The biodynamics of arboreal locomotion: the effects of substrate diameter on locomotor kinetics in the gray short-tailed opossum (Monodelphis domestica). (1/55)

Effects of substrate diameter on locomotor biodynamics were studied in the gray short-tailed opossum (Monodelphis domestica). Two horizontal substrates were used: a flat 'terrestrial' trackway with a force platform integrated into the surface and a cylindrical 'arboreal' trackway (20.3 mm diameter) with a force-transducer instrumented region. On both terrestrial and arboreal substrates, fore limbs exhibited higher vertical impulse and peak vertical force than hind limbs. Although vertical limb impulses were lower on the terrestrial substrate than on the arboreal support, this was probably due to speed effects because the opossums refused to move as quickly on the arboreal trackway. Vertical impulse decreased significantly faster with speed on the arboreal substrate because most of these trials were relatively slow, and stance duration decreased with speed more rapidly at these lower speeds. While braking and propulsive roles were more segregated between limbs on the terrestrial trackway, fore limbs were dominant both in braking and in propulsion on the arboreal trackway. Both fore and hind limbs exerted equivalently strong, medially directed limb forces on the arboreal trackway and laterally directed limb forces on the terrestrial trackway. We propose that the modifications in substrate reaction force on the arboreal trackway are due to the differential placement of the limbs about the dorsolateral aspect of the branch. Specifically, the pes typically made contact with the branch lower and more laterally than the manus, which may explain the significantly lower required coefficient of friction in the fore limbs relative to the hind limbs.  (+info)

Unusually similar patterns of antibody V segment diversity in distantly related marsupials. (2/55)

A pattern of coevolution between the V gene segments of Ig H and L chains has been noted previously by several investigators. Species with restricted germline V(H) diversity tend to have limited germline V(L) diversity, whereas species with high levels of germline V(H) diversity have more diverse V(L) gene segments. Evidence for a limited pool of V(H) but diverse V(L) gene segments in a South American opossum, Monodelphis domestica, is consistent with this marsupial being an exception to the pattern. To determine whether M. domestica is unique or the norm for marsupials, the V(H) and V(L) of an Australian possum, Trichosurus vulpecula, were characterized. The Ig repertoire in T. vulpecula is also derived from a restricted V(H) pool but a diverse V(L) pool. The V(L) gene segments of T. vulpecula are highly complex and contain lineages that predate the separation of marsupials and placental mammals. Thus, neither marsupial follows a pattern of coevolution of V(H) and V(L) gene segments observed in other mammals. Rather, marsupial V(H) and V(L) complexity appears to be evolving divergently, retaining diversity in V(L) perhaps to compensate for limited V(H) diversity. There is a high degree of similarity between the V(H) and V(L) in M. domestica and T. vulpecula, with the majority of V(L) families being shared between both species. All marsupial V(H) sequences isolated so far form a common clade of closely related sequences, and in contrast to the V(L) genes, the V(H) likely underwent a major loss of diversity early in marsupial evolution.  (+info)

Cost of transport is increased after cold exposure in Monodelphis domestica: training for inefficiency. (3/55)

Monodelphis domestica (Didelphidae: Marsupialia) lacks brown adipose tissue and thus relies on skeletal muscle as its primary thermogenic organ. Following cold exposure, the aerobic capacity of skeletal muscle in these animals is greatly increased. We investigated the effects of this plastic response to thermogenesis on locomotion and muscle mechanics. In cold-exposed animals, cost of transport was 15% higher than in controls but was unaffected by exercise training. Twitch kinetics in isolated semitendinosus muscles of cold-exposed animals were characteristic of slow-oxidative fiber types. Both time-to-peak tension and half-relaxation time were longer and maximal shortening velocity was slower following cold exposure compared to either thermoneutral controls or exercise-trained animals. Further, muscles from the cold-exposed animals had greater fatigue resistance than either control or exercise-trained animals, indicating greater oxidative capacity. Finally, we identified an uncoupling protein 3 homologue, whose gene expression was upregulated in skeletal muscle of cold-exposed Monodelphis domestica. Cold exposure provided a potent stimulus for muscle plasticity, driving a fast-to-slow transition more effectively than exercise training. However, linked to the dramatic shift in muscle properties is an equally dramatic increase in whole animal muscle energetics during locomotion, suggesting an uncoupled state, or 'training for inefficiency'.  (+info)

Functional effectiveness of the blood-brain barrier to small water-soluble molecules in developing and adult opossum (Monodelphis domestica). (4/55)

We have evaluated a small water-soluble molecule, biotin ethylenediamine (BED, 286 Da), as a permeability tracer across the blood-brain barrier. This molecule was found to have suitable characteristics in that it is stable in plasma, has low plasma protein binding, and appears to behave in a similar manner across brain barriers as established by permeability markers such as sucrose. BED, together with a 3000-Da biotin-dextran (BDA3000), was used to investigate the effectiveness of tight junctions in cortical vessels during development and adulthood of a marsupial opossum (Monodelphis domestica). Marsupial species are born at an early stage of brain development when cortical vessels are just beginning to appear. The tracers were administered systemically to opossums at various ages and localized in brains with light and electron microscopy. In adults, the tight junctions restricted the movement of both tracers. In neonates, as soon as vessels grow into the neocortex, their tight junctions are functionally restrictive, a finding supported by the presence of claudin-5 in endothelial cells. However, both tracers are also found within brain extracellular space soon after intraperitoneal administration. The main route of entry for the tracers into immature neocortex appears to be via the cerebrospinal fluid over the outer (subarachnoid) and inner (ventricular) surfaces of the brain. These experiments demonstrate that the previously described higher permeability of barriers to small molecules in the developing brain does not seem to be due to leakiness of cerebral endothelial tight junctions, but to a route of entry probably via the choroid plexuses and cerebrospinal fluid.  (+info)

In silico identification and Bayesian phylogenetic analysis of multiple new mammalian kallikrein gene families. (5/55)

Kallikrein gene families have been identified previously in genomes of the human, the mouse, and the rat, and individual kallikrein-like genes have been found in many more species. This study presents the in silico identification of kallikrein gene families in the recently sequenced genomes of four additional mammalian species, the chimpanzee, the dog, the pig, and the opossum. Phylogenies were constructed with gene sequences from all seven mammalian families, using Bayesian analysis, which clarified the evolutionary relationships between these genes. Individual gene sequences, as well as concatenated constructs of multiple sequences, were used. Fifteen kallikrein genes were located in the chimpanzee (Pan troglodytes) genome, while only 14 were identified in the canine (Canis familiaris) genome as no orthologue to human KLK3 was found. Thirteen genes were identified from the pig (Sus scrofa) genome, which lacked homologues to KLK2 and KLK3, and 11 genes, orthologous to human KLK5 through KLK15, were found in the opossum (Monodelphis domestica) genome. No kallikrein genes were identified from the available genome sequences of the chicken (Gallus gallus) or African clawed frog (Xenopus tropicalis). Within the family of kallikreins several subfamilies were suggested by phylogenetic analysis. One consisted of KLK4, KLK5, and KLK14; another of KLK9, KLK11, and KLK15; a third of KLK10 and KLK12; a fourth of KLK6 and KLK13; and finally one of KLK8 and the classical kallikreins (KLK1, KLK2, and KLK3).  (+info)

Locomotor kinetics and kinematics on inclines and declines in the gray short-tailed opossum Monodelphis domestica. (6/55)

Small terrestrial animals continually encounter sloped substrates when moving about their habitat; therefore, it is important to understand the mechanics and kinematics of locomotion on non-horizontal substrates as well as on level terrain. To this end, we trained gray short-tailed opossums (Monodelphis domestica) to move along level, 30 degrees inclined, and 30 degrees declined trackways instrumented with a force platform. Vertical, craniocaudal and mediolateral impulses, peak vertical forces, and required coefficient of friction (mu(req)) of individual limbs were calculated. Two high speed video cameras were used to simultaneously capture whole limb craniocaudal and mediolateral angles at limb touchdown, midstance and lift-off. Patterns on the level terrain were typical for non-primate quadrupeds: the forelimbs supported the majority of the body weight, forelimbs were net braking and hindlimbs net propulsive, and both limb pairs exerted small laterally directed impulses. M. domestica moved more slowly on sloped substrates in comparison to level locomotion, and exhibited a greater mu(req). On inclines, both limb pairs were more protracted at touchdown and more retracted at lift-off, fore- and hindlimbs had equal roles in body weight support, forelimbs exerted greater propulsive impulse than hindlimbs, and mu(req) was greater in the forelimbs than in hindlimbs. On declines, only the forelimbs were more protracted at touchdown; forelimbs supported the great majority of body weight while they generated nearly all of the braking impulse and, despite the disparity in fore- vs hindlimb function on the decline, mu(req) was not significantly different between limbs. These differences on the inclined and declined surfaces most likely result from (1) the location of the opossums' center of mass, which is closer to the forelimbs than to the hindlimbs, and (2) the greater functional range of the forelimbs versus the hindlimbs.  (+info)

Development and plasticity of the retina in the opossum Monodelphis domestica. (7/55)

We investigated the rate of cell proliferation and death in the retina of the Monodelphis opossum during its postnatal development and the influence of early monocular enucleation on these processes. Our results show that in the opossum, as in other marsupials, the peak of the retinal cells divisions occurs postnatally and that generation of retinal cells continues till the time of eye opening (P34), except of the marginal rim, where it continued till P60. Ganglion and amacrine cells are generated between postnatal days (P) P4 and P9, while bipolar cells and photoreceptors are generated simultaneously between P14 and P25. The peak of ganglion cell death as detected by the TUNEL method occurs around P14-19 in the center of retina. The second peak of apoptosis appears in the inner nuclear layer (INL) at P19-25. Gliogenesis takes place between P25 and P34. We also found that monocular enucleation performed during the early period of retinal development (P0-P7) did not influence proliferation, developmental apoptosis or other developmental processes in the retina of the remaining eye.  (+info)

Evolution of mammalian CD1: marsupial CD1 is not orthologous to the eutherian isoforms and is a pseudogene in the opossum Monodelphis domestica. (8/55)

CD1 is a member of the major histocompatibility complex (MHC) class I family of proteins that present lipid antigens to T cells and natural killer (NK) T cells; it is found in both eutherian mammals and birds. In eutherians, duplication of the CD1 gene has resulted in multiple isoforms. A marsupial CD1 homologue was identified in a set of expressed sequence tags from the thymus of the bandicoot Isoodon macrourus. Southern blot and genomic sequence analyses revealed that CD1 is a single copy gene in both I. macrourus and a distantly related marsupial, the opossum Monodelphis domestica, which is currently the only marsupial species for which a whole genome sequence is available. We found that the opossum CD1 is located in a genomic region with a high degree of conserved synteny to the chromosomal regions containing human and mouse CD1. A phylogenetic analysis of mammalian CD1 revealed that marsupial CD1 is not orthologous to the eutherian CD1 isoforms, consistent with the latter having emerged by duplication after the separation of marsupials and eutherians 170-180 million years ago. The I. macrourus CD1 gene is actively transcribed and appears to encode a functional protein. In contrast, transcription of the M. domestica CD1 was not detected in any tissue and the predicted CD1 gene sequence contains a number of deletions that appear to render the locus a pseudogene.  (+info)