Factors affecting the pharmacokinetic characteristics of rapacuronium. (1/237)

BACKGROUND: Rapacuronium is a new nondepolarizing muscle relaxant with rapid onset and offset. As part of a study to determine its neuromuscular effects, the authors sampled plasma sparsely to determine the influence of age, gender, and other covariates on its pharmacokinetic characteristics. METHODS: Of 181 patients receiving a single bolus dose of 0.5-2.5 mg/kg rapacuronium, 43 (aged 24-83 yr) had plasma sampled 3 or 4 times to determine plasma concentrations of rapacuronium and its metabolite, ORG9488. Pharmacokinetic analysis was performed using a population approach (mixed-effects modeling) to determine the influence of demographic characteristics and preoperative laboratory values on the pharmacokinetic parameters. RESULTS: Rapacuronium's weight-normalized plasma clearance was 7.03 x (1 - 0.0507 x (HgB - 13)) ml x kg(-1) x min(-1), where HgB is the patient's preoperative value for hemoglobin (g/100 ml); however, rapacuronium's blood clearance (11.4+/-1.4 ml x kg(-1) x min(-1), mean +/- SD) did not vary with hemoglobin. Rapacuronium's weight-normalized pharmacokinetic parameters were not influenced by age, gender, or other covariates examined. Plasma concentrations of ORG9488 were typically less than 14% those of rapacuronium during the initial 30 min after rapacuronium administration. CONCLUSIONS: In this patient population, neither age nor gender influence elimination of rapacuronium. This finding contrasts to an age-related decrease in plasma clearance observed in a study of 10 healthy volunteers and in a pooled analysis of the pharmacokinetic data from 206 adults in multiple clinical studies. Even if ORG9488 has a potency similar to that of rapacuronium, its plasma concentrations after a single bolus dose of rapacuronium are sufficiently small to contribute minimally to neuromuscular blockade.  (+info)

Antagonism of vecuronium-induced neuromuscular block in patients pretreated with magnesium sulphate: dose-effect relationship of neostigmine. (2/237)

We have investigated the dose-effect relationship of neostigmine in antagonizing vecuronium-induced neuromuscular block with and without magnesium sulphate (MgSO4) pretreatment. Neuromuscular block was assessed by electromyography with train-of-four (TOF) stimulation. First, we determined neostigmine-induced recovery in patients pretreated with MgSO4 (group A) or saline (group B) (n = 12 each). The height of T1, 5 min after neostigmine, was 43 (7)% in group A and 65 (6)% in group B (P < 0.01). Respective values after 10 min were 59 (7)% and 83 (5)% (P < 0.01). TOF ratio, 5 min after neostigmine, was 29 (6)% in group A and 29 (5)% in group B. Respective values after 10 min were 38 (11)% and 51 (7)% (P < 0.01). To gain insight into the mechanisms leading to delayed recovery after MgSO4, we calculated assisted recovery, defined as neostigmine-induced recovery minus mean spontaneous recovery. Spontaneous recovery was assessed in another 24 patients. Patients in group C received MgSO4/vecuronium and patients in group D vecuronium only (n = 12 each). Five minutes after neostigmine, assisted recovery was 22 (7)% in the MgSO4 pretreated patients and 28 (6)% in controls (P < 0.05). Ten minutes after neostigmine, values were 24 (7)% and 22 (6)%. Maximum assisted recovery was not influenced by MgSO4 pretreatment (27 (6)% in group A and 32 (6)% in group B) and time to maximum effect was comparable between groups: 6 (4-10) min and 7 (5-8) min, respectively. We conclude that neostigmine-induced recovery was attenuated in patients treated with MgSO4. This was mainly a result of slower spontaneous recovery and not decreased response to neostigmine.  (+info)

Early reversal of rapacuronium with neostigmine. (3/237)

BACKGROUND: Rapacuronium is a rapid-onset, short-acting neuromuscular relaxant. This multiple-center study determined neuromuscular recovery when neostigmine was given 2 or 5 min after rapacuronium. METHODS: One hundred seventeen patients were randomized to receive two different doses of rapacuronium and to receive neostigmine in two different doses and at two different times. During propofol anesthesia with nitrous oxide, oxygen, and fentanyl, 1.5 or 2.5 mg/kg rapacuronium was given 1 min before tracheal intubation. Neuromuscular block was measured by train-of-four ulnar nerve stimulation every 12 s: The adductor pollicis force of contraction was recorded mechanomyographically. Two or five minutes after rapacuronium was administered, 0.05 or 0.07 mg/kg neostigmine was administered and recovery was compared with that of control patients who received no neostigmine. RESULTS: Both doses of rapacuronium produced 100% block in all but one patient, who exhibited 97% block. Neostigmine accelerated recovery in all groups. After 1.5 mg/kg rapacuronium, the time to 25% T1 twitch recovery decreased from a mean of 16 min in control patients to mean values of 8-10 min in the treatment groups: The time to train-of-four ratio of 0.7 decreased from 38 min to 17-19 min. After 2.5 mg/kg rapacuronium, the time to 25% T1 was reduced from 23 min to 11-12 min, and the time to train-of-four ratio of 0.7 decreased from 54 min to 26-32 min. Recovery was not different among the the groups that received different doses and timing of neostigmine. CONCLUSIONS: Recovery of intense rapacuronium block was accelerated by early neostigmine administration. When given 2 min after rapacuronium, neostigmine was as effective as after 5 min, and 0.05 mg/kg neostigmine was comparable to 0.07 mg/kg neostigmine.  (+info)

Electromyographic assessment of neuromuscular block at the gastrocnemius muscle. (4/237)

We have assessed neuromuscular block electromyographically at the gastrocnemius muscle and compared it with that at the abductor digiti minimi muscle in 60 adult patients undergoing cervical spine surgery under general anaesthesia. All patients were in the prone position. After vecuronium 0.2 mg kg-1, times to onset of neuromuscular block at the gastrocnemius and abductor digiti minimi muscles were mean 147 (SD 24) and 145 (14) s, respectively (ns). Times to return of the first response of the post-tetanic count (PTC1) at the gastrocnemius and abductor digiti minimi muscles were 27.7 (5.6) and 37.0 (5.9) min, respectively (P = 0.0001). Times to return of the first response of the train-of-four (TOF) at the gastrocnemius and abductor digiti minimi muscles were 41.0 (9.1) and 49.9 (8.7) min, respectively (P = 0.01). Recovery of PTC, T1/T0 and TOF ratio at the gastrocnemius muscle were significantly faster than at the abductor digiti minimi muscle.  (+info)

Comparison of intubating conditions after rapacuronium (Org 9487) and succinylcholine following rapid sequence induction in adult patients. (5/237)

We have assessed intubating conditions provided by rapacuronium (Org 9487) and succinylcholine after rapid sequence induction of anaesthesia in adult patients undergoing elective surgery. We studied 335 patients, ASA I and II, in five centres. Two hundred and thirty-four subjects with normal body weight and 101 obese subjects were allocated randomly to one of four treatment groups differing in the neuromuscular blocking drug administered (rapacuronium 1.5 mg kg-1 or succinylcholine 1 mg kg-1) and in the technique used for induction of anaesthesia (fentanyl 2-3 micrograms kg-1 with thiopental 3-6 mg kg-1 or alfentanil 20 micrograms kg-1 with propofol 1.5-2 mg kg-1). Intubation was started at 50 s by an anaesthetist blinded to the drugs used. Intubating conditions were clinically acceptable (excellent or good) in 89.4% of patients after rapacuronium and in 97.4% after succinylcholine (P = 0.004), the estimated difference being 8.1% (95% confidence interval (CI) 2.0-14.1%). Neither anaesthetic technique nor subject group had an influence on intubating conditions. After intubation, the maximum increase in heart rate averaged 23.1 (SD 25.4%) and 9.4 (26.1%) after rapacuronium and succinylcholine, respectively (P < 0.001). Pulmonary side effects (bronchospasm and increased airway pressure) were observed in 10.7% (95% CI 5.8-17%) and 4.1% (95% CI 1.3-8.8%) of patients given rapacuronium and succinylcholine, respectively (P = 0.021). We conclude that after rapid sequence induction of anaesthesia in adults, clinically acceptable intubating conditions were achieved less frequently after rapacuronium 1.5 mg kg-1 than after succinylcholine.  (+info)

Pharmacokinetics and pharmacodynamics of vecuronium in rats with systemic inflammatory response syndrome: treatment with NG-monomethyl-L-arginine. (6/237)

BACKGROUND: Insufficient detoxification caused by nitric oxide-related inhibition of cytochrome P450 may be important for metabolism of numerous drugs, including vecuronium. The present study investigated the pharmacodynamics and pharmacokinetics of vecuronium in rats with inflammatory liver dysfunction. METHODS: Male Sprague-Dawley rats (n = 56) were randomly allocated into two groups: In the sepsis group, liver inflammation was established by injection of 56 mg/kg heat-killed Corynebacterium parvum; control rats received the solvent. At day 4, groups were subdivided according to treatment with the nitric oxide synthase inhibitor N(G)-monomethyl-L-arginine (250 mg/kg) or placebo. The aminopyrine breath test was performed to assess cytochrome P450 activity. Rats were anesthetized with propofol and mechanically ventilated. Duration of action of vecuronium (1.2 mg/kg) was measured by evoked mechanomyography (stimulation of the sciatic nerve, contraction of the gastrocnemius muscle). In seven rats of each subgroup a 50% neuromuscular blockade was established by a continuous vecuronium infusion. Vecuronium plasma levels were measured and plasma clearance of vecuronium was calculated. Nitric oxide synthesis was assessed by measuring nitrite/nitrate serum levels. RESULTS: In sepsis/placebo rats, vecuronium-induced neuromuscular blockade was prolonged (144% of contro/placebo), vecuronium plasma levels at 50% neuromuscular blockade were increased (122% of control/placebo), and plasma clearance was decreased (68% of control/placebo). N(G)-monomethyl-L-arginine therapy in rats with sepsis improved cytochrome P450 activity and plasma clearance of vecuronium, shortened duration of action of vecuronium, but did not alter the elevated vecuronium plasma levels. CONCLUSIONS: A systemic inflammatory response syndrome with liver dysfunction results in decreased sensitivity to and a decreased elimination of vecuronium. Modulation of nitric oxide synthesis may be a strategy that can be used in the future to improve xenobiotic metabolism in sepsis.  (+info)

Spontaneous or neostigmine-induced recovery after maintenance of neuromuscular block with Org 9487 (rapacuronium) or rocuronium following an initial dose of Org 9487. (7/237)

We have examined spontaneous and neostigmine-induced recovery after an initial dose of Org 9487 1.5 mg kg-1 followed by three repeat doses of Org 9487, a 30-min infusion of Org 9487 or two incremental doses of rocuronium. Mean clinical duration after incremental doses of Org 9487 0.5 mg kg-1 increased from 12.3 (SD 3.4) min to 14.0 (4.0) and 15.9 (5.9) min (P < 0.01), and after rocuronium from 14.4 (5.2) min to 19.2 (5.9) min (P < 0.01). Times for spontaneous recovery from a T1 of 25% to a TOF ratio of 0.8 after the last bolus dose of Org 9487 and after a 30-min infusion were 72.4 (16.5) and 66.1 (26.9) min compared with 36.7 (15.8) min in the group receiving reocuronium. These times were significantly reduced to 9.9 (4.5), 8.6 (6.1) and 5.7 (2.5) min, respectively, after neostigmine administration at a T1 of 25% (P < 0.05). We conclude that administration of Org 9487 by repeat bolus doses or infusion was associated with slow spontaneous recovery but neostigmine administration resulted in adequate recovery in less than 10 min.  (+info)

Intramuscular rapacuronium in infants and children: dose-ranging and tracheal intubating conditions. (8/237)

BACKGROUND: Intravenous rapacuronium's rapid onset and short duration suggest that intramuscular rapacuronium might facilitate tracheal intubation without prolonged paralysis. Accordingly, the authors injected rapacuronium into the deltoid muscle to determine the optimal dose and time for intubation in pediatric patients. METHODS: Unpremedicated patients (aged, 2 months to 3 yr) were studied. Part I: Spontaneous minute ventilation (V(E)) and twitch tension were measured during N2O/halothane anesthesia. Rapacuronium (2.2-5.5 mg/kg, given intramuscularly, n = 23), succinylcholine (4 mg/kg, given intramuscularly, n = 12), or vecuronium (0.1 mg/kg, given intravenously, n = 15) was given. Time to 50% depression of V(E) and 10% recovery of twitch were measured. Dose for each patient was changed 10-20% according to the previous patient's response. Part II: In 22 patients anesthetized with 0.82-1.0% halothane, the optimal rapacuronium dose determined in part I (infants, 2.8 mg/kg; children, 4.8 mg/kg) was given intramuscularly. Laryngoscopy was scored. Time to laryngoscopy was increased or decreased 0.5 min according to the previous patient's response. RESULTS: Part I: Rapacuronium typically depressed ventilation in < or = 2 min with 10% twitch recovery in 20-60 min. With succinylcholine, median time to ventilatory depression was 1.3 and 1.1 min for infants and children, respectively; for vecuronium, 0.7 and 0.6 min. Part I: Intubating conditions were good-excellent at 3.0 and 2.5 min in infants and children, respectively; time to 10% twitch recovery (mean +/- SD) was 31 +/- 14 and 36 +/- 14 min in the two groups. CONCLUSIONS: This pilot study indicates that deltoid injection of rapacuronium, 2.8 mg/kg in infants and 4.8 mg/kg in children, permits tracheal intubation within 2.5-3.0 min, despite a light plane of anesthesia. Duration of action is intermediate.  (+info)