A quantitative prediction of the biological, ecotoxicological or pharmaceutical activity of a molecule. It is based upon structure and activity information gathered from a series of similar compounds.
The relationship between the chemical structure of a compound and its biological or pharmacological activity. Compounds are often classed together because they have structural characteristics in common including shape, size, stereochemical arrangement, and distribution of functional groups.
The location of the atoms, groups or ions relative to one another in a molecule, as well as the number, type and location of covalent bonds.
Models used experimentally or theoretically to study molecular shape, electronic properties, or interactions; includes analogous molecules, computer-generated graphics, and mechanical structures.
Hallucinogenic alkaloid isolated from the flowering heads (peyote) of Lophophora (formerly Anhalonium) williamsii, a Mexican cactus used in Indian religious rites and as an experimental psychotomimetic. Among its cellular effects are agonist actions at some types of serotonin receptors. It has no accepted therapeutic uses although it is legal for religious use by members of the Native American Church.
A plant species of the Salvia genus known as a spice and medicinal plant.
Theoretical representations that simulate the behavior or activity of chemical processes or phenomena; includes the use of mathematical equations, computers, and other electronic equipment.
The molecular designing of drugs for specific purposes (such as DNA-binding, enzyme inhibition, anti-cancer efficacy, etc.) based on knowledge of molecular properties such as activity of functional groups, molecular geometry, and electronic structure, and also on information cataloged on analogous molecules. Drug design is generally computer-assisted molecular modeling and does not include pharmacokinetics, dosage analysis, or drug administration analysis.
The characteristic three-dimensional shape of a molecule.
The parts of a macromolecule that directly participate in its specific combination with another molecule.