Design of a complex virtual reality simulation to train finger motion for persons with hemiparesis: a proof of concept study. (1/28)

 (+info)

Virtual reality social cognition training for young adults with high-functioning autism. (2/28)

 (+info)

Positive correlation between motion analysis data on the LapMentor virtual reality laparoscopic surgical simulator and the results from videotape assessment of real laparoscopic surgeries. (3/28)

 (+info)

The therapeutic relationship in e-therapy for mental health: a systematic review. (4/28)

 (+info)

The combined impact of virtual reality neurorehabilitation and its interfaces on upper extremity functional recovery in patients with chronic stroke. (5/28)

BACKGROUND AND PURPOSE: Although there is strong evidence on the beneficial effects of virtual reality (VR)-based rehabilitation, it is not yet well understood how the different aspects of these systems affect recovery. Consequently, we do not exactly know what features of VR neurorehabilitation systems are decisive in conveying their beneficial effects. METHODS: To specifically address this issue, we developed 3 different configurations of the same VR-based rehabilitation system, the Rehabilitation Gaming System, using 3 different interface technologies: vision-based tracking, haptics, and a passive exoskeleton. Forty-four patients with chronic stroke were randomly allocated to one of the configurations and used the system for 35 minutes a day for 5 days a week during 4 weeks. RESULTS: Our results revealed significant within-subject improvements at most of the standard clinical evaluation scales for all groups. Specifically we observe that the beneficial effects of VR-based training are modulated by the use/nonuse of compensatory movement strategies and the specific sensorimotor contingencies presented to the user, that is, visual feedback versus combined visual haptic feedback. CONCLUSIONS: Our findings suggest that the beneficial effects of VR-based neurorehabilitation systems such as the Rehabilitation Gaming System for the treatment of chronic stroke depend on the specific interface systems used. These results have strong implications for the design of future VR rehabilitation strategies that aim at maximizing functional outcomes and their retention. Clinical Trial Registration- This trial was not registered because it is a small clinical study that evaluates the feasibility of prototype devices.  (+info)

Using an alternate reality game to increase physical activity and decrease obesity risk of college students. (6/28)

BACKGROUND: This quasi-experimental study investigated a game intervention--specifically, an alternate reality game (ARG)--as a means to influence college students' physical activity (PA). An ARG is an interactive narrative that takes place in the real world and uses multiple media to reveal a story. METHOD: Three sections of a college health course (n = 115 freshman students) were assigned either to a game group that played the ARG or to a comparison group that learned how to use exercise equipment in weekly laboratory sessions. Pre- and post-intervention measures included weight, waist circumference, body mass index (BMI), percentage body fat (PBF), and self-reported moderate physical activity (MPA) and vigorous physical activity (VPA), and PA (steps/week). RESULTS: A significant group x time interaction (p = .001) was detected for PA, with a significant increase in PA for the game (p < .001) versus a significant decrease (p = .001) for the comparison group. Significant within-group increases for weight (p = .001), BMI (p = .001), and PBF (p = .001) were detected. A significant group x time interaction (p = .001) was detected when analyzing self-reported VPA, with both groups reporting decreases in VPA over time; however, the decrease was only significant for the comparison group (p < .001). No significant group differences were found for MPA. CONCLUSIONS: It is important that any intervention meet the needs and interests of its target population. Here, the ARG was designed in light of the learning preferences of today's college students--collaborative and social, experiential and media-rich. Our results provide preliminary evidence that a game intervention can positively influence PA within the college student population.  (+info)

Virtual-reality balance training with a video-game system improves dynamic balance in chronic stroke patients. (7/28)

Stroke is one of the most serious healthcare problems and a major cause of impairment of cognition and physical functions. Virtual rehabilitation approaches to postural control have been used for enhancing functional recovery that may lead to a decrease in the risk of falling. In the present study, we investigated the effects of virtual reality balance training (VRBT) with a balance board game system on balance of chronic stroke patients. Participants were randomly assigned to 2 groups: VRBT group (11 subjects including 3 women, 65.26 years old) and control group (11 subjects including 5 women, 63.13 years old). Both groups participated in a standard rehabilitation program (physical and occupational therapy) for 60 min a day, 5 times a week for 6 weeks. In addition, the VRBT group participated in VRBT for 30 min a day, 3 times a week for 6 weeks. Static balance (postural sway velocity with eyes open or closed) was evaluated with the posturography. Dynamic balance was evaluated with the Berg Balance Scale (BBS) and Timed Up and Go test (TUG) that measures balance and mobility in dynamic balance. There was greater improvement on BBS (4.00 vs. 2.81 scores) and TUG (-1.33 vs. -0.52 sec) in the VRBT group compared with the control group (P < 0.05), but not on static balance in both groups. In conclusion, we demonstrate a significant improvement in dynamic balance in chronic stroke patients with VRBT. VRBT is feasible and suitable for chronic stroke patients with balance deficit in clinical settings.  (+info)

Beaming into the rat world: enabling real-time interaction between rat and human each at their own scale. (8/28)

 (+info)