A subclass of dual specificity phosphatases that play a role in the progression of the CELL CYCLE. They dephosphorylate and activate CYCLIN-DEPENDENT KINASES.
A member of the Rho family of MONOMERIC GTP-BINDING PROTEINS. It is associated with a diverse array of cellular functions including cytoskeletal changes, filopodia formation and transport through the GOLGI APPARATUS. This enzyme was formerly listed as EC 3.6.1.47.
Phosphoprotein with protein kinase activity that functions in the G2/M phase transition of the CELL CYCLE. It is the catalytic subunit of the MATURATION-PROMOTING FACTOR and complexes with both CYCLIN A and CYCLIN B in mammalian cells. The maximal activity of cyclin-dependent kinase 1 is achieved when it is fully dephosphorylated.
Highly conserved proteins that specifically bind to and activate the anaphase-promoting complex-cyclosome, promoting ubiquitination and proteolysis of cell-cycle-regulatory proteins. Cdc20 is essential for anaphase-promoting complex activity, initiation of anaphase, and cyclin proteolysis during mitosis.
A protein kinase encoded by the Saccharomyces cerevisiae CDC28 gene and required for progression from the G1 PHASE to the S PHASE in the CELL CYCLE.
Proteins that control the CELL DIVISION CYCLE. This family of proteins includes a wide variety of classes, including CYCLIN-DEPENDENT KINASES, mitogen-activated kinases, CYCLINS, and PHOSPHOPROTEIN PHOSPHATASES as well as their putative substrates such as chromatin-associated proteins, CYTOSKELETAL PROTEINS, and TRANSCRIPTION FACTORS.
A member of the Rho family of MONOMERIC GTP-BINDING PROTEINS from SACCHAROMYCES CEREVISIAE. It is involved in morphological events related to the cell cycle. This enzyme was formerly listed as EC 3.6.1.47.
A family of cell cycle-dependent kinases that are related in structure to CDC28 PROTEIN KINASE; S CEREVISIAE; and the CDC2 PROTEIN KINASE found in mammalian species.
Genes that code for proteins that regulate the CELL DIVISION CYCLE. These genes form a regulatory network that culminates in the onset of MITOSIS by activating the p34cdc2 protein (PROTEIN P34CDC2).
A type of CELL NUCLEUS division by means of which the two daughter nuclei normally receive identical complements of the number of CHROMOSOMES of the somatic cells of the species.
A cyclin subtype that is transported into the CELL NUCLEUS at the end of the G2 PHASE. It stimulates the G2/M phase transition by activating CDC2 PROTEIN KINASE.
Proteins obtained from the species SACCHAROMYCES CEREVISIAE. The function of specific proteins from this organism are the subject of intense scientific interest and have been used to derive basic understanding of the functioning similar proteins in higher eukaryotes.
The complex series of phenomena, occurring between the end of one CELL DIVISION and the end of the next, by which cellular material is duplicated and then divided between two daughter cells. The cell cycle includes INTERPHASE, which includes G0 PHASE; G1 PHASE; S PHASE; and G2 PHASE, and CELL DIVISION PHASE.
Proteins found in any species of fungus.
A species of the genus SACCHAROMYCES, family Saccharomycetaceae, order Saccharomycetales, known as "baker's" or "brewer's" yeast. The dried form is used as a dietary supplement.
A genus of ascomycetous fungi of the family Schizosaccharomycetaceae, order Schizosaccharomycetales.
Complexes of enzymes that catalyze the covalent attachment of UBIQUITIN to other proteins by forming a peptide bond between the C-terminal GLYCINE of UBIQUITIN and the alpha-amino groups of LYSINE residues in the protein. The complexes play an important role in mediating the selective-degradation of short-lived and abnormal proteins. The complex of enzymes can be broken down into three components that involve activation of ubiquitin (UBIQUITIN-ACTIVATING ENZYMES), conjugation of ubiquitin to the ligase complex (UBIQUITIN-CONJUGATING ENZYMES), and ligation of ubiquitin to the substrate protein (UBIQUITIN-PROTEIN LIGASES).
An E3 ubiquitin ligase primarily involved in regulation of the metaphase-to-anaphase transition during MITOSIS through ubiquitination of specific CELL CYCLE PROTEINS. Enzyme activity is tightly regulated through subunits and cofactors, which modulate activation, inhibition, and substrate specificity. The anaphase-promoting complex, or APC-C, is also involved in tissue differentiation in the PLACENTA, CRYSTALLINE LENS, and SKELETAL MUSCLE, and in regulation of postmitotic NEURONAL PLASTICITY and excitability.
Proteins obtained from the species Schizosaccharomyces pombe. The function of specific proteins from this organism are the subject of intense scientific interest and have been used to derive basic understanding of the functioning similar proteins in higher eukaryotes.
A guanine nucleotide exchange factor that is expressed primarily in neuronal tissue and may be specific for the Ha-ras homolog of the RAS PROTEINS.
The introduction of a phosphoryl group into a compound through the formation of an ester bond between the compound and a phosphorus moiety.
The period of the CELL CYCLE following DNA synthesis (S PHASE) and preceding M PHASE (cell division phase). The CHROMOSOMES are tetraploid in this point.
Descriptions of specific amino acid, carbohydrate, or nucleotide sequences which have appeared in the published literature and/or are deposited in and maintained by databanks such as GENBANK, European Molecular Biology Laboratory (EMBL), National Biomedical Research Foundation (NBRF), or other sequence repositories.
A group of enzymes that catalyzes the phosphorylation of serine or threonine residues in proteins, with ATP or other nucleotides as phosphate donors.
The order of amino acids as they occur in a polypeptide chain. This is referred to as the primary structure of proteins. It is of fundamental importance in determining PROTEIN CONFORMATION.
A rac GTP-binding protein involved in regulating actin filaments at the plasma membrane. It controls the development of filopodia and lamellipodia in cells and thereby influences cellular motility and adhesion. It is also involved in activation of NADPH OXIDASE. This enzyme was formerly listed as EC 3.6.1.47.
An agency of the UNITED STATES PUBLIC HEALTH SERVICE that conducts and supports programs for the prevention and control of disease and provides consultation and assistance to health departments and other countries.
A cyclin B subtype that colocalizes with MICROTUBULES during INTERPHASE and is transported into the CELL NUCLEUS at the end of the G2 PHASE.
A family of enzymes that catalyze the conversion of ATP and a protein to ADP and a phosphoprotein.
Any detectable and heritable change in the genetic material that causes a change in the GENOTYPE and which is transmitted to daughter cells and to succeeding generations.
Phase of the CELL CYCLE following G1 and preceding G2 when the entire DNA content of the nucleus is replicated. It is achieved by bidirectional replication at multiple sites along each chromosome.
A large family of regulatory proteins that function as accessory subunits to a variety of CYCLIN-DEPENDENT KINASES. They generally function as ENZYME ACTIVATORS that drive the CELL CYCLE through transitions between phases. A subset of cyclins may also function as transcriptional regulators.
The process in which substances, either endogenous or exogenous, bind to proteins, peptides, enzymes, protein precursors, or allied compounds. Specific protein-binding measures are often used as assays in diagnostic assessments.
A family of serine-threonine kinases that bind to and are activated by MONOMERIC GTP-BINDING PROTEINS such as RAC GTP-BINDING PROTEINS and CDC42 GTP-BINDING PROTEIN. They are intracellular signaling kinases that play a role the regulation of cytoskeletal organization.
Protein kinases that control cell cycle progression in all eukaryotes and require physical association with CYCLINS to achieve full enzymatic activity. Cyclin-dependent kinases are regulated by phosphorylation and dephosphorylation events.
A large family of MONOMERIC GTP-BINDING PROTEINS that are involved in regulation of actin organization, gene expression and cell cycle progression. This enzyme was formerly listed as EC 3.6.1.47.
An aspect of protein kinase (EC 2.7.1.37) in which serine residues in protamines and histones are phosphorylated in the presence of ATP.
A sub-family of RHO GTP-BINDING PROTEINS that is involved in regulating the organization of cytoskeletal filaments. This enzyme was formerly listed as EC 3.6.1.47.
The functional hereditary units of FUNGI.
A highly conserved subunit of the anaphase-promoting complex (APC-C) containing multiple 34-amino-acid tetratricopeptide repeats. These domains, also found in Apc3, Apc6, and Apc7, have been shown to mediate protein-protein interactions, suggesting that Apc8 may assist in coordinating the juxtaposition of the catalytic and substrate recognition module subunits relative to coactivators and APC-C inhibitors.
The process by which a DNA molecule is duplicated.
Protein factors that promote the exchange of GTP for GDP bound to GTP-BINDING PROTEINS.
Proteins found in the nucleus of a cell. Do not confuse with NUCLEOPROTEINS which are proteins conjugated with nucleic acids, that are not necessarily present in the nucleus.
A family of proteins that share the F-BOX MOTIF and are involved in protein-protein interactions. They play an important role in process of protein ubiquition by associating with a variety of substrates and then associating into SCF UBIQUITIN LIGASE complexes. They are held in the ubiquitin-ligase complex via binding to SKP DOMAIN PROTEINS.
Conversion of an inactive form of an enzyme to one possessing metabolic activity. It includes 1, activation by ions (activators); 2, activation by cofactors (coenzymes); and 3, conversion of an enzyme precursor (proenzyme or zymogen) to an active enzyme.
Recombinant proteins produced by the GENETIC TRANSLATION of fused genes formed by the combination of NUCLEIC ACID REGULATORY SEQUENCES of one or more genes with the protein coding sequences of one or more genes.
Enzymes that hydrolyze GTP to GDP. EC 3.6.1.-.
Protein kinase that drives both the mitotic and meiotic cycles in all eukaryotic organisms. In meiosis it induces immature oocytes to undergo meiotic maturation. In mitosis it has a role in the G2/M phase transition. Once activated by CYCLINS; MPF directly phosphorylates some of the proteins involved in nuclear envelope breakdown, chromosome condensation, spindle assembly, and the degradation of cyclins. The catalytic subunit of MPF is PROTEIN P34CDC2.
The degree of similarity between sequences of amino acids. This information is useful for the analyzing genetic relatedness of proteins and species.
Proteins that activate the GTPase of specific GTP-BINDING PROTEINS.
The phase of cell nucleus division following METAPHASE, in which the CHROMATIDS separate and migrate to opposite poles of the spindle.
A group of enzymes removing the SERINE- or THREONINE-bound phosphate groups from a wide range of phosphoproteins, including a number of enzymes which have been phosphorylated under the action of a kinase. (Enzyme Nomenclature, 1992)
An enzyme group that specifically dephosphorylates phosphotyrosyl residues in selected proteins. Together with PROTEIN-TYROSINE KINASE, it regulates tyrosine phosphorylation and dephosphorylation in cellular signal transduction and may play a role in cell growth control and carcinogenesis.
The period of the CELL CYCLE preceding DNA REPLICATION in S PHASE. Subphases of G1 include "competence" (to respond to growth factors), G1a (entry into G1), G1b (progression), and G1c (assembly). Progression through the G1 subphases is effected by limiting growth factors, nutrients, or inhibitors.
A microtubule structure that forms during CELL DIVISION. It consists of two SPINDLE POLES, and sets of MICROTUBULES that may include the astral microtubules, the polar microtubules, and the kinetochore microtubules.
The first continuously cultured human malignant CELL LINE, derived from the cervical carcinoma of Henrietta Lacks. These cells are used for VIRUS CULTIVATION and antitumor drug screening assays.
Any of the processes by which nuclear, cytoplasmic, or intercellular factors influence the differential control of gene action in fungi.
A highly conserved subunit of the anaphase-promoting complex (APC-C) containing multiple 34 amino acid tetratricopeptide repeats. These domains, also found in Apc3, Apc7, and Apc8, have been shown to mediate protein-protein interactions, suggesting that Apc6 may assist in coordinating the juxtaposition of the catalytic and substrate recognition module subunits relative to coactivators and APC-C inhibitors.
Deoxyribonucleic acid that makes up the genetic material of fungi.
A diverse class of enzymes that interact with UBIQUITIN-CONJUGATING ENZYMES and ubiquitination-specific protein substrates. Each member of this enzyme group has its own distinct specificity for a substrate and ubiquitin-conjugating enzyme. Ubiquitin-protein ligases exist as both monomeric proteins multiprotein complexes.
A class of enzymes that form a thioester bond to UBIQUITIN with the assistance of UBIQUITIN-ACTIVATING ENZYMES. They transfer ubiquitin to the LYSINE of a substrate protein with the assistance of UBIQUITIN-PROTEIN LIGASES.
Filamentous proteins that are the main constituent of the thin filaments of muscle fibers. The filaments (known also as filamentous or F-actin) can be dissociated into their globular subunits; each subunit is composed of a single polypeptide 375 amino acids long. This is known as globular or G-actin. In conjunction with MYOSINS, actin is responsible for the contraction and relaxation of muscle.
Regulatory proteins that act as molecular switches. They control a wide range of biological processes including: receptor signaling, intracellular signal transduction pathways, and protein synthesis. Their activity is regulated by factors that control their ability to bind to and hydrolyze GTP to GDP. EC 3.6.1.-.
The sequence of PURINES and PYRIMIDINES in nucleic acids and polynucleotides. It is also called nucleotide sequence.
An order of fungi in the phylum Ascomycota that multiply by budding. They include the telomorphic ascomycetous yeasts which are found in a very wide range of habitats.
The intracellular transfer of information (biological activation/inhibition) through a signal pathway. In each signal transduction system, an activation/inhibition signal from a biologically active molecule (hormone, neurotransmitter) is mediated via the coupling of a receptor/enzyme to a second messenger system or to an ion channel. Signal transduction plays an important role in activating cellular functions, cell differentiation, and cell proliferation. Examples of signal transduction systems are the GAMMA-AMINOBUTYRIC ACID-postsynaptic receptor-calcium ion channel system, the receptor-mediated T-cell activation pathway, and the receptor-mediated activation of phospholipases. Those coupled to membrane depolarization or intracellular release of calcium include the receptor-mediated activation of cytotoxic functions in granulocytes and the synaptic potentiation of protein kinase activation. Some signal transduction pathways may be part of larger signal transduction pathways; for example, protein kinase activation is part of the platelet activation signal pathway.
Cdh1 is an activator of the anaphase-promoting complex-cyclosome, and is involved in substrate recognition. It associates with the complex in late MITOSIS from anaphase through G1 to regulate activity of CYCLIN-DEPENDENT KINASES and to prevent premature DNA replication.
Orientation of intracellular structures especially with respect to the apical and basolateral domains of the plasma membrane. Polarized cells must direct proteins from the Golgi apparatus to the appropriate domain since tight junctions prevent proteins from diffusing between the two domains.
A key regulator of CELL CYCLE progression. It partners with CYCLIN E to regulate entry into S PHASE and also interacts with CYCLIN A to phosphorylate RETINOBLASTOMA PROTEIN. Its activity is inhibited by CYCLIN-DEPENDENT KINASE INHIBITOR P27 and CYCLIN-DEPENDENT KINASE INHIBITOR P21.
A RHO GTP-BINDING PROTEIN involved in regulating signal transduction pathways that control assembly of focal adhesions and actin stress fibers. This enzyme was formerly listed as EC 3.6.1.47.
A family of multisubunit protein complexes that form into large cylindrical structures which bind to and encapsulate non-native proteins. Chaperonins utilize the energy of ATP hydrolysis to enhance the efficiency of PROTEIN FOLDING reactions and thereby help proteins reach their functional conformation. The family of chaperonins is split into GROUP I CHAPERONINS, and GROUP II CHAPERONINS, with each group having its own repertoire of protein subunits and subcellular preferences.
An aquatic genus of the family, Pipidae, occurring in Africa and distinguished by having black horny claws on three inner hind toes.
A class of enzymes that catalyze the formation of a bond between two substrate molecules, coupled with the hydrolysis of a pyrophosphate bond in ATP or a similar energy donor. (Dorland, 28th ed) EC 6.
The level of protein structure in which combinations of secondary protein structures (alpha helices, beta sheets, loop regions, and motifs) pack together to form folded shapes called domains. Disulfide bridges between cysteines in two different parts of the polypeptide chain along with other interactions between the chains play a role in the formation and stabilization of tertiary structure. Small proteins usually consist of only one domain but larger proteins may contain a number of domains connected by segments of polypeptide chain which lack regular secondary structure.
The origin recognition complex is a multi-subunit DNA-binding protein that initiates DNA REPLICATION in eukaryotes.
The fission of a CELL. It includes CYTOKINESIS, when the CYTOPLASM of a cell is divided, and CELL NUCLEUS DIVISION.
A type of CELL NUCLEUS division, occurring during maturation of the GERM CELLS. Two successive cell nucleus divisions following a single chromosome duplication (S PHASE) result in daughter cells with half the number of CHROMOSOMES as the parent cells.
A member of the Wiskott-Aldrich syndrome protein family that is found at high levels in NERVE CELLS. It interacts with GRB2 ADAPTOR PROTEIN and with CDC42 PROTEIN.
Proteins obtained from various species of Xenopus. Included here are proteins from the African clawed frog (XENOPUS LAEVIS). Many of these proteins have been the subject of scientific investigations in the area of MORPHOGENESIS and development.
Mad2 is a component of the spindle-assembly checkpoint apparatus. It binds to and inhibits the Cdc20 activator subunit of the anaphase-promoting complex, preventing the onset of anaphase until all chromosomes are properly aligned at the metaphase plate. Mad2 is required for proper microtubule capture at KINETOCHORES.
The insertion of recombinant DNA molecules from prokaryotic and/or eukaryotic sources into a replicating vehicle, such as a plasmid or virus vector, and the introduction of the resultant hybrid molecules into recipient cells without altering the viability of those cells.
Theoretical representations that simulate the behavior or activity of biological processes or diseases. For disease models in living animals, DISEASE MODELS, ANIMAL is available. Biological models include the use of mathematical equations, computers, and other electronic equipment.
PROTEINS that specifically activate the GTP-phosphohydrolase activity of RAS PROTEINS.
Proteins which bind to DNA. The family includes proteins which bind to both double- and single-stranded DNA and also includes specific DNA binding proteins in serum which can be used as markers for malignant diseases.
Mutation process that restores the wild-type PHENOTYPE in an organism possessing a mutationally altered GENOTYPE. The second "suppressor" mutation may be on a different gene, on the same gene but located at a distance from the site of the primary mutation, or in extrachromosomal genes (EXTRACHROMOSOMAL INHERITANCE).
A cyclin subtype that has specificity for CDC2 PROTEIN KINASE and CYCLIN-DEPENDENT KINASE 2. It plays a role in progression of the CELL CYCLE through G1/S and G2/M phase transitions.
The process by which the CYTOPLASM of a cell is divided.
Established cell cultures that have the potential to propagate indefinitely.
A dynamic actin-rich extension of the surface of an animal cell used for locomotion or prehension of food.
Female germ cells derived from OOGONIA and termed OOCYTES when they enter MEIOSIS. The primary oocytes begin meiosis but are arrested at the diplotene state until OVULATION at PUBERTY to give rise to haploid secondary oocytes or ova (OVUM).
Transport proteins that carry specific substances in the blood or across cell membranes.
Screening techniques first developed in yeast to identify genes encoding interacting proteins. Variations are used to evaluate interplay between proteins and other molecules. Two-hybrid techniques refer to analysis for protein-protein interactions, one-hybrid for DNA-protein interactions, three-hybrid interactions for RNA-protein interactions or ligand-based interactions. Reverse n-hybrid techniques refer to analysis for mutations or other small molecules that dissociate known interactions.
The parts of a macromolecule that directly participate in its specific combination with another molecule.
The network of filaments, tubules, and interconnecting filamentous bridges which give shape, structure, and organization to the cytoplasm.
Echinoderms having bodies of usually five radially disposed arms coalescing at the center.
WASP protein is mutated in WISKOTT-ALDRICH SYNDROME and is expressed primarily in hematopoietic cells. It is the founding member of the WASP protein family and interacts with CDC42 PROTEIN to help regulate ACTIN polymerization.
The interval between two successive CELL DIVISIONS during which the CHROMOSOMES are not individually distinguishable. It is composed of the G phases (G1 PHASE; G0 PHASE; G2 PHASE) and S PHASE (when DNA replication occurs).
A large family of signal-transducing adaptor proteins present in wide variety of eukaryotes. They are PHOSPHOSERINE and PHOSPHOTHREONINE binding proteins involved in important cellular processes including SIGNAL TRANSDUCTION; CELL CYCLE control; APOPTOSIS; and cellular stress responses. 14-3-3 proteins function by interacting with other signal-transducing proteins and effecting changes in their enzymatic activity and subcellular localization. The name 14-3-3 derives from numerical designations used in the original fractionation patterns of the proteins.
The term "United States" in a medical context often refers to the country where a patient or study participant resides, and is not a medical term per se, but relevant for epidemiological studies, healthcare policies, and understanding differences in disease prevalence, treatment patterns, and health outcomes across various geographic locations.
The property of objects that determines the direction of heat flow when they are placed in direct thermal contact. The temperature is the energy of microscopic motions (vibrational and translational) of the particles of atoms.
Proteins that specifically bind to TELOMERES. Proteins in this class include those that perform functions such as telomere capping, telomere maintenance and telomere stabilization.
Nocodazole is an antineoplastic agent which exerts its effect by depolymerizing microtubules.
Within a eukaryotic cell, a membrane-limited body which contains chromosomes and one or more nucleoli (CELL NUCLEOLUS). The nuclear membrane consists of a double unit-type membrane which is perforated by a number of pores; the outermost membrane is continuous with the ENDOPLASMIC RETICULUM. A cell may contain more than one nucleus. (From Singleton & Sainsbury, Dictionary of Microbiology and Molecular Biology, 2d ed)
A test used to determine whether or not complementation (compensation in the form of dominance) will occur in a cell with a given mutant phenotype when another mutant genome, encoding the same mutant phenotype, is introduced into that cell.
Proteins prepared by recombinant DNA technology.
The outward appearance of the individual. It is the product of interactions between genes, and between the GENOTYPE and the environment.
A subset of ubiquitin protein ligases that are formed by the association of a SKP DOMAIN PROTEIN, a CULLIN DOMAIN PROTEIN and a F-BOX DOMAIN PROTEIN.
Protein kinases that catalyze the PHOSPHORYLATION of TYROSINE residues in proteins with ATP or other nucleotides as phosphate donors.
A minichromosome maintenance protein that is a key component of the six member MCM protein complex. It is also found in tightly-bound trimeric complex with MINICHROMOSOME MAINTENANCE COMPLEX COMPONENT 4 and MINICHROMOSOME MAINTENANCE COMPLEX COMPONENT 6.
Agents and factors that activate GTP phosphohydrolase activity.
A minichromosome maintenance protein that is a key component of the six member MCM protein complex. It is also found in tightly-bound trimeric complex with MINICHROMOSOME MAINTENANCE COMPLEX COMPONENT 6 and MINICHROMOSOME MAINTENANCE COMPLEX COMPONENT 7.
A family of proteins that are structurally-related to Ubiquitin. Ubiquitins and ubiquitin-like proteins participate in diverse cellular functions, such as protein degradation and HEAT-SHOCK RESPONSE, by conjugation to other proteins.
Injuries to DNA that introduce deviations from its normal, intact structure and which may, if left unrepaired, result in a MUTATION or a block of DNA REPLICATION. These deviations may be caused by physical or chemical agents and occur by natural or unnatural, introduced circumstances. They include the introduction of illegitimate bases during replication or by deamination or other modification of bases; the loss of a base from the DNA backbone leaving an abasic site; single-strand breaks; double strand breaks; and intrastrand (PYRIMIDINE DIMERS) or interstrand crosslinking. Damage can often be repaired (DNA REPAIR). If the damage is extensive, it can induce APOPTOSIS.
Linear POLYPEPTIDES that are synthesized on RIBOSOMES and may be further modified, crosslinked, cleaved, or assembled into complex proteins with several subunits. The specific sequence of AMINO ACIDS determines the shape the polypeptide will take, during PROTEIN FOLDING, and the function of the protein.
A sub-class of protein tyrosine phosphatases that contain an additional phosphatase activity which cleaves phosphate ester bonds on SERINE or THREONINE residues that are located on the same protein.
Guanosine 5'-(tetrahydrogen triphosphate). A guanine nucleotide containing three phosphate groups esterified to the sugar moiety.
Protein factors that inhibit the dissociation of GDP from GTP-BINDING PROTEINS.
Identification of proteins or peptides that have been electrophoretically separated by blot transferring from the electrophoresis gel to strips of nitrocellulose paper, followed by labeling with antibody probes.
A class of MOLECULAR CHAPERONES whose members act in the mechanism of SIGNAL TRANSDUCTION by STEROID RECEPTORS.
Microscopy of specimens stained with fluorescent dye (usually fluorescein isothiocyanate) or of naturally fluorescent materials, which emit light when exposed to ultraviolet or blue light. Immunofluorescence microscopy utilizes antibodies that are labeled with fluorescent dye.
Securin is involved in the control of the metaphase-anaphase transition during MITOSIS. It promotes the onset of anaphase by blocking SEPARASE function and preventing proteolysis of cohesin and separation of sister CHROMATIDS. Overexpression of securin is associated with NEOPLASTIC CELL TRANSFORMATION and tumor formation.
Major constituent of the cytoskeleton found in the cytoplasm of eukaryotic cells. They form a flexible framework for the cell, provide attachment points for organelles and formed bodies, and make communication between parts of the cell possible.
Extrachromosomal, usually CIRCULAR DNA molecules that are self-replicating and transferable from one organism to another. They are found in a variety of bacterial, archaeal, fungal, algal, and plant species. They are used in GENETIC ENGINEERING as CLONING VECTORS.
The phase of cell nucleus division following PROPHASE, when the breakdown of the NUCLEAR ENVELOPE occurs and the MITOTIC SPINDLE APPARATUS enters the nuclear region and attaches to the KINETOCHORES.
A phosphoprotein phosphatase subtype that is comprised of a catalytic subunit and two different regulatory subunits. At least two genes encode isoforms of the protein phosphatase catalytic subunit, while several isoforms of regulatory subunits exist due to the presence of multiple genes and the alternative splicing of their mRNAs. Protein phosphatase 2 acts on a broad variety of cellular proteins and may play a role as a regulator of intracellular signaling processes.
A minichromosome maintenance protein that is a key component of the six member MCM protein complex. It contains a NUCLEAR LOCALIZATION SIGNAL which may provide targeting of the protein complex and an extended N-terminus which is rich in SERINE residues.
A unique DNA sequence of a replicon at which DNA REPLICATION is initiated and proceeds bidirectionally or unidirectionally. It contains the sites where the first separation of the complementary strands occurs, a primer RNA is synthesized, and the switch from primer RNA to DNA synthesis takes place. (Rieger et al., Glossary of Genetics: Classical and Molecular, 5th ed)
The uptake of naked or purified DNA by CELLS, usually meaning the process as it occurs in eukaryotic cells. It is analogous to bacterial transformation (TRANSFORMATION, BACTERIAL) and both are routinely employed in GENE TRANSFER TECHNIQUES.
Serologic tests in which a positive reaction manifested by visible CHEMICAL PRECIPITATION occurs when a soluble ANTIGEN reacts with its precipitins, i.e., ANTIBODIES that can form a precipitate.
The process of moving proteins from one cellular compartment (including extracellular) to another by various sorting and transport mechanisms such as gated transport, protein translocation, and vesicular transport.
A family of GTP-binding proteins that were initially identified in YEASTS where they were shown to initiate the process of septation and bud formation. Septins form into hetero-oligomeric complexes that are comprised of several distinct septin subunits. These complexes can act as cytoskeletal elements that play important roles in CYTOKINESIS, cytoskeletal reorganization, BIOLOGICAL TRANSPORT, and membrane dynamics.
The cellular signaling system that halts the progression of cells through MITOSIS or MEIOSIS if a defect that will affect CHROMOSOME SEGREGATION is detected.
Signaling proteins which function as master molecular switches by activating Rho GTPases through conversion of guanine nucleotides. Rho GTPases in turn control many aspects of cell behavior through the regulation of multiple downstream signal transduction pathways.
A transferase that catalyzes the addition of aliphatic, aromatic, or heterocyclic FREE RADICALS as well as EPOXIDES and arene oxides to GLUTATHIONE. Addition takes place at the SULFUR. It also catalyzes the reduction of polyol nitrate by glutathione to polyol and nitrite.
An antineoplastic agent that inhibits DNA synthesis through the inhibition of ribonucleoside diphosphate reductase.
The arrangement of two or more amino acid or base sequences from an organism or organisms in such a way as to align areas of the sequences sharing common properties. The degree of relatedness or homology between the sequences is predicted computationally or statistically based on weights assigned to the elements aligned between the sequences. This in turn can serve as a potential indicator of the genetic relatedness between the organisms.
The phase of cell nucleus division following PROMETAPHASE, in which the CHROMOSOMES line up across the equatorial plane of the SPINDLE APPARATUS prior to separation.
Genes that have a suppressor allele or suppressor mutation (SUPPRESSION, GENETIC) which cancels the effect of a previous mutation, enabling the wild-type phenotype to be maintained or partially restored. For example, amber suppressors cancel the effect of an AMBER NONSENSE MUTATION.
A group of enzymes which catalyze the hydrolysis of ATP. The hydrolysis reaction is usually coupled with another function such as transporting Ca(2+) across a membrane. These enzymes may be dependent on Ca(2+), Mg(2+), anions, H+, or DNA.
Genetically engineered MUTAGENESIS at a specific site in the DNA molecule that introduces a base substitution, or an insertion or deletion.
A family of low molecular weight proteins that bind ACTIN and control actin polymerization. They are found in eukaryotes and are ubiquitously expressed.
A non-essential amino acid occurring in natural form as the L-isomer. It is synthesized from GLYCINE or THREONINE. It is involved in the biosynthesis of PURINES; PYRIMIDINES; and other amino acids.
Enzyme activated in response to DNA DAMAGE involved in cell cycle arrest. The gene is located on the long (q) arm of chromosome 22 at position 12.1. In humans it is encoded by the CHEK2 gene.
Cell lines whose original growing procedure consisted being transferred (T) every 3 days and plated at 300,000 cells per plate (J Cell Biol 17:299-313, 1963). Lines have been developed using several different strains of mice. Tissues are usually fibroblasts derived from mouse embryos but other types and sources have been developed as well. The 3T3 lines are valuable in vitro host systems for oncogenic virus transformation studies, since 3T3 cells possess a high sensitivity to CONTACT INHIBITION.
An essential amino acid occurring naturally in the L-form, which is the active form. It is found in eggs, milk, gelatin, and other proteins.
Immunologic method used for detecting or quantifying immunoreactive substances. The substance is identified by first immobilizing it by blotting onto a membrane and then tagging it with labeled antibodies.
A characteristic feature of enzyme activity in relation to the kind of substrate on which the enzyme or catalytic molecule reacts.
A cell line derived from cultured tumor cells.
A guanine nucleotide containing two phosphate groups esterified to the sugar moiety.
Structures within the nucleus of fungal cells consisting of or containing DNA, which carry genetic information essential to the cell.
Chemical substances, excreted by an organism into the environment, that elicit behavioral or physiological responses from other organisms of the same species. Perception of these chemical signals may be olfactory or by contact.
Cells propagated in vitro in special media conducive to their growth. Cultured cells are used to study developmental, morphologic, metabolic, physiologic, and genetic processes, among others.
Proteins and peptides that are involved in SIGNAL TRANSDUCTION within the cell. Included here are peptides and proteins that regulate the activity of TRANSCRIPTION FACTORS and cellular processes in response to signals from CELL SURFACE RECEPTORS. Intracellular signaling peptide and proteins may be part of an enzymatic signaling cascade or act through binding to and modifying the action of other signaling factors.
A highly conserved 76-amino acid peptide universally found in eukaryotic cells that functions as a marker for intracellular PROTEIN TRANSPORT and degradation. Ubiquitin becomes activated through a series of complicated steps and forms an isopeptide bond to lysine residues of specific proteins within the cell. These "ubiquitinated" proteins can be recognized and degraded by proteosomes or be transported to specific compartments within the cell.
Process of generating a genetic MUTATION. It may occur spontaneously or be induced by MUTAGENS.
A furanyl adenine found in PLANTS and FUNGI. It has plant growth regulation effects.
Nucleoproteins, which in contrast to HISTONES, are acid insoluble. They are involved in chromosomal functions; e.g. they bind selectively to DNA, stimulate transcription resulting in tissue-specific RNA synthesis and undergo specific changes in response to various hormones or phytomitogens.
A broad category of carrier proteins that play a role in SIGNAL TRANSDUCTION. They generally contain several modular domains, each of which having its own binding activity, and act by forming complexes with other intracellular-signaling molecules. Signal-transducing adaptor proteins lack enzyme activity, however their activity can be modulated by other signal-transducing enzymes
Separase is a caspase-like cysteine protease, which plays a central role in triggering ANAPHASE by cleaving the SCC1/RAD21 subunit of the cohesin complex. Cohesin holds the sister CHROMATIDS together during METAPHASE and its cleavage results in chromosome segregation.
Within most types of eukaryotic CELL NUCLEUS, a distinct region, not delimited by a membrane, in which some species of rRNA (RNA, RIBOSOMAL) are synthesized and assembled into ribonucleoprotein subunits of ribosomes. In the nucleolus rRNA is transcribed from a nucleolar organizer, i.e., a group of tandemly repeated chromosomal genes which encode rRNA and which are transcribed by RNA polymerase I. (Singleton & Sainsbury, Dictionary of Microbiology & Molecular Biology, 2d ed)
Elements of limited time intervals, contributing to particular results or situations.
The material of CHROMOSOMES. It is a complex of DNA; HISTONES; and nonhistone proteins (CHROMOSOMAL PROTEINS, NON-HISTONE) found within the nucleus of a cell.
Protein analogs and derivatives of the Aequorea victoria green fluorescent protein that emit light (FLUORESCENCE) when excited with ULTRAVIOLET RAYS. They are used in REPORTER GENES in doing GENETIC TECHNIQUES. Numerous mutants have been made to emit other colors or be sensitive to pH.
RNA sequences that serve as templates for protein synthesis. Bacterial mRNAs are generally primary transcripts in that they do not require post-transcriptional processing. Eukaryotic mRNA is synthesized in the nucleus and must be exported to the cytoplasm for translation. Most eukaryotic mRNAs have a sequence of polyadenylic acid at the 3' end, referred to as the poly(A) tail. The function of this tail is not known for certain, but it may play a role in the export of mature mRNA from the nucleus as well as in helping stabilize some mRNA molecules by retarding their degradation in the cytoplasm.
A family of cellular proteins that mediate the correct assembly or disassembly of polypeptides and their associated ligands. Although they take part in the assembly process, molecular chaperones are not components of the final structures.
Short sequences (generally about 10 base pairs) of DNA that are complementary to sequences of messenger RNA and allow reverse transcriptases to start copying the adjacent sequences of mRNA. Primers are used extensively in genetic and molecular biology techniques.
Small double-stranded, non-protein coding RNAs (21-31 nucleotides) involved in GENE SILENCING functions, especially RNA INTERFERENCE (RNAi). Endogenously, siRNAs are generated from dsRNAs (RNA, DOUBLE-STRANDED) by the same ribonuclease, Dicer, that generates miRNAs (MICRORNAS). The perfect match of the siRNAs' antisense strand to their target RNAs mediates RNAi by siRNA-guided RNA cleavage. siRNAs fall into different classes including trans-acting siRNA (tasiRNA), repeat-associated RNA (rasiRNA), small-scan RNA (scnRNA), and Piwi protein-interacting RNA (piRNA) and have different specific gene silencing functions.
Proteins that originate from insect species belonging to the genus DROSOPHILA. The proteins from the most intensely studied species of Drosophila, DROSOPHILA MELANOGASTER, are the subject of much interest in the area of MORPHOGENESIS and development.
Macromolecular complexes formed from the association of defined protein subunits.
A gene silencing phenomenon whereby specific dsRNAs (RNA, DOUBLE-STRANDED) trigger the degradation of homologous mRNA (RNA, MESSENGER). The specific dsRNAs are processed into SMALL INTERFERING RNA (siRNA) which serves as a guide for cleavage of the homologous mRNA in the RNA-INDUCED SILENCING COMPLEX. DNA METHYLATION may also be triggered during this process.
A family of structurally related proteins that were originally discovered for their role in cell-cycle regulation in CAENORHABDITIS ELEGANS. They play important roles in regulation of the CELL CYCLE and as components of UBIQUITIN-PROTEIN LIGASES.
Phosphoproteins are proteins that have been post-translationally modified with the addition of a phosphate group, usually on serine, threonine or tyrosine residues, which can play a role in their regulation, function, interaction with other molecules, and localization within the cell.
The aggregation of soluble ANTIGENS with ANTIBODIES, alone or with antibody binding factors such as ANTI-ANTIBODIES or STAPHYLOCOCCAL PROTEIN A, into complexes large enough to fall out of solution.
Preparations of cell constituents or subcellular materials, isolates, or substances.
Genes whose loss of function or gain of function MUTATION leads to the death of the carrier prior to maturity. They may be essential genes (GENES, ESSENTIAL) required for viability, or genes which cause a block of function of an essential gene at a time when the essential gene function is required for viability.
Endogenous substances, usually proteins, which are effective in the initiation, stimulation, or termination of the genetic transcription process.
Compounds or agents that combine with an enzyme in such a manner as to prevent the normal substrate-enzyme combination and the catalytic reaction.
Proteins which maintain the transcriptional quiescence of specific GENES or OPERONS. Classical repressor proteins are DNA-binding proteins that are normally bound to the OPERATOR REGION of an operon, or the ENHANCER SEQUENCES of a gene until a signal occurs that causes their release.
Commonly observed structural components of proteins formed by simple combinations of adjacent secondary structures. A commonly observed structure may be composed of a CONSERVED SEQUENCE which can be represented by a CONSENSUS SEQUENCE.
Ongoing scrutiny of a population (general population, study population, target population, etc.), generally using methods distinguished by their practicability, uniformity, and frequently their rapidity, rather than by complete accuracy.
High molecular weight proteins found in the MICROTUBULES of the cytoskeletal system. Under certain conditions they are required for TUBULIN assembly into the microtubules and stabilize the assembled microtubules.
The commonest and widest ranging species of the clawed "frog" (Xenopus) in Africa. This species is used extensively in research. There is now a significant population in California derived from escaped laboratory animals.
The cell center, consisting of a pair of CENTRIOLES surrounded by a cloud of amorphous material called the pericentriolar region. During interphase, the centrosome nucleates microtubule outgrowth. The centrosome duplicates and, during mitosis, separates to form the two poles of the mitotic spindle (MITOTIC SPINDLE APPARATUS).
The biosynthesis of RNA carried out on a template of DNA. The biosynthesis of DNA from an RNA template is called REVERSE TRANSCRIPTION.
The movement of cells from one location to another. Distinguish from CYTOKINESIS which is the process of dividing the CYTOPLASM of a cell.
A genetic rearrangement through loss of segments of DNA or RNA, bringing sequences which are normally separated into close proximity. This deletion may be detected using cytogenetic techniques and can also be inferred from the phenotype, indicating a deletion at one specific locus.
The rate dynamics in chemical or physical systems.
The phosphoric acid ester of threonine. Used as an identifier in the analysis of peptides, proteins, and enzymes.
Mitogen-activated protein kinase kinase kinases (MAPKKKs) are serine-threonine protein kinases that initiate protein kinase signaling cascades. They phosphorylate MITOGEN-ACTIVATED PROTEIN KINASE KINASES; (MAPKKs) which in turn phosphorylate MITOGEN-ACTIVATED PROTEIN KINASES; (MAPKs).
A large multisubunit complex that plays an important role in the degradation of most of the cytosolic and nuclear proteins in eukaryotic cells. It contains a 700-kDa catalytic sub-complex and two 700-kDa regulatory sub-complexes. The complex digests ubiquitinated proteins and protein activated via ornithine decarboxylase antizyme.
Variant forms of the same gene, occupying the same locus on homologous CHROMOSOMES, and governing the variants in production of the same gene product.
Monomeric subunits of primarily globular ACTIN and found in the cytoplasmic matrix of almost all cells. They are often associated with microtubules and may play a role in cytoskeletal function and/or mediate movement of the cell or the organelles within the cell.
A terminal section of a chromosome which has a specialized structure and which is involved in chromosomal replication and stability. Its length is believed to be a few hundred base pairs.
Microscopic threadlike filaments in FUNGI that are filled with a layer of protoplasm. Collectively, the hyphae make up the MYCELIUM.
A general term for single-celled rounded fungi that reproduce by budding. Brewers' and bakers' yeasts are SACCHAROMYCES CEREVISIAE; therapeutic dried yeast is YEAST, DRIED.
The act of ligating UBIQUITINS to PROTEINS to form ubiquitin-protein ligase complexes to label proteins for transport to the PROTEASOME ENDOPEPTIDASE COMPLEX where proteolysis occurs.
Small, monomeric GTP-binding proteins encoded by ras genes (GENES, RAS). The protooncogene-derived protein, PROTO-ONCOGENE PROTEIN P21(RAS), plays a role in normal cellular growth, differentiation and development. The oncogene-derived protein (ONCOGENE PROTEIN P21(RAS)) can play a role in aberrant cellular regulation during neoplastic cell transformation (CELL TRANSFORMATION, NEOPLASTIC). This enzyme was formerly listed as EC 3.6.1.47.
The injection of very small amounts of fluid, often with the aid of a microscope and microsyringes.
Cellular proteins encoded by the c-mos genes (GENES, MOS). They function in the cell cycle to maintain MATURATION PROMOTING FACTOR in the active state and have protein-serine/threonine kinase activity. Oncogenic transformation can take place when c-mos proteins are expressed at the wrong time.
Slender, cylindrical filaments found in the cytoskeleton of plant and animal cells. They are composed of the protein TUBULIN and are influenced by TUBULIN MODULATORS.
Products of proto-oncogenes. Normally they do not have oncogenic or transforming properties, but are involved in the regulation or differentiation of cell growth. They often have protein kinase activity.