The 3' end CCA of mature tRNA is an antideterminant for eukaryotic 3'-tRNase. (1/1069)

Cytoplasmic tRNAs undergo posttranscriptional 5' and 3' end processing in the eukaryotic nucleus, and CCA (which forms the mature 3' end of all tRNAs) must be added by tRNA nucleotidyl transferase before tRNA can be aminoacylated and utilized in translation. Eukaryotic 3'-tRNase can endonucleolytically remove a 3' end trailer by cleaving on the 3' side of the discriminator base (the unpaired nucleotide 3' of the last base pair of the acceptor stem). This reaction proceeds despite a wide range in length and sequence of the 3' end trailer, except that mature tRNA containing the 3' terminal CCA is not a substrate for mouse 3'-tRNase (Nashimoto, 1997, Nucleic Acids Res 25:1148-1154). Herein, we extend this result with Drosophila and pig 3'-tRNase, using Drosophila melanogaster tRNAHis as substrate. Mature tRNA is thus prevented from recycling through 3' end processing. We also tested a series of tRNAs ending at the discriminator base (-), with one C added (+C), two Cs added (+CC), and CCA added (+CCA) as 3'-tRNase inhibitors. Inhibition was competitive with both Drosophila and pig 3'-tRNase. The product of the 3'-tRNase reaction (-) is a good 3'-tRNase inhibitor, with a KI approximately two times KM for the normal 3'-tRNase substrate. KI increases with each nucleotide added beyond the discriminator base, until when tRNA+CCA is used as inhibitor, KI is approximately forty times the substrate KM. The 3'-tRNase can thus remain free to process precursors with 3' end trailers because it is barely inhibited by tRNA+CCA, ensuring that tRNA can progress to aminoacylation. The active site of 3'-tRNase may have evolved to make an especially poor fit with tRNA+CCA.  (+info)

An RNA switch at the 5' splice site requires ATP and the DEAD box protein Prp28p. (2/1069)

Pre-mRNA splicing requires dramatic RNA rearrangements hypothesized to be catalyzed by ATP-dependent RNA unwindases of the DExD/H box family. In a rearrangement critical for the fidelity of 5' splice site recognition, a base-pairing interaction between the 5' splice site and U1 snRNA must be switched for a mutually exclusive interaction between the 5' splice site and U6 snRNA. By lengthening the U1:5' splice site duplex, we impeded this switch in a temperature-dependent manner and prevented formation of the spliceosome's catalytic core. Using genetics, we identified the DExD/H box protein Prp28p as a potential mediator of the switch. In vitro, the switch requires both Prp28p and ATP. We propose that Prp28p directs isomerization of RNA at the 5' splice site and promotes fidelity in splicing.  (+info)

Overexpression of rck/p54, a DEAD box protein, in human colorectal tumours. (3/1069)

The RCK gene is a target of the t(11;14)(q23;q32) chromosomal translocation observed in human B-cell lymphoma, and the overexpression of its protein (rck/p54) by the translocation was shown to cause malignant transformation. The rck/p54 protein belongs to the DEAD box protein/RNA helicase family, which has a variety of functions such as translation initiation, pre-mRNA splicing and ribosome assembly. The expression of rck p54 in colorectal adenocarcinoma cells was examined by immunohistochemistry and Western blot analysis. The rck/p54 protein was found to be overexpressed in tumour tissues resected from 13 (50%) out of 26 cases of colorectal adenocarcinomas and two out of two (100%) cases of colonic severe dysplastic adenomas. In view of activities of rck/p54 determined in other tissue types, we suggest that rck/p54 may contribute to the cell proliferation and carcinogenesis at the translational level in the development of colorectal tumours.  (+info)

Cloning and expression of CTP:phosphoethanolamine cytidylyltransferase cDNA from rat liver. (4/1069)

CTP:phosphoethanolamine cytidylyltransferase (ET) is a key regulatory enzyme in the CDP-ethanolamine pathway for phosphatidylethanolamine synthesis. As a first step in the elucidation of the structure-function relationship and the regulation of ET, an ET cDNA was cloned from rat liver. The cloned cDNA encodes a protein of 404 amino acid residues with a calculated molecular mass of 45.2 kDa. The deduced amino acid sequence is very similar to that of human ET (89% identity). Furthermore, it shows less, but significant, similarity to yeast ET as well as to other cytidylyltransferases, including rat CTP:phosphocholine cytidylyltransferase and Bacillus subtilis glycerol-3-phosphate cytidylyltransferase. Like human and yeast ET, rat ET has a large repetitive internal sequence in the N- and C-terminal halves of the protein. Both parts of the repeat contain the HXGH motif, the most conserved region in the N-terminal active domain of other cytidylyltransferases, indicating the existence of two catalytic domains in ET. The hydropathy profile revealed that rat ET is largely hydrophilic and lacks a hydrophobic stretch long enough to span a bilayer membrane. There was no prediction for an amphipathic alpha-helix. Transfection of COS cells with the cDNA clone resulted in an 11-fold increase in ET activity, corresponding to an increase in the amount of ET protein as detected on a Western blot. Determination of the ET activity during liver development showed a 2. 5-fold increase between day 17 of gestation and birth (day 22) and the amount of ET protein changed accordingly. Northern blot analysis showed that this was accompanied by an increase in the amount of ET mRNA. Between day 17 of gestation and birth, the amount of mRNA in fetal rat liver increased approx. 6-fold, suggesting the regulation of ET at both pretranslational and post-translational levels during rat liver development.  (+info)

A single rep protein initiates replication of multiple genome components of faba bean necrotic yellows virus, a single-stranded DNA virus of plants. (5/1069)

Faba bean necrotic yellows virus (FBNYV) belongs to the nanoviruses, plant viruses whose genome consists of multiple circular single-stranded DNA components. Eleven distinct DNAs, 5 of which encode different replication initiator (Rep) proteins, have been identified in two FBNYV isolates. Origin-specific DNA cleavage and nucleotidyl transfer activities were shown for Rep1 and Rep2 proteins in vitro, and their essential tyrosine residues that catalyze these reactions were identified by site-directed mutagenesis. In addition, we showed that Rep1 and Rep2 proteins hydrolyze ATP, and by changing the key lysine residue in the proteins' nucleoside triphosphate binding sites, demonstrated that this ATPase activity is essential for multiplication of virus DNA in vivo. Each of the five FBNYV Rep proteins initiated replication of the DNA molecule by which it was encoded, but only Rep2 was able to initiate replication of all the six other genome components. Furthermore, of the five rep components, only the Rep2-encoding DNA was always detected in 55 FBNYV samples from eight countries. These data provide experimental evidence for a master replication protein encoded by a multicomponent single-stranded DNA virus.  (+info)

Synthetic lethality with conditional dbp6 alleles identifies rsa1p, a nucleoplasmic protein involved in the assembly of 60S ribosomal subunits. (6/1069)

Dbp6p is an essential putative ATP-dependent RNA helicase that is required for 60S-ribosomal-subunit assembly in the yeast Saccharomyces cerevisiae (D. Kressler, J. de la Cruz, M. Rojo, and P. Linder, Mol. Cell. Biol. 18:1855-1865, 1998). To identify factors that are functionally interacting with Dbp6p, we have performed a synthetic lethal screen with conditional dbp6 mutants. Here, we describe the cloning and the phenotypic analysis of the previously uncharacterized open reading frame YPL193W, which we renamed RSA1 (ribosome assembly 1). Rsa1p is not essential for cell viability; however, rsa1 null mutant strains display a slow-growth phenotype, which is exacerbated at elevated temperatures. The rsa1 null allele synthetically enhances the mild growth defect of weak dbp6 alleles and confers synthetic lethality when combined with stronger dbp6 alleles. Polysome profile analysis shows that the absence of Rsa1p results in the accumulation of half-mer polysomes. However, the pool of free 60S ribosomal subunits is only moderately decreased; this is reminiscent of polysome profiles from mutants defective in 60S-to-40S subunit joining. Pulse-chase labeling of pre-rRNA in the rsa1 null mutant strain indicates that formation of the mature 25S rRNA is decreased at the nonpermissive temperature. Interestingly, free 60S ribosomal subunits of a rsa1 null mutant strain that was grown for two generations at 37 degrees C are practically devoid of the 60S-ribosomal-subunit protein Qsr1p/Rpl10p, which is required for joining of 60S and 40S subunits (D. P. Eisinger, F. A. Dick, and B. L. Trumpower, Mol. Cell. Biol. 17:5136-5145, 1997). Moreover, the combination of the Deltarsa1 and qsr1-1 mutations leads to a strong synthetic growth inhibition. Finally, a hemagglutinin epitope-tagged Rsa1p localizes predominantly to the nucleoplasm. Together, these results point towards a function for Rsa1p in a late nucleoplasmic step of 60S-ribosomal-subunit assembly.  (+info)

Modification of the 5'-terminus of mRNA by soluble guanylyl and methyl transferases from vaccinia virus. (7/1069)

RNA guanylyl and methyl transferases have been solubilized from vaccinia virus cores. The guanylyl transferase specifically adds a GMP residue to the 5'-terminus of unmethylated vaccinia virus mRNA to form the structures G(5')ppp(5')Gp- and G(5')ppp(5')Ap-. Studies with [alpha-32P]GTP and [beta, gamma-32P]GTP indicated that only the alpha-phosphate is transferred. In the presence of S-adenosylmethionine, the methyl transferases convert the blocked 5'-termini to m7G(5')ppp(5')Gmp- and m7G(5')ppp(5')Amp-. Similarly, the enzymes can modify synthetic poly(A) to form the structure m7G(5')ppp(5')Amp-.  (+info)

Minimal requirements for template recognition by bacteriophage Qbeta replicase: approach to general RNA-dependent RNA synthesis. (8/1069)

Any oligo- or polynucleotide able to offer a C-C-C-sequence at the 3'-terminus and a second C-C-C-sequence in a defined steric position to Qbeta replicase is an efficient template. Corresponding chemical modifications convert non-template RNAs to template RNAs.  (+info)