Biochemical and molecular characterization of the Bacillus subtilis acetoin catabolic pathway. (1/91)

A recent study indicated that Bacillus subtilis catabolizes acetoin by enzymes encoded by the acu gene cluster (F. J. Grundy, D. A. Waters, T. Y. Takova, and T. M. Henkin, Mol. Microbiol. 10:259-271, 1993) that are completely different from those in the multicomponent acetoin dehydrogenase enzyme system (AoDH ES) encoded by aco gene clusters found before in all other bacteria capable of utilizing acetoin as the sole carbon source for growth. By hybridization with a DNA probe covering acoA and acoB of the AoDH ES from Clostridium magnum, genomic fragments from B. subtilis harboring acoA, acoB, acoC, acoL, and acoR homologous genes were identified, and some of them were functionally expressed in E. coli. Furthermore, acoA was inactivated in B. subtilis by disruptive mutagenesis; these mutants were impaired to express PPi-dependent AoDH E1 activity to remove acetoin from the medium and to grow with acetoin as the carbon source. Therefore, acetoin is catabolized in B. subtilis by the same mechanism as all other bacteria investigated so far, leaving the function of the previously described acu genes obscure.  (+info)

Three distinct phases of isoprene formation during growth and sporulation of Bacillus subtilis. (2/91)

During growth on a glucose-tryptone medium, Bacillus subtilis 6051 (Marburg strain) exhibited three phases of isoprene (2-methyl-1, 3-butadiene) formation, corresponding to (i) glucose catabolism and secretion of acetoin, (ii) catabolism of acetoin, and (iii) the early stages of sporulation. These results establish an experimental system for studying the biological role of isoprene formation.  (+info)

Characterization of a (2R,3R)-2,3-butanediol dehydrogenase as the Saccharomyces cerevisiae YAL060W gene product. Disruption and induction of the gene. (3/91)

The completion of the Saccharomyces cerevisiae genome project in 1996 showed that almost 60% of the potential open reading frames of the genome had no experimentally determined function. Using a conserved sequence motif present in the zinc-containing medium-chain alcohol dehydrogenases, we found several potential alcohol dehydrogenase genes with no defined function. One of these, YAL060W, was overexpressed using a multicopy inducible vector, and its protein product was purified to homogeneity. The enzyme was found to be a homodimer that, in the presence of NAD(+), but not of NADP, could catalyze the stereospecific oxidation of (2R,3R)-2, 3-butanediol (K(m) = 14 mm, k(cat) = 78,000 min(-)(1)) and meso-butanediol (K(m) = 65 mm, k(cat) = 46,000 min(-)(1)) to (3R)-acetoin and (3S)-acetoin, respectively. It was unable, however, to further oxidize these acetoins to diacetyl. In the presence of NADH, it could catalyze the stereospecific reduction of racemic acetoin ((3R/3S)- acetoin; K(m) = 4.5 mm, k(cat) = 98,000 min(-)(1)) to (2R,3R)-2,3-butanediol and meso-butanediol, respectively. The substrate stereospecificity was determined by analysis of products by gas-liquid chromatography. The YAL060W gene product can therefore be classified as an NAD-dependent (2R,3R)-2,3-butanediol dehydrogenase (BDH). S. cerevisiae could grow on 2,3-butanediol as the sole carbon and energy source. Under these conditions, a 3. 5-fold increase in (2R,3R)-2,3-butanediol dehydrogenase activity was observed in the total cell extracts. The isoelectric focusing pattern of the induced enzyme coincided with that of the pure BDH (pI 6.9). The disruption of the YAL060W gene was not lethal for the yeast under laboratory conditions. The disrupted strain could also grow on 2,3-butanediol, although attaining a lesser cell density than the wild-type strain. Taking into consideration the substrate specificity of the YAL060W gene product, we propose the name of BDH for this gene. The corresponding enzyme is the first eukaryotic (2R, 3R)-2,3-butanediol dehydrogenase characterized of the medium-chain dehydrogenase/reductase family.  (+info)

An operon for a putative ATP-binding cassette transport system involved in acetoin utilization of Bacillus subtilis. (4/91)

The ytrABCDEF operon of Bacillus subtilis was deduced to encode a putative ATP-binding cassette (ABC) transport system. YtrB and YtrE could be the ABC subunits, and YtrC and YtrD are highly hydrophobic and could form a channel through the cell membrane, while YtrF could be a periplasmic lipoprotein for substrate binding. Expression of the operon was examined in cells grown in a minimal medium. The results indicate that the expression was induced only early in the stationary phase. The six ytr genes form a single operon, transcribed from a putative sigma(A)-dependent promoter present upstream of ytrA. YtrA, which possesses a helix-turn-helix motif of the GntR family, acts probably as a repressor and regulates its own transcription. Inactivation of the operon led to a decrease in maximum cell yield and less-efficient sporulation, suggesting its involvement in the growth in stationary phase and sporulation. It is known that B. subtilis produces acetoin as an external carbon storage compound and then reuses it later during stationary phase and sporulation. When either the entire ytr operon or its last gene, ytrF, was inactivated, the production of acetoin was not affected, but the reuse of acetoin became less efficient. We suggest that the Ytr transport system plays a role in acetoin utilization during stationary phase and sporulation.  (+info)

Bacillus subtilis ccpA gene mutants specifically defective in activation of acetoin biosynthesis. (5/91)

A large number of carbon source utilization pathways are repressed in Bacillus subtilis by the global regulator CcpA, which also acts as an activator of carbon excretion pathways during growth in media containing glucose. In this study, CcpA mutants defective in transcriptional activation of the alsSD operon, which is involved in acetoin biosynthesis, were identified. These mutants retained normal glucose repression of amyE, encoding alpha-amylase, and acsA, encoding acetyl-coenzyme A synthetase, and normal activation of ackA, which is involved in acetate excretion; in these ccpA mutants the CcpA functions of activation of the acetate and acetoin excretion pathways appear to be separated.  (+info)

Analysis of acetoin and diacetyl in bacterial culture supernatants by gas-liquid chromatography. (6/91)

The acetoin and diacetyl contents of culture supernatants of Voges-Proskauer-positive "viridans" streptotocci, Klebsiella pneumoniae and Staphylococcus aureus, were determined by a gas liquid chromatographic procedure, in which supernatants were extracted with diethyl ether and diacetyl was measured on columns of 10% (wt/wt) polyethylene glycol 400 (PEG 400) at 73 C. Acetoin was converted to diacetyl, before analysis, by a simple oxidation procedure with ferric chloride and without a distillation step. Streptococcal culture supernatants were shown by this method to contain only acetoin; supernatants of K. pneumoniae and S. aureus contained both acetoin and diacetyl.  (+info)

Mutagenesis at asp27 of pyruvate decarboxylase from Zymomonas mobilis. Effect on its ability to form acetoin and acetolactate. (7/91)

Pyruvate decarboxylase (PDC) is one of several enzymes that require thiamin diphosphate (ThDP) and a bivalent cation as essential cofactors. The three-dimensional structure of PDC from Zymomonas mobilis (ZMPDC) shows that Asp27 (D27) is close to ThDP in the active site, and mutagenesis of this residue has suggested that it participates in catalysis. The normal product of the PDC reaction is acetaldehyde but it is known that the enzyme can also form acetoin as a by-product from the hydroxyethyl-ThDP reaction intermediate. This study focuses on the role of D27 in the production of acetoin and a second by-product, acetolactate. D27 in ZMPDC was altered to alanine (D27A) and this mutated protein, the wild-type, and two other previously constructed PDC mutants (D27E and D27N) were expressed and purified. Determination of the kinetic properties of D27A showed that the affinity of D27A for ThDP is decreased 30-fold, while the affinity for Mg2+ and the Michaelis constant for pyruvate were similar to those of the wild-type. The time-courses of their reactions were investigated. Each mutant has greatly reduced ability to produce acetaldehyde and acetoin compared with the wild-type PDC. However, the effect of these mutations on acetaldehyde production is greater than that on acetoin formation. The D27A mutant can also form acetolactate, whereas neither of the other mutants, nor the wild-type PDC, can do so. In addition, acetaldehyde formation and/or release are reversible in wild-type ZMPDC but irreversible for the mutants. The results are explained by a mechanism involving thermodynamic and geometric characteristics of the intermediates in the reaction.  (+info)

Regulation of the acetoin catabolic pathway is controlled by sigma L in Bacillus subtilis. (8/91)

Bacillus subtilis grown in media containing amino acids or glucose secretes acetate, pyruvate, and large quantities of acetoin into the growth medium. Acetoin can be reused by the bacteria during stationary phase when other carbon sources have been depleted. The acoABCL operon encodes the E1alpha, E1beta, E2, and E3 subunits of the acetoin dehydrogenase complex in B. subtilis. Expression of this operon is induced by acetoin and repressed by glucose in the growth medium. The acoR gene is located downstream from the acoABCL operon and encodes a positive regulator which stimulates the transcription of the operon. The product of acoR has similarities to transcriptional activators of sigma 54-dependent promoters. The four genes of the operon are transcribed from a -12, -24 promoter, and transcription is abolished in acoR and sigL mutants. Deletion analysis showed that DNA sequences more than 85 bp upstream from the transcriptional start site are necessary for full induction of the operon. These upstream activating sequences are probably the targets of AcoR. Analysis of an acoR'-'lacZ strain of B. subtilis showed that the expression of acoR is not induced by acetoin and is repressed by the presence of glucose in the growth medium. Transcription of acoR is also negatively controlled by CcpA, a global regulator of carbon catabolite repression. A specific interaction of CcpA in the upstream region of acoR was demonstrated by DNase I footprinting experiments, suggesting that repression of transcription of acoR is mediated by the binding of CcpA to the promoter region of acoR.  (+info)