A MAP kinase docking site is required for phosphorylation and activation of p90(rsk)/MAPKAP kinase-1. (1/601)

Activation of the various mitogen-activated protein (MAP) kinase pathways converts many different extracellular stimuli into specific cellular responses by inducing the phosphorylation of particular groups of substrates. One important determinant for substrate specificity is likely to be the amino-acid sequence surrounding the phosphorylation site; however, these sites overlap significantly between different MAP kinase family members. The idea is now emerging that specific docking sites for protein kinases are involved in the efficient binding and phosphorylation of some substrates [1] [2] [3] [4]. The MAP kinase-activated protein (MAPKAP) kinase p90 rsk contains two kinase domains [5]: the amino-terminal domain (D1) is required for the phosphorylation of exogenous substrates whereas the carboxy-terminal domain (D2) is involved in autophosphorylation. Association between the extracellular signal-regulated kinase (Erk) MAP kinases and p90(rsk) family members has been detected in various cell types including Xenopus oocytes [6] [7] [8], where inactive p90(rsk) is bound to the inactive form of the Erk2- like MAP kinase p42(mpk1). Here, we identify a new MAP kinase docking site located at the carboxyl terminus of p90(rsk). This docking site was required for the efficient phosphorylation and activation of p90(rsk) in vitro and in vivo and was also both necessary and sufficient for the stable and specific association with p42(mpk1). The sequence of the docking site was conserved in other MAPKAP kinases, suggesting that it might represent a new class of interaction motif that facilitates efficient and specific signal transduction by MAP kinases.  (+info)

Novel mutations in Rsk-2, the gene for Coffin-Lowry syndrome (CLS). (2/601)

Coffin-Lowry syndrome (CLS) is an X-linked disorder characterized by facial dysmorphism, digit abnormalities and severe psychomotor retardation. CLS had previously been mapped to Xp22.2. Recently, mutations in the ribosomal S6 kinase (Rsk-2) gene were shown to be associated with CLS. We have tested five unrelated individuals with CLS for mutations in nine exons of Rsk-2 using Single Strand Conformation Polymorphism (SSCP) analysis. Two patients had the same missense mutation (C340T), which causes an arginine to tryptophan change (R114W). This mutation falls just outside the N-terminal ATP-binding site in a highly conserved region of the protein and may lead to structural changes since tryptophan has an aromatic side chain whereas arginine is a 5 carbon basic amino acid. The third patient also had a missense mutation (G2186A) resulting in an arginine to glutamine change (R729Q). The fourth patient had a 2bp deletion (AG) of bases 451 and 452. This creates a frameshift that results in a stop codon 25 amino acids downstream, thereby producing a truncated protein. This deletion also falls within the highly conserved amino-catalytic domain of the protein. The fifth patient has a nonsense mutation (C2065T) which results in a premature stop codon, thereby producing a truncated protein. These mutations further confirm Rsk-2 as the gene involved in CLS and may help in understanding the structure and function of the protein.  (+info)

Stimulation of Elk1 transcriptional activity by mitogen-activated protein kinases is negatively regulated by protein phosphatase 2B (calcineurin). (3/601)

Cellular calcium (Ca2+) and the Ca2+-binding protein calmodulin (CaM) regulate the activities of Ca2+/CaM-dependent protein kinases and protein phosphatase 2B (calcineurin). Functional interactions between CaM kinases and mitogen-activated protein (MAP) kinases were described. In this report, we describe cross-talk between calcineurin and mitogen-activated protein kinase signaling. Calcineurin was found to specifically down-regulate the transcriptional activity of transcription factor Elk1, following stimulation of this activity by the ERK, Jun N-terminal kinase, or p38 MAP kinase pathways. Expression of constitutively activated calcineurin or activation of endogenous calcineurin by Ca2+ ionophore decreased the phosphorylation of Elk1 at sites that positively regulate its transcriptional activity. Calcineurin specifically dephosphorylates Elk1 at phosphoserine 383, a site whose phosphorylation by MAP kinases makes a critical contribution to the enhanced transcriptional activity of Elk1. The cross-talk between calcineurin and MAP kinases is of physiological significance as low doses of Ca2+ ionophore which by themselves are insufficient for c-fos induction can actually inhibit induction of c-fos expression by activators of MAP kinases. Thus through the effect of calcineurin on Elk1 phosphorylation, Ca2+ can have a negative effect on expression of Elk1 target genes. This mechanism explains why different levels of intracellular Ca2+ can result in very different effects on gene expression.  (+info)

Stress-induced stimulation of early growth response gene-1 by p38/stress-activated protein kinase 2 is mediated by a cAMP-responsive promoter element in a MAPKAP kinase 2-independent manner. (4/601)

The p38/stress-activated protein kinase2 (p38/SAPK2) is activated by cellular stress and proinflammatory cytokines. Several transcription factors have been reported to be regulated by p38/SAPK2, and this kinase is involved in the control of expression of various genes. In human Jurkat T-cells, induction of the early growth response gene-1 (egr-1) by anisomycin is completely inhibited by SB203580, a specific inhibitor of p38/SAPK2a and -b. Northern blot and reporter gene experiments indicate that this block is at the level of mRNA biosynthesis. Using mutants of the egr-1 promoter, we demonstrate that a distal cAMP-responsive element (CRE; nucleotides -134 to -126) is necessary to control egr-1 induction by p38/SAPK2. Pull-down assays indicate that phospho-CRE binding protein (CREB) and phospho-activating transcription factor-1 (ATF1) bind to this element in a p38/SAPK2-dependent manner. In response to anisomycin, two known CREB kinases downstream to p38/SAPK2, MAPKAP kinase 2 (MK2) and mitogen- and stress-activated kinase 1 (MSK1), show increased activity. However, in MK2 -/- fibroblasts derived from mice carrying a disruption of the MK2 gene, the phosphorylation of CREB and ATF1 and the expression of egr-1 reach levels comparable with wild type cells. This finding excludes MK2 as an involved enzyme. We conclude that egr-1 induction by anisomycin is mediated by p38/SAPK2 and probably by MSK1. Phosphorylated CREB and ATF1 then bind to the CRE of the egr-1 promoter and cause a stress-dependent transcriptional activation of this gene.  (+info)

The nucleosomal response associated with immediate-early gene induction is mediated via alternative MAP kinase cascades: MSK1 as a potential histone H3/HMG-14 kinase. (5/601)

The nucleosomal response refers to the rapid phosphorylation of histone H3 on serine 10 and HMG-14 on serine 6 that occurs concomitantly with immediate-early (IE) gene induction in response to a wide variety of stimuli. Using antibodies against the phosphorylated residues, we show that H3 and HMG-14 phosphorylation is mediated via different MAP kinase (MAPK) cascades, depending on the stimulus. The nucleosomal response elicited by TPA is ERK-dependent, whereas that elicited by anisomycin is p38 MAPK-dependent. In intact cells, the nucleosomal response can be selectively inhibited using the protein kinase inhibitor H89. MAPK activation and phosphorylation of transcription factors are largely unaffected by H89, whereas induction of IE genes is inhibited and its characteristics markedly altered. MSK1 is considered the most likely kinase to mediate this response because (i) it is activated by both ERK and p38 MAPKs; (ii) it is an extremely efficient kinase for HMG-14 and H3, utilizing the physiologically relevant sites; and (iii) its activity towards H3/HMG-14 is uniquely sensitive to H89 inhibition. Thus, the nucleosomal response is an invariable consequence of ERK and p38 but not JNK/SAPK activation, and MSK1 potentially provides a link to complete the circuit between cell surface and nucleosome.  (+info)

Activation of p90RSK and cAMP response element binding protein in stimulated neutrophils: novel effects of the pyridinyl imidazole SB 203580 on activation of the extracellular signal-regulated kinase cascade. (6/601)

Neutrophils stimulated with the chemoattractant FMLP or the phorbol ester PMA are known to exhibit activation of a 90-kDa renaturable protein kinase. Activation of this kinase was maximal at approximately 1-3 min after cell stimulation and the time course for activation was similar to that of the extracellular-regulated kinases (ERKs) and p38-mitogen activated protein kinase (p38MAPK). Compounds that block activation of ERK-1/2 (PD 98059) or that inhibit the activity of p38MAPK (SB 203580) blocked activation of this 90-kDa kinase. SB 203580 is a highly selective inhibitor of p38MAPK in vitro and is under intense study as a lead compound for developing novel anti-inflammatory agents. However, we demonstrate that SB 203580 at concentrations >/=10 microM can also inhibit activation of ERK-1/2 in neutrophils. An Ab to the protein kinase p90RSK2 (also referred to as MAPKAP-K1b, or p90rsk) immunoprecipitated the active 90-kDa kinase from lysates of stimulated neutrophils. No activity was observed for this enzyme in immunoprecipitates obtained from unstimulated cells, and the amounts of activity were markedly reduced if the cells were treated with PD 98059 or SB 203580 before stimulation. Neutrophils stimulated with FMLP exhibited phosphorylation of the cAMP response element binding protein (CREB), and this reaction was inhibited by SB 203580 and PD 98059. These data establish that the renaturable 90-kDa protein kinase is p90RSK2 and that CREB may be a substrate for this enzyme in these cells. Novel effects of compound SB 203580 on stimulated neutrophils are also described.  (+info)

Mitogen-activated protein kinase and nuclear factor kappaB together regulate interleukin-17-induced nitric oxide production in human osteoarthritic chondrocytes: possible role of transactivating factor mitogen-activated protein kinase-activated proten kinase (MAPKAPK). (7/601)

OBJECTIVE: To explore the signaling pathways by which the proinflammatory cytokine interleukin-17 (IL-17) may contribute to cartilage catabolism in osteoarthritis (OA) by inducing inducible nitric oxide synthase (iNOS) expression in chondrocytes. METHODS: We examined the IL-17-induced NO production in human OA chondrocytes, in combination with the proinflammatory cytokines IL-1beta, tumor necrosis factor alpha (TNF alpha), and leukemia inhibitory factor (LIF); the antiinflammatory cytokines IL-4, IL-10, and IL-13; and IL-1 receptor antagonist (IL-1Ra). Further, we explored the major intracellular signaling pathways through which IL-17 induced iNOS expression and NO production. RESULTS: Treatment with IL-17 induced a dose-dependent increase in the level of NO. When IL-17 was combined with the above factors, it resulted in a synergistic effect with TNF alpha, an additive effect with LIF, and no further effect than when used alone with IL-1beta. IL-4, IL-10, IL-13, and IL-1Ra had no true effect on IL-17-induced NO production. The cAMP mimetics, 3-isobutyl-1-methyl xanthine plus forskolin, completely blocked IL-17-induced NO production. KT-5720, genistein, and Calphostin C, inhibitors of protein kinase A (PKA), tyrosine kinase, and protein kinase C, respectively, reduced the IL-17-induced NO production by 72%, 56%, and 42%, respectively. Within minutes, IL-17 induced the phosphorylation of mitogen-activated protein kinase kinase-1/2 (MEK-1/2), -3/6 (MKK-3/6), p44/42, p38, and inhibitor of nuclear factor kappaB (I kappaB)-alpha, as well as the activation of mitogen-activated protein kinase-activated protein kinase-1 and -2 (MAPKAPK-1 and -2). Interestingly, IL-17 induced phosphorylation of the stress-activated protein kinase/Jun N-terminal kinase (SAPK/JNK) (p54/46) only when PKA was inhibited. Specific protein kinase inhibitors for MEK-1/2 (PD98059), p38 (SB202190), and nuclear factor kappaB (NF-kappaB) (pyrrolidine dithiocarbamate) each markedly decreased the IL-17-increased iNOS level and NO production. Inhibiting MAPK, including MEK-1/2 and p38, had no effect on the IL-17-induced activation of IkappaB-alpha, but reversed the IL-17 activation of MAPKAPK-1 and -2, respectively. CONCLUSION: These findings show that the stimulation of NO production by IL-17 is mediated mainly by a complex activation of kinases, especially PKA, NF-kappaB, and MAPK. NF-kappaB appears to require MAPK activation, with downstream activation of MAPKAPK probably acting as a transactivating factor, to induce iNOS expression.  (+info)

c-Kit triggers dual phosphorylations, which couple activation and degradation of the essential melanocyte factor Mi. (8/601)

Microphthalmia (Mi) is a bHLHZip transcription factor that is essential for melanocyte development and postnatal function. It is thought to regulate both differentiated features of melanocytes such as pigmentation as well as proliferation/survival, based on phenotypes of mutant mouse alleles. Mi activity is controlled by at least two signaling pathways. Melanocyte-stimulating hormone (MSH) promotes transcription of the Mi gene through cAMP elevation, resulting in sustained Mi up-regulation over many hours. c-Kit signaling up-regulates Mi function through MAP kinase phosphorylation of Mi, thereby recruiting the p300 transcriptional coactivator. The current study reveals that c-Kit signaling triggers two phosphorylation events on Mi, which up-regulate transactivation potential yet simultaneously target Mi for ubiquitin-dependent proteolysis. The specific activation/degradation signals derive from MAPK/ERK targeting of serine 73, whereas serine 409 serves as a substrate for p90 Rsk-1. An unphosphorylatable double mutant at these two residues is at once profoundly stable and transcriptionally inert. These c-Kit-induced phosphorylations couple transactivation to proteasome-mediated degradation. c-Kit signaling thus triggers short-lived Mi activation and net Mi degradation, in contrast to the profoundly increased Mi expression after MSH signaling, potentially explaining the functional diversity of this transcription factor in regulating proliferation, survival, and differentiation in melanocytes.  (+info)