Cerebral blood flow during treatment for pulmonary hypertension. (1/51)

AIM: To determine if the haemodynamics of systemic and cerebral circulation are changed during treatment for persistent pulmonary hypertension of the newborn (PPHN). METHODS: Fifteen term newborn piglets with hypoxia induced pulmonary hypertension were randomly assigned either tolazoline infusion (Tz), hyperventilation alkalosis(HAT), and inhaled nitric oxide (iNO). Mean pulmonary arterial pressure (PAP), mean systemic arterial pressure (SAP), and cerebral blood flow volume (CBF) were measured. RESULTS: During hypoxic breathing, PAP increased significantly in all groups. After treatment PAP decreased significantly in all groups, but no significant difference was observed between groups. SAP decreased significantly only in the Tz group, and CBF reduced significantly only in the HAT group. On the other hand, iNO did not change SAP or CBF. CONCLUSION: Inhaled NO might be ideal for the resolution of pulmonary hypertension.  (+info)

Splanchnic hemodynamics and gut mucosal-arterial PCO(2) gradient during systemic hypocapnia. (2/51)

The effects of hypocapnia [arterial PCO(2) (Pa(CO(2))) 15 Torr] on splanchnic hemodynamics and gut mucosal-arterial P(CO(2)) were studied in seven anesthetized ventilated dogs. Ileal mucosal and serosal blood flow were estimated by using laser Doppler flowmetry, mucosal PCO(2) was measured continuously by using capnometric recirculating gas tonometry, and serosal surface PO(2) was assessed by using a polarographic electrode. Hypocapnia was induced by removal of dead space and was maintained for 45 min, followed by 45 min of eucapnia. Mean Pa(CO(2)) at baseline was 38.1 +/- 1.1 (SE) Torr and decreased to 13.8 +/- 1.3 Torr after removal of dead space. Cardiac output and portal blood flow decreased significantly with hypocapnia. Similarly, mucosal and serosal blood flow decreased by 15 +/- 4 and by 34 +/- 7%, respectively. Also, an increase in the mucosal-arterial PCO(2) gradient of 10.7 Torr and a reduction in serosal PO(2) of 30 Torr were observed with hypocapnia (P < 0.01 for both). Hypocapnia caused ileal mucosal and serosal hypoperfusion, with redistribution of flow favoring the mucosa, accompanied by increased PCO(2) gradient and diminished serosal PO(2).  (+info)

Impeding O(2) unloading in muscle delays oxygen uptake response to exercise onset in humans. (3/51)

We tested whether the leftward shift of the oxygen dissociation curve of hemoglobin with hyperpnea delays the oxygen uptake (VO(2)) response to the onset of exercise. Six male subjects performed cycle ergometer exercise at a work rate corresponding to 80% of the ventilatory threshold (VT) VO(2) of each individual after 3 min of 20-W cycling under eupnea [control (Con) trial]. A hyperpnea procedure (minute ventilation = 60 l/min) was undertaken for 2 min before and during 80% VT exercise in hypocapnia (Hypo) and normocapnia (Normo) trials. In the Normo trial, the inspired CO(2) fraction was 3% to prevent hypocapnia. The subjects completed two repetitions of each trial. To determine the kinetic variables of VO(2) and heart rate (HR) at the onset of exercise, a nonlinear least-squares fitting was applied to the data averaged from two repetitions by a monoexponential model. The end-tidal CO(2) partial pressure before the onset of exercise was significantly lower in the Hypo trial than in the Con and Normo trials (22 +/- 1 vs. 38 +/- 3 and 36 +/- 1 mmHg, respectively, P < 0.05). The time constant of VO(2) and HR was significantly longer in the Normo trial (28 +/- 7 and 39 +/- 18 s, respectively) than in the Con trial (21 +/- 7, 34 +/- 16 s, respectively, P < 0.05). The VO(2) time constant of the Hypo trial (37 +/- 12 s) was significantly longer than that of the Normo trial, although no significant difference in the HR time constant was seen (Hypo, 41 +/- 28 s). These findings suggested that respiratory alkalosis delayed the kinetics of oxygen diffusion in active muscle as a result of the leftward shift of the oxygen dissociation curve of hemoglobin. This supports an important role for hemoglobin-O(2) offloading in setting the VO(2) kinetics at exercise onset.  (+info)

Role of C5a in multiorgan failure during sepsis. (4/51)

In humans with sepsis, the onset of multiorgan failure (MOF), especially involving liver, lungs, and kidneys, is a well known complication that is associated with a high mortality rate. Our previous studies with the cecal ligation/puncture (CLP) model of sepsis in rats have revealed a C5a-induced defect in the respiratory burst of neutrophils. In the current CLP studies, MOF occurred during the first 48 h with development of liver dysfunction and pulmonary dysfunction (falling arterial partial pressure of O(2), rising partial pressure of CO(2)). In this model an early respiratory alkalosis developed, followed by a metabolic acidosis with increased levels of blood lactate. During these events, blood neutrophils lost their chemotactic responsiveness both to C5a and to the bacterial chemotaxin, fMLP. Neutrophil dysfunction was associated with virtually complete loss in binding of C5a, but binding of fMLP remained normal. If CLP animals were treated with anti-C5a, indicators of MOF and lactate acidosis were greatly attenuated. Under the same conditions, C5a binding to blood neutrophils remained intact; in tandem, in vitro chemotactic responses to C5a and fMLP were retained. These data suggest that, in the CLP model of sepsis, treatment with anti-C5a prevents development of MOF and the accompanying onset of blood neutrophil dysfunction. This may explain the protective effects of anti-C5a in the CLP model of sepsis.  (+info)

Enhanced temporal stability of cholinergic hippocampal gamma oscillations following respiratory alkalosis in vitro. (5/51)

The decrease in brain CO(2) partial pressure (pCO(2)) that takes place both during voluntary and during pathological hyperventilation is known to induce gross alterations in cortical functions that lead to subjective sensations and altered states of consciousness. The mechanisms that mediate the effects of the decrease in pCO(2) at the neuronal network level are largely unexplored. In the present work, the modulation of gamma oscillations by hypocapnia was studied in rat hippocampal slices. Field potential oscillations were induced by the cholinergic agonist carbachol under an N-methyl-D-aspartate (NMDA)-receptor blockade and were recorded in the dendritic layer of the CA3 region with parallel measurements of changes in interstitial and intraneuronal pH (pH(o) and pH(i), respectively). Hypocapnia from 5 to 1% CO(2) led to a stable monophasic increase of 0.5 and 0.2 units in pH(o) and pH(i), respectively. The mean oscillation frequency increased slightly but significantly from 32 to 34 Hz and the mean gamma-band amplitude (20 to 80 Hz) decreased by 20%. Hypocapnia induced a dramatic enhancement of the temporal stability of the oscillations, as was indicated by a two-fold increase in the exponential decay time constant fitted to the autocorrelogram. A rise in pH(i) evoked by the weak base trimethylamine (TriMA) was associated with a slight increase in oscillation frequency (37 to 39 Hz) and a decrease in amplitude (30%). Temporal stability, on the other hand, was decreased by TriMA, which suggests that its enhancement in 1% CO(2) was related to the rise in pH(o). In 1% CO(2), the decay-time constant of the evoked monosynaptic pyramidal inhibitory postsynaptic current (IPSC) was unaltered but its amplitude was enhanced. This increase in IPSC amplitude seems to significantly contribute to the enhancement of temporal stability because the enhancement was almost fully reversed by a low concentration of bicuculline. These results suggest that changes in brain pCO(2) can have a strong influence on the temporal modulation of gamma rhythms.  (+info)

Effects of respiratory acidosis and alkalosis on the distribution of cyanide into the rat brain. (6/51)

The aim of this study was to determine whether respiratory acidosis favors the cerebral distribution of cyanide, and conversely, if respiratory alkalosis limits its distribution. The pharmacokinetics of a nontoxic dose of cyanide were first studied in a group of 7 rats in order to determine the distribution phase. The pharmacokinetics were found to best fit a 3-compartment model with very rapid distribution (whole blood T(1/2)alpha = 21.6 +/- 3.3 s). Then the effects of the modulation of arterial pH on the distribution of a nontoxic dose of intravenously administered cyanide into the brains of rats were studied by means of the determination of the permeability-area product (PA). The modulation of arterial blood pH was performed by variation of arterial carbon dioxide tension (PaCO2) in 3 groups of 8 anesthetized mechanically ventilated rats. The mean arterial pH measured 20 min after the start of mechanical ventilation in the acidotic, physiologic, and alkalotic groups were 7.07 +/- 0.03, 7.41 +/- 0.01, and 7.58 +/- 0.01, respectively. The mean PAs in the acidotic, physiologic, and alkalotic groups, determined 30 s after the intravenous administration of cyanide, were 0.015 +/- 0.002, 0.011 +/- 0.001, and 0.008 +/- 0.001 s(-1), respectively (one-way ANOVA; p < 0.0087). At alkalotic pH the mean permeability-area product was 43% of that measured at acidotic pH. This effect of pH on the rapidity of cyanide distribution does not appear to be limited to specific areas of the brain. We conclude that modulation of arterial pH by altering PaCO2 may induce significant effects on the brain uptake of cyanide.  (+info)

Effects of hypercapnia and hypocapnia on [Ca2+]i mobilization in human pulmonary artery endothelial cells. (7/51)

The hydrogen ion is an important factor in the alteration of vascular tone in pulmonary circulation. Endothelial cells modulate vascular tone by producing vasoactive substances such as prostacyclin (PGI2) through a process depending on intracellular Ca2+ concentration ([Ca2+]i). We studied the influence of CO2-related pH changes on [Ca2+]i and PGI2 production in human pulmonary artery endothelial cells (HPAECs). Hypercapnic acidosis appreciably increased [Ca2+]i from 112 +/- 24 to 157 +/- 38 nmol/l. Intracellular acidification at a normal extracellular pH increased [Ca2+]i comparable to that observed during hypercapnic acidosis. The hypercapnia-induced increase in [Ca2+]i was unchanged by the removal of Ca2+ from the extracellular medium or by the depletion of thapsigargin-sensitive intracellular Ca2+ stores. Hypercapnic acidosis may thus release Ca2+ from pH-sensitive but thapsigargin-insensitive intracellular Ca2+ stores. Hypocapnic alkalosis caused a fivefold increase in [Ca2+]i compared with hypercapnic acidosis. Intracellular alkalinization at a normal extracellular pH did not affect [Ca2+]i. The hypocapnia-evoked increase in [Ca2+]i was decreased from 242 +/- 56 to 50 +/- 32 nmol/l by the removal of extracellular Ca2+. The main mechanism affecting the hypocapnia-dependent [Ca2+]i increase was thought to be the augmented influx of extracellular Ca2+ mediated by extracellular alkalosis. Hypercapnic acidosis caused little change in PGI2 production, but hypocapnic alkalosis increased it markedly. In conclusion, both hypercapnic acidosis and hypocapnic alkalosis increase [Ca2+]i in HPAECs, but the mechanisms and pathophysiological significance of these increases may differ qualitatively.  (+info)

Total weak acid concentration and effective dissociation constant of nonvolatile buffers in human plasma. (8/51)

The strong ion approach provides a quantitative physicochemical method for describing the mechanism for an acid-base disturbance. The approach requires species-specific values for the total concentration of plasma nonvolatile buffers (A(tot)) and the effective dissociation constant for plasma nonvolatile buffers (K(a)), but these values have not been determined for human plasma. Accordingly, the purpose of this study was to calculate accurate A(tot) and K(a) values using data obtained from in vitro strong ion titration and CO(2) tonometry. The calculated values for A(tot) (24.1 mmol/l) and K(a) (1.05 x 10(-7)) were significantly (P < 0.05) different from the experimentally determined values for horse plasma and differed from the empirically assumed values for human plasma (A(tot) = 19.0 meq/l and K(a) = 3.0 x 10(-7)). The derivatives of pH with respect to the three independent variables [strong ion difference (SID), PCO(2), and A(tot)] of the strong ion approach were calculated as follows: dpH/dSID(+) = [1 + 10(pK(a)-pH)](2)/(2.303 x [SPCO(2)10(pH-pK'(1)[1 + 10(pK(a)-pH](2) + A(tot)10(pK(a)-PH]]; dpH/dPCO(2) = S10(-pK'(1)/[2.303[A(tot)10(pH)(10(pH + 10(pK(a))(-2) - SID(+)10(-pH)]], dpH/dA(tot) = -1/[2.303[SPCO(2)10(pH-pK'(1) + SID(+)10(pK(a)-pH)]], where S is solubility of CO(2) in plasma. The derivatives provide a useful method for calculating the effect of independent changes in SID(+), PCO(2), and A(tot) on plasma pH. The calculated values for A(tot) and K(a) should facilitate application of the strong ion approach to acid-base disturbances in humans.  (+info)