Thymic selection by a single MHC/peptide ligand: autoreactive T cells are low-affinity cells. (1/1550)

In H2-M- mice, the presence of a single peptide, CLIP, bound to MHC class II molecules generates a diverse repertoire of CD4+ cells. In these mice, typical self-peptides are not bound to class II molecules, with the result that a very high proportion of H2-M- CD4+ cells are responsive to the various peptides displayed on normal MHC-compatible APC. We show here, however, that such "self" reactivity is controlled by low-affinity CD4+ cells. These cells give spectacularly high proliferative responses but are virtually unreactive in certain other assays, e.g., skin graft rejection; responses to MHC alloantigens, by contrast, are intense in all assays. Possible explanations for why thymic selection directed to a single peptide curtails self specificity without affecting alloreactivity are discussed.  (+info)

Evaluation of fibroblast-mediated gene therapy in a feline model of mucopolysaccharidosis type VI. (2/1550)

Fibroblast-mediated ex vivo gene therapy was evaluated in the N-acetylgalactosamine 4-sulfatase (4S) deficient mucopolysaccharidosis type VI (MPS VI) cat. Skin biopsies were obtained at birth from severely affected MPS VI kittens and used to initiate fibroblast outgrowths for retroviral transduction with the 4S cDNA. 4S gene expression in transduced cells was under the transcriptional control of the MoMLV long terminal repeat promoter or the cytomegalovirus (CMV) immediate-early promoter. Characterisation of gene-transduced fibroblasts demonstrated the cells to be over-expressing 4S activity. Twenty-four to forty million autologous, gene-corrected fibroblasts were implanted under the renal capsule of three MPS VI kittens at 8-16 weeks of age. Transient, low levels of 4S activity were detected in peripheral blood leukocytes shortly after implantation but were not detectable within 3-8 weeks' post-implantation. Long-term biochemical and clinical evaluation of these cats demonstrated identical disease progression to that previously described in untreated, clinically severe MPS VI cats.  (+info)

Mid-term results of endoscopic perforator vein interruption for chronic venous insufficiency: lessons learned from the North American subfascial endoscopic perforator surgery registry. The North American Study Group. (3/1550)

PURPOSE: The safety, feasibility, and early efficacy of subfascial endoscopic perforator surgery (SEPS) for the treatment of chronic venous insufficiency were established in a preliminary report. The long-term clinical outcome and the late complications after SEPS are as yet undetermined. METHODS: The North American Subfascial Endoscopic Perforator Surgery registry collected information on 148 SEPS procedures that were performed in 17 centers in the United States and Canada between August 1, 1993, and February 15, 1996. The data analysis in this study focused on mid-term outcome in 146 patients. RESULTS: One hundred forty-six patients (79 men and 67 women; mean age, 56 years; range, 27 to 87 years) underwent SEPS. One hundred and one patients (69%) had active ulcers (class 6), and 21 (14%) had healed ulcers (class 5). One hundred and three patients (71%) underwent concomitant venous procedures (stripping, 70; high ligation, 17; varicosity avulsion alone, 16). There were no deaths or pulmonary embolisms. One deep venous thrombosis occurred at 2 months. The follow-up periods averaged 24 months (range, 1 to 53 months). Cumulative ulcer healing at 1 year was 88% (median time to healing, 54 days). Concomitant ablation of superficial reflux and lack of deep venous obstruction predicted ulcer healing (P <.05). Clinical score improved from 8.93 to 3.98 at the last follow-up (P <. 0001). Cumulative ulcer recurrence at 1 year was 16% and at 2 years was 28% (standard error, < 10%). Post-thrombotic limbs had a higher 2-year cumulative recurrence rate (46%) than did those limbs with primary valvular incompetence (20%; P <.05). Twenty-eight of the 122 patients (23%) who had class 5 or class 6 ulcers before surgery had an active ulcer at the last follow-up examination. CONCLUSIONS: The interruption of perforators with ablation of superficial reflux is effective in decreasing the symptoms of chronic venous insufficiency and rapidly healing ulcers. Recurrence or new ulcer development, however, is still significant, particularly in post-thrombotic limbs. The reevaluation of the indications for SEPS is warranted because operations in patients without previous deep vein thrombosis are successful but operations in those patients with deep vein thrombosis are less successful. Operations on patients with deep vein occlusion have poor outcomes.  (+info)

The 60-kDa heat shock protein modulates allograft rejection. (4/1550)

Allograft rejection is a process of immune reactivity triggered by foreign transplantation antigens. We now demonstrate that the 60-kDa heat shock protein (hsp60), a molecule that is identical in the donor and the recipient, can regulate allograft immunity. In wild-type mice, hsp60 expression was greatly enhanced in allografts being rejected. By using MHC class II (Ealpha) promoter hsp60 transgenic mice either as donors of skin with enhanced expression of hsp60, or as allograft recipients with decreased hsp60 autoimmunity, we found that augmented expression of mouse hsp60 in the allograft accelerated its rejection, whereas reduced autoimmunity to mouse hsp60 in graft recipients delayed the process. Moreover, in nontransgenic mice, therapeutic administration of hsp60 or hsp60 peptides, known to modulate naturally occurring hsp60 autoimmunity, led to delayed allograft rejection. Thus, we demonstrate that hsp60 expression and hsp60 autoimmunity can influence and modify the immune response to foreign antigens. Hence, autoimmunity to self-hsp60 epitopes is not necessarily an aberration, but may serve physiologically and therapeutically to modulate foreign immunity.  (+info)

Cell-surface expression and alloantigenic function of a human nonclassical class I molecule (HLA-E) in transgenic mice. (5/1550)

We have introduced the gene (E*01033) encoding the heavy chain of the human nonclassical MHC class I Ag, HLA-E, into the mouse genome. Two founder mice carry a 21-kb fragment, the others bear an 8-kb fragment. Each of the founder mice was mated to mice of an already established C57BL/10 transgenic line expressing human beta2-microglobulin (beta2m). Cell surface HLA-E was detected on lymph node cells by flow cytometry only in the presence of endogenous human beta2m. However, HLA-E-reactive mouse CTL (H-2-unrestricted) lysed efficiently the target cells originating from HLA-E transgenic mice without human beta2m, showing that the HLA-E protein can be transported to the cell surface in the absence of human beta2m, presumably by association with murine beta2m. Rejection of skin grafts from HLA-E transgenic mice demonstrates that HLA-E behaves as a transplantation Ag in mice. HLA-E transgenic spleen cells are effective in stimulating an allogeneic CTL response in normal and human classical class I (HLA-B27) transgenic mice. Furthermore, results from split-well analysis indicate that the majority of the primary in vivo-induced CTL recognizes HLA-E as an intact molecule (H-2-unrestricted recognition) and not as an HLA-E-derived peptide presented by a mouse MHC molecule, although a small fraction (ranging from 4 to 21%) of the primary in vivo-induced CTL is able to recognize HLA-E in an H-2-restricted manner. Based on these observations, we conclude that HLA-E exhibits alloantigenic properties that are indistinguishable from classical HLA class I molecules when expressed in transgenic mice.  (+info)

Human CD4+ T cells mediate rejection of porcine xenografts. (6/1550)

It has previously been demonstrated that xenograft rejection in rodents is dependent on CD4+ T cells. However, because of the lack of an appropriate in vivo model, little is known about the cellular basis of human T cell-mediated rejection of xenografts. In this study, we have evaluated the ability of human T cells to mediate rejection of porcine skin grafts in a novel in vivo experimental system using immunodeficient mice as recipients. Recombinase-activating gene-1-deficient mice (R-) lacking mature B and T cells were grafted with porcine skin and received human lymphocytes stimulated in vitro with irradiated porcine PBMC. Skin grafts on mice given either unseparated, activated human lymphocytes, or NK cell-depleted lymphocyte populations were rejected within 18 days after adoptive cell transfer. In contrast, skin grafts on mice given T cell-depleted human lymphocytes or saline showed no gross or histologic evidence of rejection up to 100 days after adoptive transfer. Purified CD4+ T cells were also able to mediate rejection of porcine skin grafts. These data suggest that human CD4+ T cells are sufficient to induce rejection of porcine xenografts. Thus, strategies directed toward CD4+ T cells may effectively prevent cellular rejection of porcine xenografts in humans.  (+info)

Importance of intrathymic mixed chimerism for the maintenance of skin allograft tolerance across fully allogeneic antigens in mice. (7/1550)

In B6 (H-2b) mice that had been given, neonatally, 1x108 B6AKF1 spleen cells intraperitoneally (i.p.), only a moderate prolongation of donor (AKR:H-2k) skin graft survival was observed. In such B6 mice, no mixed lymphocyte reaction (MLR) to AKR could be detected on day 35 (35 days after birth), but it was clearly evident on day 84. Similarly, neither Vbeta6+ (reactive to MTV-7-encoded antigens) nor Vbeta11+ (reactive to I-E+MTV-derived superantigens) T cells were detected on day 35, but both were clearly evident on day 84 in both the thymus and the lymph nodes, thus indicating the breakdown of intrathymic mixed chimerism at the antigen-presenting cell level. Furthermore, by day 84, all skin grafts from AKR had already been rejected in such B6 mice. In the periphery, however, Vbeta6+, but not Vbeta11+, T cells were clonally anergic on day 84, based on a stimulation assay with anti-T-cell receptor (TCR) monoclonal antibody (mAb), thus suggesting that tolerance to some antigens, but not to others, may be induced by the clonal anergy in fully allogeneic combinations, and that the clonal anergic state may be masked by other proliferative responses. These results therefore indicate the importance of intrathymic mixed chimerism (central tolerance) and the limitations of clonal anergy (peripheral tolerance) in maintaining tolerance across fully allogeneic antigen barriers.  (+info)

NOD mice have a generalized defect in their response to transplantation tolerance induction. (8/1550)

A protocol consisting of a single donor-specific transfusion (DST) plus a brief course of anti-CD154 monoclonal antibody (anti-CD40 ligand mAb) induces permanent islet allograft survival in chemically diabetic mice, but its efficacy in mice with autoimmune diabetes is unknown. Confirming a previous report, we first observed that treatment of young female NOD mice with anti-CD154 mAb reduced the frequency of diabetes through 1 year of age to 43%, compared with 73% in untreated controls. We also confirmed that spontaneously diabetic NOD mice transplanted with syngeneic (NOD-Prkdc(scid)/Prkdc(scid)) or allogeneic (BALB/c) islets rapidly reject their grafts. Graft survival was not prolonged, however, by pretreatment with either anti-CD154 mAb alone or anti-CD154 mAb plus DST. In addition, allograft rejection in NOD mice was not restricted to islet grafts. Anti-CD154 mAb plus DST treatment failed to prolong skin allograft survival in nondiabetic male NOD mice. The inability to induce transplantation tolerance in NOD (H2g7) mice was associated with non-major histocompatibility complex (MHC) genes. Treatment with DST and anti-CD154 mAb prolonged skin allograft survival in both C57BL/6 (H2b) and C57BL/6.NOD-H2g7 mice, but it was ineffective in NOD, NOD.SWR-H2q, and NOR (H2g7) mice. Mitogen-stimulated interleukin-1beta production by antigen-presenting cells was greater in strains susceptible to tolerance induction than in the strains resistant to tolerance induction. The results suggest the existence of a general defect in tolerance mechanisms in NOD mice. This genetic defect involves defective antigen-presenting cell maturation, leads to spontaneous autoimmune diabetes in the presence of the H2g7 MHC, and precludes the induction of transplantation tolerance irrespective of MHC haplotype. Promising islet transplantation methods based on overcoming the alloimmune response by interference with costimulation may require modification or amplification for use in the setting of autoimmune diabetes.  (+info)