A PYRIDOXAL PHOSPHATE containing enzyme that catalyzes the transfer of the amino group of GLYCINE onto 2-oxoglutarate to generate GLYOXYLATE and L-GLUTAMATE.
A non-essential amino acid. It is found primarily in gelatin and silk fibroin and used therapeutically as a nutrient. It is also a fast inhibitory neurotransmitter.
An enzyme that catalyzes the conversion of L-alanine and 2-oxoglutarate to pyruvate and L-glutamate. (From Enzyme Nomenclature, 1992) EC 2.6.1.2.
An enzyme that converts brain gamma-aminobutyric acid (GAMMA-AMINOBUTYRIC ACID) into succinate semialdehyde, which can be converted to succinic acid and enter the citric acid cycle. It also acts on beta-alanine. EC 2.6.1.19.
A subclass of enzymes of the transferase class that catalyze the transfer of an amino group from a donor (generally an amino acid) to an acceptor (generally a 2-keto acid). Most of these enzymes are pyridoxyl phosphate proteins. (Dorland, 28th ed) EC 2.6.1.
Cell surface receptors that bind GLYCINE with high affinity and trigger intracellular changes which influence the behavior of cells. Glycine receptors in the CENTRAL NERVOUS SYSTEM have an intrinsic chloride channel and are usually inhibitory.
Enzymes of the transferase class that catalyze the conversion of L-aspartate and 2-ketoglutarate to oxaloacetate and L-glutamate. EC 2.6.1.1.
A PYRIDOXAL PHOSPHATE containing enzyme that catalyzes the reversible transfer of an amino group between D-Alanine and alpha-ketoglutarate to form PYRUVATE and D-GLUTAMATE, respectively. It plays a role in the synthesis of the bacterial CELL WALL. This enzyme was formerly classified as EC 2.6.1.10.