Antioxidant effects of aminosalicylates and potential new drugs for inflammatory bowel disease: assessment in cell-free systems and inflamed human colorectal biopsies. (1/317)

BACKGROUND: The therapeutic efficacy of 5-aminosalicylic acid in inflammatory bowel disease may be related to its antioxidant properties. AIM: To compare in vitro the antioxidant effects of conventional drugs (5-aminosalicylic acid, corticosteroids, metronidazole), with new aminosalicylates (4-aminosalicylic acid, balsalazide) and other potential therapies (ascorbate, N-acetylcysteine, glutathione, verapamil). METHODS: Compounds were assessed for efficacy in reducing the in vitro production of reactive oxygen species by cell-free systems (using xanthine/xanthine oxidase, with or without myeloperoxidase) and by colorectal biopsies from patients with ulcerative colitis using luminol-amplified chemiluminescence. RESULTS: 5-aminosalicylic acid and balsalazide were more potent antioxidants than 4-aminosalicylic acid or N-acetyl-5-aminosalicylic acid in cell-free systems. 5-aminosalicylic acid (20 mM) and balsalazide (20 mM) inhibited rectal biopsy chemiluminescence by 93% and 100%, respectively, compared with only 59% inhibition by 4-aminosalicylic acid (20 mM). Hydrocortisone, metronidazole and verapamil had no significant effect on chemiluminescence in any system. Ascorbate (20 mM) inhibited chemiluminescence by 100% in cell-free systems and by 60% in rectal biopsies. N-acetyl cysteine (10 mM), and both oxidized and reduced glutathione (10 mM), completely inhibited chemiluminescence in cell-free systems, but not with rectal biopsies. CONCLUSIONS: The antioxidant effects of compounds varies between cell-free systems and inflamed colorectal biopsies. The effect of drugs on the chemiluminescence produced by these two assay systems is useful for screening potentially new antioxidant treatments for inflammatory bowel disease. Ascorbate seems worth further study as a novel therapy.  (+info)

A new antibiotic XK-90. II. The structure of XK-90. (2/317)

The new antibiotic, XK-90, produced by Streptomyces sp. is active against Gram-positive and Gram-negative bacteria. The structure has been determined as N-acetyl-N'-(3-formyl-4-hydroxyphenyl)hydrazine (1) and is the second example of a naturally occurring antibiotic having the phenylhydrazine skeleton.  (+info)

Selective modification of apoB-100 in the oxidation of low density lipoproteins by myeloperoxidase in vitro. (3/317)

Oxidative modification of LDL may be important in the initiation and/or progression of atherosclerosis, but the precise mechanisms through which low density lipoprotein (LDL) is oxidized are unknown. Recently, evidence for the existence of HOCl-oxidized LDL in human atherosclerotic lesions has been reported, and myeloperoxidase (MPO), which is thought to act through production of HOCl, has been identified in human atherosclerotic lesions. In the present report we describe the formation of 2,4-dinitrophenylhydrazine (DNPH)-reactive modifications in the apolipoprotein (apo) by exposure of LDL to myeloperoxidase in vitro. In contrast with the complex mixture of peptides from oxidation of LDL with reagent HOCl, oxidation with MPO in vitro produced a major tryptic peptide showing absorbance at 365 nm. This peptide was isolated and characterized as VELEVPQL(*C)SFILK..., corresponding to amino acid residues 53-66...on apoB-100. Mass spectrometric analyses of two tryptic peptides from oxidation of LDL by HOCl indicated formation of the corresponding methionine sulfoxide (M=O), cysteinyl azo (*C), RS -N= N-DNP, derivatives of EEL(*C)T(M=O)FIR and LNDLNS VLV(M=O)PTFHVPFTDLQVPS(*C)K, which suggest oxidation to the corresponding sulfinic acids (RSO2H) by HOCl. The present results demonstrate that DNPH-reactive modifications other than aldehydes and ketones can be formed in the oxidation of proteins and illustrate how characterization of specific products of protein oxidation can be useful in assessing the relative contributions of different and unexpected mechanisms to the oxidation of LDL and other target substrates. The data also suggest a direct interaction of the LDL particle with the active site on myeloperoxidase and indicate that effects of the protein microenvironment can greatly influence product formation and stability.  (+info)

Erythroid accelerating activity of rat serum in early stage of drug induced hemolysis. (4/317)

An increase in the number of erythroblasts can be seen to some extent in the bone marrow of rats in the early stage of experimentally induced hemolytic anemia prior to any elevation in the plasma erythropoietin (Epo) level. This observation suggests that there is another erythroid stimulating factor present other than Epo. We studied the enhancing effect of serum, taken sequentially during experimentally induced hemolysis in rats, on erythroid proliferation, differentiation and maturation in vitro. Single intraperitoneal injection of 60 mg/kg of acetylphenylhydrazine (APH) induced self-limited hemolytic anemia in rats, in which the hematocrit dropped rapidly with a nadir at day 4 after APH injection, followed by a gradual increase with return to normal level by day 8. Serum obtained consecutively every day after APH injection from day 1 to day 7 was applied to an in vitro culturing system of erythroid progenitors. Addition of day 1 serum, in which an elevation of Epo level had not occurred, to a conventional methyl-cellulose culture of rat bone marrow mononuclear cells (BM-MNCs) resulted in a significant increase in the number of colonies derived from colony forming unit erythroid, but not in burst forming unit erythroid. This erythropoietic activity of the serum was particularly evident in the presence of Epo. In the liquid culture of BM-MNCs, day 1 serum also showed some enhancing effect on erythroblast formation. We were able to see significant differences in these erythroid enhancing activities induced by serum drawn on day 1 in comparison to the serum drawn on subsequent days. These results suggest that an unknown erythroid enhancing factor besides Epo stimulates erythropoiesis in the early stage of hemolytic anemia or sudden hypoxia before there is a measurable rise in the serum Epo level. We propose that this factor be termed erythroid accelerating factor (EAF).  (+info)

Simultaneous determination of formaldehyde and methylglyoxal in urine: involvement of semicarbazide-sensitive amine oxidase-mediated deamination in diabetic complications. (5/317)

The deamination of methylamine and aminoacetone by semicarbazide-sensitive amine oxidase (SSAO) produces formaldehyde and methylglyoxal, respectively, which have been presumed to be involved in diabetic complications. A high-performance liquid chromatography procedure using 2,4-dinitrophenylhydrazine (DNPH) as a derivatizing agent is developed to determine endogenous formaldehyde, methylglyoxal, malondialdehyde, and acetaldehyde. The devised DNPH method is sensitive enough to analyze aldehyde levels in urine. An increase in the excretion of formaldehyde, methylglyoxal, and malondialdehyde is confirmed in streptozotocin-induced diabetic rats. Following the chronic administration of methylamine, the urinary levels of both formaldehyde and malondialdehyde (a product from lipid peroxidation) are found to be substantially increased. A potent selective SSAO inhibitor, (E)-2-(4-fluorophenethyl)-3-fluoroallylamine hydrochloride (MDL-72974A), reduced the formation of formaldehyde, methylglyoxal, and malondialdehyde. The increase of the cytotoxic aldehyde levels as a result of increased SSAO-mediated deamination may occur in some pathological conditions.  (+info)

Probing the structure of photosystem II with amines and phenylhydrazine. (6/317)

Photosynthetic oxygen evolution is catalyzed at the manganese-containing active site of photosystem II (PSII). Amines are analogs of substrate water and inhibitors of oxygen evolution. Recently, the covalent incorporation of (14)C from [(14)C]methylamine and benzylamine into PSII subunits has been demonstrated (Ouellette, A. J. A., Anderson, L. B., and Barry, B. A. (1998) Proc. Natl. Acad. Sci. U. S. A. 95, 2204-2209). To obtain more information concerning these labeling reactions, t-[(14)C]butylamine and phenylhydrazine were employed as probes. Neither compound can be oxidized by a transamination or addition/elimination mechanism, but both can react with activated carbonyl groups, produced as a result of posttranslational modification of amino acid residues, to give amine-derived adducts. (14)C incorporation into the PSII subunits D2/D1 and CP47 was obtained upon treatment of PSII with either t-[(14)C]butylamine or [(14)C]phenylhydrazine. For t-butylamine and methylamine, the amount of labeling increased when PSII was treated with denaturing agents. Labeling of CP47, D2, and D1 with methylamine and phenylhydrazine approached a one-to-one stoichiometry, assuming that D2 and D1 each have one binding site. Evidence was obtained suggesting that reductive stabilization and/or access are modulated by PSII light reactions. These results support the proposal that PSII subunits D2, D1, and CP47 contain quinocofactors and that access to these sites is sterically limited.  (+info)

Identification and characterization of a bipotent (erythroid and megakaryocytic) cell precursor from the spleen of phenylhydrazine-treated mice. (7/317)

We have identified a cell population expressing erythroid (TER-119) and megakaryocyte (4A5) markers in the bone marrow of normal mice. This population is present at high frequency in the marrows and in the spleens involved in the erythroid expansion that occurs in mice recovering from phenylhydrazine (PHZ)-induced hemolytic anemia. TER-119(+)/4A5(+) cells were isolated from the spleen of PHZ-treated animals and were found to be blast-like benzidine-negative cells that generate erythroid and megakaryocytic cells within 24-48 hours of culture in the presence of erythropoietin (EPO) or thrombopoietin (TPO). TER-119(+)/4A5(+) cells represent a late bipotent erythroid and megakaryocytic cell precursors that may exert an important role in the recovery from PHZ-induced anemia. (Blood. 2000;95:2559-2568)  (+info)

Formation of W(3)A(1) electron-transferring flavoprotein (ETF) hydroquinone in the trimethylamine dehydrogenase x ETF protein complex. (8/317)

The electron-transferring flavoprotein (ETF) from Methylophilus methylotrophus (sp. W(3)A(1)) exhibits unusual oxidation-reduction properties and can only be reduced to the level of the semiquinone under most circumstances (including turnover with its physiological reductant, trimethylamine dehydrogenase (TMADH), or reaction with strong reducing reagents such as sodium dithionite). In the present study, we demonstrate that ETF can be reduced fully to its hydroquinone form both enzymatically and chemically when it is in complex with TMADH. Quantitative titration of the TMADH x ETF protein complex with sodium dithionite shows that a total of five electrons are taken up by the system, indicating that full reduction of ETF occurs within the complex. The results indicate that the oxidation-reduction properties of ETF are perturbed upon binding to TMADH, a conclusion further supported by the observation of a spectral change upon formation of the TMADH x ETF complex that is due to a change in the environment of the FAD of ETF. The results are discussed in the context of ETF undergoing a conformational change during formation of the TMADH x ETF electron transfer complex, which modulates the spectral and oxidation-reduction properties of ETF such that full reduction of the protein can take place.  (+info)