Selective antiaggressive effects of alnespirone in resident-intruder test are mediated via 5-hydroxytryptamine1A receptors: A comparative pharmacological study with 8-hydroxy-2-dipropylaminotetralin, ipsapirone, buspirone, eltoprazine, and WAY-100635. (1/329)

The present study characterized the effects of the novel, selective, and potent 5-hydroxytryptamine1A (serotonin) (5-HT1A) receptor agonist, alnespirone [S-20499, (S)-N-4-[5-methoxychroman-3-yl)propylamino)butyl- 8-azaspiro-(4,5)-diacetamide, hydrochloride] on offensive and defensive resident-intruder aggression in wild-type rats and compared its actions with those of the prototypical full 5-HT1A agonist 8-hydroxy-2- dipropylaminotetralin (8-OH-DPAT), the partial 5-HT1A agonists ipsapirone and buspirone, and the mixed 5-HT1A/1B agonist eltoprazine. All five agonists exerted effective dose-dependent decreases of offensive aggressive behavior in resident rats; 8-OH-DPAT was the most potent (ID50 = 0.074 mg/kg), followed by eltoprazine (0.24), buspirone (0.72), ipsapirone (1.08), and alnespirone (1.24). However, in terms of selectivity of the antiaggressive effects as determined by the absence of decrements in social interest and general motor activity, alnespirone appeared to be superior. In the defensive aggression test, neither alnespirone nor any of the other four agonists changed defensive behaviors in the intruder rats. The involvement of 5-HT1A receptors in the antiaggressive actions of these drugs was confirmed by showing that the selective 5-HT1A receptor antagonist WAY-100635 (N-[2-[4-(2-methoxyphenyl)-1-piperazinyl]ethyl]-N-(2- pyridinyl)cyclohexanecarboxamide trihydrochloride), which was inactive alone, fully prevented the antiaggressive effects of alnespirone, 8-OH-DPAT, and buspirone and partly reversed those of ipsapirone and eltoprazine. The data clearly indicate that alnespirone effectively suppresses offensive aggression with an advantageous profile of action compared with other full or partial 5-HT1A agonists. These selective antiaggressive actions of alnespirone are mediated by stimulating 5-HT1A receptors, presumably the somatodendritic autoreceptors at the raphe nuclei. Furthermore, the data provide evidence for a major involvement of these 5-HT1A receptors in the modulation of aggressive behavior by 8-OH-DPAT, ipsapirone, buspirone, and eltoprazine.  (+info)

Differential addressing of 5-HT1A and 5-HT1B receptors in epithelial cells and neurons. (2/329)

The 5-HT1A and 5-HT1B serotonin receptors are expressed in a variety of neurons in the central nervous system. While the 5-HT1A receptor is found on somas and dendrites, the 5-HT1B receptor has been suggested to be localized predominantly on axon terminals. To study the intracellular addressing of these receptors, we have used in vitro systems including Madin-Darby canine kidney (MDCK II) epithelial cells and primary neuronal cultures. Furthermore, we have extended these studies to examine addressing in vivo in transgenic mice. In epithelial cells, 5-HT1A receptors are found on both apical and basolateral membranes while 5-HT1B receptors are found exclusively in intracellular vesicles. In hippocampal neuronal cultures, 5-HT1A receptors are expressed on somatodendritic membranes but are absent from axons. In contrast, 5-HT1B receptors are found on both dendritic and axonal membranes, including growth cones where they accumulate. Using 5-HT1A and 5-HT1B knockout mice and the binary tTA/tetO system, we generated mice expressing these receptors in striatal neurons. These in vivo experiments demonstrate that, in striatal medium spiny neurons, the 5-HT1A receptor is restricted to the somatodendritic level, while 5-HT1B receptors are shipped exclusively toward axon terminals. Therefore, in all systems we have examined, there is a differential sorting of the 5-HT1A and 5-HT1B receptors. Furthermore, we conclude that our in vivo transgenic system is the only model that reconstitutes proper sorting of these receptors.  (+info)

S-16924, a novel, potential antipsychotic with marked serotonin1A agonist properties. IV. A drug discrimination comparison with clozapine. (3/329)

The novel benzodioxopyrrolidine (S-16924) displays a clozapine-like profile of interaction with multiple monoaminergic receptors, in addition to potent agonist activity at serotonin (5-HT)1A receptors. S-16924 (2.5 mg/kg i.p.) and clozapine (5.0 mg/kg i.p.) generated robust discriminative stimuli (DS) and displayed full mutual generalization. The D4 antagonists L-745,870 and S-18126, the D1/D5 antagonist SCH-39166, and the D3 antagonist S-14297 showed at most partial generalization to S-16924 and clozapine. The D2/D3 antagonist raclopride fully generalized to S-16924, but only partially generalized to clozapine. The 5-HT2A antagonist MDL-100, 907 fully generalized to S-16924 and two further 5-HT2A antagonists, fananserin and SR-46349, showed partial generalization. However, MDL-100,907, fananserin, and SR-46349 showed less pronounced generalization to clozapine. Similarly, the 5-HT2C antagonists SB-200,646 and SB-206,553 more markedly generalized to S-16924 than to clozapine. The 5-HT1A receptor agonist (+/-)-8-dihydroxy-2-(di-n-propylamino) tetralin generalized fully to S-16924 but not to clozapine. Full generalization was obtained to both S-16924 and clozapine for the clozapine congeners, olanzapine and quetiapine. In distinction, the benzisoxazole, risperidone, and the phenylindole, sertindole, weakly generalized to S-16924 and clozapine. However, the benzisoxazole ziprasidone, which possesses 5-HT1A agonist properties, generalized fully to S-16924 but not to clozapine. Finally, the muscarinic antagonist scopolamine generalized fully to clozapine and partially to S-16924. In conclusion, S-16924 and clozapine display both communalities and differences in their "compound" DS; this likely reflects their respective complex patterns of interaction with multiple monoaminergic receptors. Although no specific receptor was identified as underlying the clozapine DS, 5-HT1A agonist as well as D2 and 5-HT2A/2C antagonist properties contribute to the S-16924 DS.  (+info)

Electrophysiological examination of the effects of sustained flibanserin administration on serotonin receptors in rat brain. (4/329)

5-HT1A receptor agonists have proven to be effective antidepressant medications, however they suffer from a significant therapeutic lag before depressive symptoms abate. Flibanserin is a 5-HT1A receptor agonist and 5-HT2A receptor antagonist developed to possibly induce a more rapid onset of antidepressant action through its preferential postsynaptic 5-HT1A receptor agonism. Flibanserin antagonized the effect of microiontophoretically-applied DOI in the medial prefrontal cortex (mPFC) following 2 days of administration, indicating antagonism of postsynaptic 5-HT2A receptors. This reduction in the effect of locally-applied DOI was no longer present following 7-day flibanserin administration. Two-day flibanserin administration only marginally reduced the firing activity of dorsal raphe (DRN) 5-HT neurons. Following 7 days of administration, 5-HT neuronal firing activity had returned to normal and the somatodendritic 5-HT1A autoreceptors were desensitized. The responsiveness of postsynaptic 5-HT1A receptors located on CA3 hippocampus pyramidal neurons and mPFC neurons, examined using microiontophoretically-applied 5-HT and gepirone, was unchanged following a 7-day flibanserin treatment. As demonstrated by the ability of the 5-HT1A receptor antagonist WAY 100635 to selectively increase the firing of hippocampal neurons in 2- and 7-day treated rats, flibanserin enhanced the tonic activation of postsynaptic 5-HT1A receptors in this brain region. The results suggest that flibanserin could be a therapeutically useful compound putatively endowed with a more rapid onset of antidepressant action.  (+info)

In vivo assessment of the midbrain raphe nuclear regulation of serotonin release in the hamster suprachiasmatic nucleus. (5/329)

Serotonin (5-HT) plays important regulatory roles in mammalian circadian timekeeping; however, little is known concerning the regulation of serotonergic activity in the circadian clock located in the suprachiasmatic nuclei (SCN). By using in vivo microdialysis to measure 5-HT release we demonstrated that electrical or pharmacological stimulations of the dorsal or median raphe nuclei (DRN and MRN, respectively) can alter basal release of 5-HT in the hamster SCN. There were similar increases in SCN 5-HT release after electrical stimulation of either the MRN or DRN, indicating that both could contribute to the serotonergic activity in the SCN. Systemic pretreatment with the 5-HT antagonist metergoline abolished DRN-induced SCN 5-HT release but had little effect on MRN-induced SCN 5-HT release, suggesting different pathways for these nuclei in regulating 5-HT output in the SCN. Microinjections of the 5-HT1A autoreceptor agonist 8-OH-DPAT or antagonist WAY 100635 into the MRN caused significant inhibition and stimulation of SCN 5-HT release, respectively. Both drugs had substantially less effect in the DRN. These differential drug actions indicate that somatodendritic 5-HT1A autoreceptors on MRN neurons provide the prominent raphe autoregulation of 5-HT output in the SCN. Collectively the current results are evidence that DRN as well as MRN neurons can contribute to the regulation of 5-HT release in the hamster SCN. On the basis of the current observations and those from recent anatomic tracing studies of serotonergic projections to SCN it is hypothesized that DRN input to the SCN could be mediated by a DRN --> MRN --> SCN pathway involving a 5-HT-sensitive multisynaptic interaction between the DRN and MRN neurons.  (+info)

Regulation of calcitonin gene-related peptide secretion by a serotonergic antimigraine drug. (6/329)

We have investigated the regulation of calcitonin gene-related peptide (CGRP) release from trigeminal neurons by the serotonergic antimigraine drug sumatriptan. Serum levels of the neuropeptide CGRP are elevated during migraine. Treatment with the drug sumatriptan returns CGRP levels to normal coincident with the alleviation of headache. However, despite this clinical efficacy, the cellular target and mechanism of sumatriptan action are not well understood beyond the pharmacology of its recognition of the 5-HT1 class of serotonin receptors. We have used cultured trigeminal neurons to demonstrate that sumatriptan can directly repress CGRP secretion from sensory neurons. The stimulated secretion in response to depolarization or inflammatory agents was inhibited, but not the basal secretion rate. Unexpectedly, sumatriptan did not lower cAMP levels, in contrast to the classical role ascribed to the 5-HT1 receptors. Instead, activation of 5-HT1 receptors caused a slow and remarkably prolonged increase in intracellular calcium. The inhibition of CGRP secretion is attenuated by the phosphatase inhibitor okadaic acid, suggesting that sumatriptan action is mediated by calcium-recruited phosphatases. These results suggest that 5-HT1 agonists may block a deleterious feedback loop in migraine at the trigeminal neurons and provide a general mechanism by which this class of drugs can attenuate stimulated neuropeptide release.  (+info)

Discriminative stimulus properties of indorenate, a serotonin agonist. (7/329)

OBJECTIVE: To determine whether indorenate, a serotonin-receptor agonist, can exert discriminative control over operant responses, to establish the temporal course of discriminative control and to compare its stimulus properties to a (5-HT)IA receptor agonist. [3H]-8-hydroxy-2-(di-N-propylamino) tetralin (8-OH-DPAT). DESIGN: Prospective animal study. ANIMALS: Ten male Wistar rats. INTERVENTIONS: Rats were trained to press either of 2 levers for sucrose solution according to a fixed ratio schedule, which was gradually increased. Rats were given injections of either indorenate or saline solution during discrimination training. Once they had achieved an 83% accuracy rate, rats underwent generalization tests after having received a different dose of indorenate, the training dose of indorenate at various intervals before the test, various doses of 8-OH-DPT, or NAN-190 administered before indorenate or 8-OH-DPAT. OUTCOME MEASURES: Distribution of responses between the 2 levers before the first reinforcer of the session, response rate for all the responses in the session, and a discrimination index that expressed the drug-appropriate responses as a proportion of the total responses. RESULTS: Indorenate administration resulted in discriminative control over operant responses, maintained at fixed ratio 10, at a dose of 10.0 mg/kg (but not 3.0 mg/kg). When the interval between the administration of indorenate and the start of the session was varied, the time course of its cue properties followed that of its described effects on 5-HT turnover. In generalization tests, the discrimination index was a function of the dose of indorenate employed; moreover, administration of 8-OH-DPAT (from 0.1 to 1.0 mg/kg) fully mimicked the stimulus properties of indorenate in a dose-dependent way. The (5-HT)IA antagonist NAN-190 prevented the stimulus generalization from indorenate to 8-OH-DPAT. Also, NAN-190 antagonized the stimulus control of indorenate when administered 45 minutes before the session, but not when administered 105 minutes before the session (i.e., 15 minutes before the administration of indorenate). CONCLUSION: (5-HT)IA receptors are of relevance to the stimulus function of indorenate. However, other receptor subtypes may also be involved. Hence, other agonists and specific antagonists should be studied before definite conclusions are drawn.  (+info)

Identification of mRNA for 5-HT1 and 5-HT2 receptor subtypes in human coronary arteries. (8/329)

OBJECTIVE: Although pharmacological studies have indicated that serotonin (5-HT)-evoked contraction of the human coronary artery is mediated by 5-HT1-like and 5-HT2 receptors, the gene expression of 5-HT receptors is still unclear. We examined mRNA expression of 5-HT1 and 5-HT2 receptor subtypes in human coronary arteries. METHODS: Total RNA was extracted from human coronary arteries of 14 patients at autopsy by the guanidine method. Reverse transcription-polymerase chain reaction (RT-PCR) and ribonuclease protection assays were performed to identify 5-HT1 and 5-HT2 receptor mRNA expression in human coronary artery. RESULTS: By RT-PCR, 5-HT1b, 5-HT2A and 5-HT2B mRNAs were detected in all of the 14 patients. 5-HT1A, 5-HT1D, and 5-HT1E mRNAs were detected in only some patients. However, neither 5-HT1F mRNA nor 5-HT2C mRNA was detected in any patient. By ribonuclease protection assay, 5-HT1B and 5-HT2A signals were detected in all patients examined, but neither 5-HT1A, 5-HT1D nor 5-HT2B signal was detected in any patient. CONCLUSIONS: Of 5-HT1/2 receptor subtypes, 5-HT1B and 5-HT2A receptor mRNAs were predominantly expressed in human coronary arteries. Our finding provides molecular evidence that the 5-HT1B receptor may be the 5-HT1-like receptor which mediates constriction of human coronary arteries.  (+info)