A new filtering algorithm for medical magnetic resonance and computer tomography images. (1/7649)

Inner views of tubular structures based on computer tomography (CT) and magnetic resonance (MR) data sets may be created by virtual endoscopy. After a preliminary segmentation procedure for selecting the organ to be represented, the virtual endoscopy is a new postprocessing technique using surface or volume rendering of the data sets. In the case of surface rendering, the segmentation is based on a grey level thresholding technique. To avoid artifacts owing to the noise created in the imaging process, and to restore spurious resolution degradations, a robust Wiener filter was applied. This filter working in Fourier space approximates the noise spectrum by a simple function that is proportional to the square root of the signal amplitude. Thus, only points with tiny amplitudes consisting mostly of noise are suppressed. Further artifacts are avoided by the correct selection of the threshold range. Afterwards, the lumen and the inner walls of the tubular structures are well represented and allow one to distinguish between harmless fluctuations and medically significant structures.  (+info)

Image processing strategies in picture archiving and communication systems. (2/7649)

An image processing strategy is presented that assures very similar soft-copy presentation on diagnostic workstations of a picture archiving and communication system (PACS) over the lifetime of an image file and simultaneously provides efficient work-flow. The strategy is based on rigid partitioning of image processing into application- and display-device-specific processing. Application-specific processing is optimized for a reference display system. A description of this system is attached to the file header of the application-specifically processed image which is stored in the PACS. Every diagnostic display system automatically reproduces the image quality for which the application-specific processing was optimized by adjusting its properties by display-system-specific processing so that the system becomes effectively equal to the reference display system.  (+info)

Spatial- and task-dependent neuronal responses during real and virtual translocation in the monkey hippocampal formation. (3/7649)

Neuropsychological data in humans demonstrated a pivotal role of the medial temporal lobe, including the hippocampal formation (HF) and the parahippocampal gyrus (PH), in allocentric (environment-centered) spatial learning and memory. In the present study, the functional significance of the monkey HF and PH neurons in allocentric spatial processing was analyzed during performance of the spatial tasks. In the tasks, the monkey either freely moved to one of four reward areas in the experimental field by driving a cab that the monkey rode (real translocation task) or freely moved a pointer to one of four reward areas on the monitor (virtual translocation task) by manipulating a joystick. Of 389 neurons recorded from the monkey HF and PH, 166 had place fields that displayed increased activity in a specific area in the experimental field and/or on the monitor (location-differential neurons). More HF and PH neurons responded in the real translocation task. These neurons had low mean spontaneous firing rates (0.96 spikes/sec), similar to those of rodent HF place cells. The remaining nonresponsive neurons had significantly higher mean firing rates (8. 39 spikes/sec), similar to interneurons or theta cells in the rodent HF. Furthermore, most location-differential neurons showed different responses in different tasks. These results suggest that the HF and PH are crucial in allocentric information processing and, moreover, that the HF can encode different reference frames that are context or task-dependent. This may be the neural basis of episodic memory.  (+info)

Imagene: an integrated computer environment for sequence annotation and analysis. (4/7649)

MOTIVATION: To be fully and efficiently exploited, data coming from sequencing projects together with specific sequence analysis tools need to be integrated within reliable data management systems. Systems designed to manage genome data and analysis tend to give a greater importance either to the data storage or to the methodological aspect, but lack a complete integration of both components. RESULTS: This paper presents a co-operative computer environment (called Imagenetrade mark) dedicated to genomic sequence analysis and annotation. Imagene has been developed by using an object-based model. Thanks to this representation, the user can directly manipulate familiar data objects through icons or lists. Imagene also incorporates a solving engine in order to manage analysis tasks. A global task is solved by successive divisions into smaller sub-tasks. During program execution, these sub-tasks are graphically displayed to the user and may be further re-started at any point after task completion. In this sense, Imagene is more transparent to the user than a traditional menu-driven package. Imagene also provides a user interface to display, on the same screen, the results produced by several tasks, together with the capability to annotate these results easily. In its current form, Imagene has been designed particularly for use in microbial sequencing projects. AVAILABILITY: Imagene best runs on SGI (Irix 6.3 or higher) workstations. It is distributed free of charge on a CD-ROM, but requires some Ilog licensed software to run. Some modules also require separate license agreements. Please contact the authors for specific academic conditions and other Unix platforms. CONTACT: imagene home page: http://wwwabi.snv.jussieu.fr/imagene  (+info)

Stem Trace: an interactive visual tool for comparative RNA structure analysis. (5/7649)

MOTIVATION: Stem Trace is one of the latest tools available in STRUCTURELAB, an RNA structure analysis computer workbench. The paradigm used in STRUCTURELAB views RNA structure determination as a problem of dealing with a database of a large number of computationally generated structures. Stem Trace provides the capability to analyze this data set in a novel, visually driven, interactive and exploratory way. In addition to providing graphs at a high level of ion, it is also connected with complementary visualization tools which provide orthogonal views of the same data, as well as drawing of structures represented by a stem trace. Thus, on top of being an analysis tool, Stem Trace is a graphical user interface to an RNA structural information database. RESULTS: We illustrate Stem Trace's capabilities with several examples of the analysis of RNA folding data performed on 24 strains of HIV-1, HIV-2 and SIV sequences around the HIV dimerization region. This dimer linkage site has been found to play a role in encapsidation, reverse transcription, recombination, and inhibition of translation. Our examples show how Stem Trace elucidates preservation of structures in this region across the various strains of HIV. AVAILABILITY: The program can be made available upon request. It runs on SUN, SGI and DEC (Compaq) Unix workstations.  (+info)

E-CELL: software environment for whole-cell simulation. (6/7649)

MOTIVATION: Genome sequencing projects and further systematic functional analyses of complete gene sets are producing an unprecedented mass of molecular information for a wide range of model organisms. This provides us with a detailed account of the cell with which we may begin to build models for simulating intracellular molecular processes to predict the dynamic behavior of living cells. Previous work in biochemical and genetic simulation has isolated well-characterized pathways for detailed analysis, but methods for building integrative models of the cell that incorporate gene regulation, metabolism and signaling have not been established. We, therefore, were motivated to develop a software environment for building such integrative models based on gene sets, and running simulations to conduct experiments in silico. RESULTS: E-CELL, a modeling and simulation environment for biochemical and genetic processes, has been developed. The E-CELL system allows a user to define functions of proteins, protein-protein interactions, protein-DNA interactions, regulation of gene expression and other features of cellular metabolism, as a set of reaction rules. E-CELL simulates cell behavior by numerically integrating the differential equations described implicitly in these reaction rules. The user can observe, through a computer display, dynamic changes in concentrations of proteins, protein complexes and other chemical compounds in the cell. Using this software, we constructed a model of a hypothetical cell with only 127 genes sufficient for transcription, translation, energy production and phospholipid synthesis. Most of the genes are taken from Mycoplasma genitalium, the organism having the smallest known chromosome, whose complete 580 kb genome sequence was determined at TIGR in 1995. We discuss future applications of the E-CELL system with special respect to genome engineering. AVAILABILITY: The E-CELL software is available upon request. SUPPLEMENTARY INFORMATION: The complete list of rules of the developed cell model with kinetic parameters can be obtained via our web site at: http://e-cell.org/.  (+info)

A proposal for a standard CORBA interface for genome maps. (7/7649)

MOTIVATION: The scientific community urgently needs to standardize the exchange of biological data. This is helped by the use of a common protocol and the definition of shared data structures. We have based our standardization work on CORBA, a technology that has become a standard in the past years and allows interoperability between distributed objects. RESULTS: We have defined an IDL specification for genome maps and present it to the scientific community. We have implemented CORBA servers based on this IDL to distribute RHdb and HuGeMap maps. The IDL will co-evolve with the needs of the mapping community. AVAILABILITY: The standard IDL for genome maps is available at http:// corba.ebi.ac.uk/RHdb/EUCORBA/MapIDL.htm l. The IORs to browse maps from Infobiogen and EBI are at http://www.infobiogen.fr/services/Hugemap/IOR and http://corba.ebi.ac.uk/RHdb/EUCORBA/IOR CONTACT: [email protected], [email protected]  (+info)

GRASS: a server for the graphical representation and analysis of structures. (8/7649)

GRASS (Graphical Representation and Analysis of Structures Server), a new web-based server, is described. GRASS exploits many of the features of the GRASP program and is designed to provide interactive molecular graphics and quantitative analysis tools with a simple interface over the World-Wide Web. Using GRASS, it is now possible to view many surface features of biological macromolecules on either standard workstations used in macromolecular analysis or personal computers. The result is a World-Wide Web-based, platform-independent, easily used tool for macromolecular visualization and structure analysis.  (+info)