A family of large adaptin protein subunits of approximately 100 kDa in size. They have been primarily found as components of ADAPTOR PROTEIN COMPLEX 2.
An adaptor protein complex found primarily on perinuclear compartments.
A clathrin adaptor protein complex primarily involved in clathrin-related transport at the TRANS-GOLGI NETWORK.
An adaptor protein complex primarily involved in the formation of clathrin-related endocytotic vesicles (ENDOSOMES) at the CELL MEMBRANE.
An adaptor protein complex involved in transport of molecules between the TRANS-GOLGI NETWORK and the endosomal-lysosomal system.
The subunits that make up the large, medium and small chains of adaptor proteins.
A family of large adaptin protein subunits of approximately 130-kDa in size. They have been primarily found as components of ADAPTOR PROTEIN COMPLEX 3.
A family of medium adaptin protein subunits of approximately 45 KDa in size. They have been primarily found as components of ADAPTOR PROTEIN COMPLEX 3 and ADAPTOR PROTEIN COMPLEX 4.
A class of proteins involved in the transport of molecules via TRANSPORT VESICLES. They perform functions such as binding to the cell membrane, capturing cargo molecules and promoting the assembly of CLATHRIN. The majority of adaptor proteins exist as multi-subunit complexes, however monomeric varieties have also been found.
A family of large adaptin protein subunits of approximately 90 KDa in size. They have been primarily found as components of ADAPTOR PROTEIN COMPLEX 1.
A family of large adaptin protein complex subunits of approximately 90-130 kDa in size.
A broad category of carrier proteins that play a role in SIGNAL TRANSDUCTION. They generally contain several modular domains, each of which having its own binding activity, and act by forming complexes with other intracellular-signaling molecules. Signal-transducing adaptor proteins lack enzyme activity, however their activity can be modulated by other signal-transducing enzymes
The main structural coat protein of COATED VESICLES which play a key role in the intracellular transport between membranous organelles. Each molecule of clathrin consists of three light chains (CLATHRIN LIGHT CHAINS) and three heavy chains (CLATHRIN HEAVY CHAINS) that form a structure called a triskelion. Clathrin also interacts with cytoskeletal proteins.
The fundamental dispositions and traits of humans. (Merriam-Webster's Collegiate Dictionary, 10th ed)
A subclass of clathrin assembly proteins that occur as monomers.
Descriptions of specific amino acid, carbohydrate, or nucleotide sequences which have appeared in the published literature and/or are deposited in and maintained by databanks such as GENBANK, European Molecular Biology Laboratory (EMBL), National Biomedical Research Foundation (NBRF), or other sequence repositories.
Single chains of amino acids that are the units of multimeric PROTEINS. Multimeric proteins can be composed of identical or non-identical subunits. One or more monomeric subunits may compose a protomer which itself is a subunit structure of a larger assembly.
The process in which substances, either endogenous or exogenous, bind to proteins, peptides, enzymes, protein precursors, or allied compounds. Specific protein-binding measures are often used as assays in diagnostic assessments.
The order of amino acids as they occur in a polypeptide chain. This is referred to as the primary structure of proteins. It is of fundamental importance in determining PROTEIN CONFORMATION.
A signal transducing adaptor protein that links extracellular signals to the MAP KINASE SIGNALING SYSTEM. Grb2 associates with activated EPIDERMAL GROWTH FACTOR RECEPTOR and PLATELET-DERIVED GROWTH FACTOR RECEPTORS via its SH2 DOMAIN. It also binds to and translocates the SON OF SEVENLESS PROTEINS through its SH3 DOMAINS to activate PROTO-ONCOGENE PROTEIN P21(RAS).
A family of signaling adaptor proteins that contain SRC HOMOLOGY DOMAINS. Many members of this family are involved in transmitting signals from CELL SURFACE RECEPTORS to MITOGEN-ACTIVATED PROTEIN KINASES.
A family of small adaptin protein complex subunits of approximately 19 KDa in size.
Cellular uptake of extracellular materials within membrane-limited vacuoles or microvesicles. ENDOSOMES play a central role in endocytosis.
Proteins which are found in membranes including cellular and intracellular membranes. They consist of two types, peripheral and integral proteins. They include most membrane-associated enzymes, antigenic proteins, transport proteins, and drug, hormone, and lectin receptors.
Vesicles formed when cell-membrane coated pits (COATED PITS, CELL-MEMBRANE) invaginate and pinch off. The outer surface of these vesicles are covered with a lattice-like network of coat proteins, such as CLATHRIN, coat protein complex proteins, or CAVEOLINS.
The process of moving proteins from one cellular compartment (including extracellular) to another by various sorting and transport mechanisms such as gated transport, protein translocation, and vesicular transport.
A network of membrane compartments, located at the cytoplasmic side of the GOLGI APPARATUS, where proteins and lipids are sorted for transport to various locations in the cell or cell membrane.
Vesicles formed when cell-membrane coated pits (COATED PITS, CELL-MEMBRANE) invaginate and pinch off. The outer surface of these vesicles is covered with a lattice-like network of the protein CLATHRIN. Shortly after formation, however, the clathrin coat is removed and the vesicles are referred to as ENDOSOMES.
Cytoplasmic vesicles formed when COATED VESICLES shed their CLATHRIN coat. Endosomes internalize macromolecules bound by receptors on the cell surface.
Transport proteins that carry specific substances in the blood or across cell membranes.
Recombinant proteins produced by the GENETIC TRANSLATION of fused genes formed by the combination of NUCLEIC ACID REGULATORY SEQUENCES of one or more genes with the protein coding sequences of one or more genes.
Established cell cultures that have the potential to propagate indefinitely.
Compounds and molecular complexes that consist of very large numbers of atoms and are generally over 500 kDa in size. In biological systems macromolecular substances usually can be visualized using ELECTRON MICROSCOPY and are distinguished from ORGANELLES by the lack of a membrane structure.
The intracellular transfer of information (biological activation/inhibition) through a signal pathway. In each signal transduction system, an activation/inhibition signal from a biologically active molecule (hormone, neurotransmitter) is mediated via the coupling of a receptor/enzyme to a second messenger system or to an ion channel. Signal transduction plays an important role in activating cellular functions, cell differentiation, and cell proliferation. Examples of signal transduction systems are the GAMMA-AMINOBUTYRIC ACID-postsynaptic receptor-calcium ion channel system, the receptor-mediated T-cell activation pathway, and the receptor-mediated activation of phospholipases. Those coupled to membrane depolarization or intracellular release of calcium include the receptor-mediated activation of cytotoxic functions in granulocytes and the synaptic potentiation of protein kinase activation. Some signal transduction pathways may be part of larger signal transduction pathways; for example, protein kinase activation is part of the platelet activation signal pathway.
Phosphoproteins are proteins that have been post-translationally modified with the addition of a phosphate group, usually on serine, threonine or tyrosine residues, which can play a role in their regulation, function, interaction with other molecules, and localization within the cell.
Any detectable and heritable change in the genetic material that causes a change in the GENOTYPE and which is transmitted to daughter cells and to succeeding generations.
Vesicles that are involved in shuttling cargo from the interior of the cell to the cell surface, from the cell surface to the interior, across the cell or around the cell to various locations.
The GTPase-containing subunits of heterotrimeric GTP-binding proteins. When dissociated from the heterotrimeric complex these subunits interact with a variety of second messenger systems. Hydrolysis of GTP by the inherent GTPase activity of the subunit causes it to revert to its inactive (heterotrimeric) form. The GTP-Binding protein alpha subunits are grouped into families according to the type of action they have on second messenger systems.
The lipid- and protein-containing, selectively permeable membrane that surrounds the cytoplasm in prokaryotic and eukaryotic cells.
Regulatory proteins that act as molecular switches. They control a wide range of biological processes including: receptor signaling, intracellular signal transduction pathways, and protein synthesis. Their activity is regulated by factors that control their ability to bind to and hydrolyze GTP to GDP. EC 3.6.1.-.
Specialized regions of the cell membrane composed of pits coated with a bristle covering made of the protein CLATHRIN. These pits are the entry route for macromolecules bound by cell surface receptors. The pits are then internalized into the cytoplasm to form the COATED VESICLES.
The uptake of naked or purified DNA by CELLS, usually meaning the process as it occurs in eukaryotic cells. It is analogous to bacterial transformation (TRANSFORMATION, BACTERIAL) and both are routinely employed in GENE TRANSFER TECHNIQUES.
Macromolecular complexes formed from the association of defined protein subunits.
A binding partner for several RECEPTOR PROTEIN-TYROSINE KINASES, including INSULIN RECEPTOR and INSULIN-LIKE GROWTH FACTOR RECEPTOR. It contains a C-terminal SH2 DOMAIN and mediates various SIGNAL TRANSDUCTION pathways.
The level of protein structure in which combinations of secondary protein structures (alpha helices, beta sheets, loop regions, and motifs) pack together to form folded shapes called domains. Disulfide bridges between cysteines in two different parts of the polypeptide chain along with other interactions between the chains play a role in the formation and stabilization of tertiary structure. Small proteins usually consist of only one domain but larger proteins may contain a number of domains connected by segments of polypeptide chain which lack regular secondary structure.
Products of the retroviral NEF GENE. They play a role as accessory proteins that influence the rate of viral infectivity and the destruction of the host immune system. nef gene products were originally found as factors that trans-suppress viral replication and function as negative regulators of transcription. nef stands for negative factor.