrating the specificity of its activity. This study suggests that induction of macrophage apoptosis by GBS is a novel strategy to overcome host immune defenses.  (+info)

Rapid recruitment of neutrophils containing prestored IL-12 during microbial infection. (6/277)

Neutrophils are well known to rapidly migrate to foci of infection, where they exert microbicidal functions. We sought to determine whether neutrophils responding to in vivo infection with the protozoan pathogen Toxoplasma gondii were capable of IL-12 production as suggested by recent in vitro studies. Intraperitoneal infection induced a neutrophil influx by 4 h, accompanied by ex vivo IL-12 p40 and p70 release. Approximately 85% of the neutrophils displayed intracellular stores of IL-12, as determined by flow cytometry and confocal fluorescence microscopy. Neutrophils from IFN-gamma knockout mice also expressed IL-12, ruling out an IFN-gamma-priming requirement. Neither infected nor uninfected peritoneal macrophages displayed intracellular IL-12, but these cells were strongly IL-10(+). Infection per se was unnecessary for IL-12 production because peritoneal and peripheral blood neutrophils from uninfected animals contained IL-12(+) populations. Expression of the granulocyte maturation marker Gr-1 (Ly-6G) was correlated with IL-12 production. Mice depleted of their granulocytes by mAb administration at the time of infection had decreased serum levels of IL-12 p40. These results suggest a model in which neutrophils with prestored IL-12 are rapidly mobilized to an infection site where they are triggered by the parasite to release cytokine. Our findings place neutrophils prominently in the cascade of early events leading to IL-12-dependent immunity to T. gondii.  (+info)

Pituitary neoplasia induced by expression of human neurotropic polyomavirus, JCV, early genome in transgenic mice. (7/277)

In recent years, there has been mounting evidence pointing to the association of polyomaviruses with a wide range of human cancers. The human neurotropic polyomavirus, JCV, infecting greater than 75% of the human population produces a regulatory protein named T-antigen which is expressed at the early phase of viral lytic infection and plays a critical role in completion of the viral life cycle. Furthermore, this protein has the ability to transform neural cells in vitro and its expression has been detected in several human neural-origin tumors. To further investigate the oncogenic potential of the JCV early protein in vivo, transgenic mice expressing JCV T-antigen under the control of its own promoter were generated. Nearly 50% of the animals developed large, solid masses within the base of the skull by 1 year of age. Evaluation of the location as well as histological and immunohistochemical data suggest that the tumors arise from the pituitary gland. As T-antigen is known to interact with several cell cycle regulators, the neoplasms were analysed for the presence of the tumor suppressor protein, p53. Immunoprecipitation/Western blot analysis demonstrated overexpression of wild-type, but not mutant p53 within tumor tissue. In addition, co-immunoprecipitation established an interaction between p53 and T-antigen and overexpression of p53 downstream target protein, p21/WAF1. This report describes the analysis of inheritable pituitary adenomas induced by expression of the human polyomavirus, JCV T-antigen in transgenic mice where T-antigen disrupts the p53 pathway by binding to and sequestering wild-type p53. This animal model may serve as a useful tool to further evaluate mechanisms of tumorigenesis by JCV T-antigen.  (+info)

TGF-beta 1 and IFN-gamma direct macrophage activation by TNF-alpha to osteoclastic or cytocidal phenotype. (8/277)

TNF-related activation-induced cytokine (TRANCE; also called receptor activator of NF-kappaB ligand (RANKL), osteoclast differentiation factor (ODF), osteoprotegerin ligand (OPGL), and TNFSF11) induces the differentiation of progenitors of the mononuclear phagocyte lineage into osteoclasts in the presence of M-CSF. Surprisingly, in view of its potent ability to induce inflammation and activate macrophage cytocidal function, TNF-alpha has also been found to induce osteoclast-like cells in vitro under similar conditions. This raises questions concerning both the nature of osteoclasts and the mechanism of lineage choice in mononuclear phagocytes. We found that, as with TRANCE, the macrophage deactivator TGF-beta(1) strongly promoted TNF-alpha-induced osteoclast-like cell formation from immature bone marrow macrophages. This was abolished by IFN-gamma. However, TRANCE did not share the ability of TNF-alpha to activate NO production or heighten respiratory burst potential by macrophages, or induce inflammation on s.c. injection into mice. This suggests that TGF-beta(1) promotes osteoclast formation not only by inhibiting cytocidal behavior, but also by actively directing TNF-alpha activation of precursors toward osteoclasts. The osteoclast appears to be an equivalent, alternative destiny for precursors to that of cytocidal macrophage, and may represent an activated variant of scavenger macrophage.  (+info)