Bcl-2 regulates amplification of caspase activation by cytochrome c. (1/15764)

Caspases, a family of specific proteases, have central roles in apoptosis [1]. Caspase activation in response to diverse apoptotic stimuli involves the relocalisation of cytochrome c from mitochondria to the cytoplasm where it stimulates the proteolytic processing of caspase precursors. Cytochrome c release is controlled by members of the Bcl-2 family of apoptosis regulators [2] [3]. The anti-apoptotic members Bcl-2 and Bcl-xL may also control caspase activation independently of cytochrome c relocalisation or may inhibit a positive feedback mechanism [4] [5] [6] [7]. Here, we investigate the role of Bcl-2 family proteins in the regulation of caspase activation using a model cell-free system. We found that Bcl-2 and Bcl-xL set a threshold in the amount of cytochrome c required to activate caspases, even in soluble extracts lacking mitochondria. Addition of dATP (which stimulates the procaspase-processing factor Apaf-1 [8] [9]) overcame inhibition of caspase activation by Bcl-2, but did not prevent the control of cytochrome c release from mitochondria by Bcl-2. Cytochrome c release was accelerated by active caspase-3 and this positive feedback was negatively regulated by Bcl-2. These results provide evidence for a mechanism to amplify caspase activation that is suppressed at several distinct steps by Bcl-2, even after cytochrome c is released from mitochondria.  (+info)

The mitogen-activated protein kinase signaling pathway stimulates mos mRNA cytoplasmic polyadenylation during Xenopus oocyte maturation. (2/15764)

The Mos protein kinase is a key regulator of vertebrate oocyte maturation. Oocyte-specific Mos protein expression is subject to translational control. In the frog Xenopus, the translation of Mos protein requires the progesterone-induced polyadenylation of the maternal Mos mRNA, which is present in the oocyte cytoplasm. Both the Xenopus p42 mitogen-activated protein kinase (MAPK) and maturation-promoting factor (MPF) signaling pathways have been proposed to mediate progesterone-stimulated oocyte maturation. In this study, we have determined the relative contributions of the MAPK and MPF signaling pathways to Mos mRNA polyadenylation. We report that progesterone-induced Mos mRNA polyadenylation was attenuated in oocytes expressing the MAPK phosphatase rVH6. Moreover, inhibition of MAPK signaling blocked progesterone-induced Mos protein accumulation. Activation of the MAPK pathway by injection of RNA encoding Mos was sufficient to induce both the polyadenylation of synthetic Mos mRNA substrates and the accumulation of endogenous Mos protein in the absence of MPF signaling. Activation of MPF, by injection of cyclin B1 RNA or purified cyclin B1 protein, also induced both Mos protein accumulation and Mos mRNA polyadenylation. However, this action of MPF required MAPK activity. By contrast, the cytoplasmic polyadenylation of maternal cyclin B1 mRNA was stimulated by MPF in a MAPK-independent manner, thus revealing a differential regulation of maternal mRNA polyadenylation by the MAPK and MPF signaling pathways. We propose that MAPK-stimulated Mos mRNA cytoplasmic polyadenylation is a key component of the positive-feedback loop, which contributes to the all-or-none process of oocyte maturation.  (+info)

Molecular dynamics of the sodium channel pore vary with gating: interactions between P-segment motions and inactivation. (3/15764)

Disulfide trapping studies have revealed that the pore-lining (P) segments of voltage-dependent sodium channels undergo sizable motions on a subsecond time scale. Such motions of the pore may be necessary for selective ion translocation. Although traditionally viewed as separable properties, gating and permeation are now known to interact extensively in various classes of channels. We have investigated the interaction of pore motions and voltage-dependent gating in micro1 sodium channels engineered to contain two cysteines within the P segments. Rates of catalyzed internal disulfide formation (kSS) were measured in K1237C+W1531C mutant channels expressed in oocytes. During repetitive voltage-clamp depolarizations, increasing the pulse duration had biphasic effects on the kSS, which first increased to a maximum at 200 msec and then decreased with longer depolarizations. This result suggested that occupancy of an intermediate inactivation state (IM) facilitates pore motions. Consistent with the known antagonism between alkali metals and a component of slow inactivation, kSS varied inversely with external [Na+]o. We examined the converse relationship, namely the effect of pore flexibility on gating, by measuring recovery from inactivation in Y401C+E758C (YC/EC) channels. Under oxidative conditions, recovery from inactivation was slower than in a reduced environment in which the spontaneous YC/EC cross-link is disrupted. The most prominent effects were slowing of a component with intermediate recovery kinetics, with diminution of its relative amplitude. We conclude that occupancy of an intermediate inactivation state facilitates motions of the P segments; conversely, flexibility of the P segments alters an intermediate component of inactivation.  (+info)

The role of oocyte transcription, the 5'UTR, and translation repression and derepression in Drosophila gurken mRNA and protein localization. (4/15764)

The establishment of the major body axes of the Drosophila egg and future embryo requires strict regulation of gurken mRNA and protein localization. Here, we show that grk mRNA and protein localization is dependent on synthesis of grk transcripts in the oocyte nucleus and on RNA localization elements in the 5' portion of the transcript. We also show that gurken mRNA and protein localization is dependent on region-specific translation of gurken transcripts and identify K10 as a probable negative regulator of gurken translation.  (+info)

KCNQ4, a novel potassium channel expressed in sensory outer hair cells, is mutated in dominant deafness. (5/15764)

Potassium channels regulate electrical signaling and the ionic composition of biological fluids. Mutations in the three known genes of the KCNQ branch of the K+ channel gene family underlie inherited cardiac arrhythmias (in some cases associated with deafness) and neonatal epilepsy. We have now cloned KCNQ4, a novel member of this branch. It maps to the DFNA2 locus for a form of nonsyndromic dominant deafness. In the cochlea, it is expressed in sensory outer hair cells. A mutation in this gene in a DFNA2 pedigree changes a residue in the KCNQ4 pore region. It abolishes the potassium currents of wild-type KCNQ4 on which it exerts a strong dominant-negative effect. Whereas mutations in KCNQ1 cause deafness by affecting endolymph secretion, the mechanism leading to KCNQ4-related hearing loss is intrinsic to outer hair cells.  (+info)

Differential transcriptional activity associated with chromatin configuration in fully grown mouse germinal vesicle oocytes. (6/15764)

It was previously shown that fully grown ovarian germinal vesicle (GV) oocytes of adult mice exhibit several nuclear configurations that differ essentially by the presence or absence of a ring of condensed chromatin around the nucleolus. These configurations have been termed, respectively, SN (surrounded nucleolus) and NSN (nonsurrounded nucleolus). Work from our and other laboratories has revealed ultrastructural and functional differences between these two configurations. The aims of the present study were 1) to analyze the equilibrium between the SN and the NSN population as a function of the age of the mice and the time after hCG-induced ovulation and 2) to study the polymerase I (pol I)- and polymerase II (pol II)-dependent transcription in both types of oocytes through the detection of bromouridine incorporated into nascent RNA. We show 1) that ovarian GV oocytes exhibiting the SN-type configuration can be found as soon as 17 days after birth in the C57/CBA mouse strain and 2) that the SN:NSN ratio of ovarian GV oocytes is very low just after hCG-induced ovulation and then increases progressively with the time after ovulation. Furthermore, we demonstrate that the SN configuration correlates strictly with the arrest of both pol I- and pol II-dependent transcription in mice at any age. Finally, we show that ribosomal genes are located at the outer periphery of the nucleolus in the NSN configuration and that pol I-dependent perinucleolar transcription sites correspond to specific ultrastructural features of the nucleolus. Altogether, these results provide clear-cut criteria delineating transcriptionally active GV oocytes from those that are inactive, and confirm that the SN-type configuration is mostly present in preovulatory oocytes.  (+info)

Ontogeny of expression of a receptor for platelet-activating factor in mouse preimplantation embryos and the effects of fertilization and culture in vitro on its expression. (7/15764)

Platelet-activating factor (PAF; 1-o-alkyl-2-acetyl-sn-glycero-3-phosphocholine) is a potent ether phospholipid. It is one of the preimplantation embryo's autocrine growth/survival factors. It may act via a G protein-linked receptor on the embryo; however, the evidence for this is conflicting. The recent description of the intracellular form of the PAF:acetlyhydrolase enzyme as having structural homology with G proteins and Ras also suggests this as a potential intracellular receptor/transducer for PAF. This study used reverse transcription-polymerase chain reaction to examine the ontogeny of expression of the genes for these proteins in the oocyte and preimplantation-stage embryo. Transcripts for the G protein-linked PAF receptor were detected in the late 2-cell-stage embryo and in all stages from the 4-cell stage to blastocysts. They were also present in unfertilized oocytes and newly fertilized zygotes but only at relatively low levels. The incidence of expression was generally low and variable in late zygotes and early 2-cell embryos. Expression past the 2-cell stage was alpha-amanitin sensitive. The results indicated that mRNA for this receptor is a maternal transcript that was degraded during the zygote-2-cell stage. New expression of the receptor transcript required activation of the zygotic genome. Fertilization of embryos in vitro caused this transcript not to be expressed in the zygote. Culture of zygotes (irrespective of their method of fertilization) caused expression from the zygotic genome to be retarded by more than 24 h. This retardation did not occur if culture commenced at the 2-cell stage. The transcripts for the subunits of intracellular PAF:acetylhydrolase were not detected in oocytes or at any stage of embryo development examined, despite their being readily detected in control tissue. This study confirms the presence of the G protein-linked PAF receptor in the 2-cell embryo and describes for the first time its normal pattern of expression during early development. The adverse effects of in vitro fertilization (IVF) and embryo culture on the expression of this transcript may be a contributing factor for the poor viability of embryos produced in this manner. The reduced expression of PAF-receptor mRNA following IVF predicts that such embryos may have a deficiency in autocrine stimulation and also suggests that supplementation of growth media with exogenous PAF would be only partially beneficial. The effect of IVF and culture may also explain the conflicting literature.  (+info)

An intact sperm nuclear matrix may be necessary for the mouse paternal genome to participate in embryonic development. (8/15764)

We have been interested in determining the minimally required elements in the sperm head that are necessary in order for the paternal genome to participate in embryogenesis. We used an ionic detergent, mixed alkyltrimethylammonium bromide (ATAB), plus dithiothreitol (DTT) to remove the acrosome and almost all of the perinuclear theca, leaving only the sperm nucleus morphologically intact. We also tested the stability of the sperm nuclear matrix by the ability to form nuclear halos. Sperm nuclei washed in freshly prepared 0.5% ATAB + 2 mM DTT completely decondensed when extracted with salt, but nuclei washed in the same buffer that was 1 wk old, and then extracted with salt, produced nuclear halos, indicating stable nuclear matrices. When we treated sperm heads with freshly prepared ATAB+DTT and injected them into oocytes, none of the oocytes developed into live offspring. In contrast, sperm heads treated in the same way but with 1-wk-old ATAB+DTT solution could support development of about 30% of the oocytes to live offspring. Electron microscopy demonstrated that most of the perinuclear theca had been removed in both cases. These data suggest that at least in the mouse, the only component of the spermatozoa that is crucial for participation in embryologic development is the sperm nucleus with a stable nuclear matrix.  (+info)