Phosphatidylinositol 3-kinase controls human intestinal epithelial cell differentiation by promoting adherens junction assembly and p38 MAPK activation. (1/257)

The signaling pathways mediating human intestinal epithelial cell differentiation remain largely undefined. Phosphatidylinositol 3-kinase (PI3K) is an important modulator of extracellular signals, including those elicited by E-cadherin-mediated cell-cell adhesion, which plays an important role in maintenance of the structural and functional integrity of epithelia. In this study, we analyzed the involvement of PI3K in the differentiation of human intestinal epithelial cells. We showed that inhibition of PI3K signaling in Caco-2/15 cells repressed sucrase-isomaltase and villin protein expression. Morphological differentiation of enterocyte-like features in Caco-2/15 cells such as epithelial cell polarity and brush-border formation were strongly attenuated by PI3K inhibition. Immunofluorescence and immunoprecipitation experiments revealed that PI3K was recruited to and activated by E-cadherin-mediated cell-cell contacts in confluent Caco-2/15 cells, and this activation appears to be essential for the integrity of adherens junctions and association with the cytoskeleton. We provide evidence that the assembly of calcium-dependent adherens junctions led to a rapid and remarkable increase in the state of activation of Akt and p38 MAPK pathways and that this increase was blocked in the presence of anti-E-cadherin antibodies and PI3K inhibitor. Therefore, our results indicate that PI3K promotes assembly of adherens junctions, which, in turn, control p38 MAPK activation and enterocyte differentiation.  (+info)

MAPKK-independent activation of p38alpha mediated by TAB1-dependent autophosphorylation of p38alpha. (2/257)

Phosphorylation of mitogen-activated protein kinases (MAPKs) on specific tyrosine and threonine sites by MAP kinase kinases (MAPKKs) is thought to be the sole activation mechanism. Here, we report an unexpected activation mechanism for p38alpha MAPK that does not involve the prototypic kinase cascade. Rather it depends on interaction of p38alpha with TAB1 [transforming growth factor-beta-activated protein kinase 1 (TAK1)-binding protein 1] leading to autophosphorylation and activation of p38alpha. We detected formation of a TRAF6-TAB1-p38alpha complex and showed stimulus-specific TAB1-dependent and TAB1-independent p38alpha activation. These findings suggest that alternative activation pathways contribute to the biological responses of p38alpha to various stimuli.  (+info)

VEGF protects bovine aortic endothelial cells from TNF-alpha- and H2O2-induced apoptosis via co-modulatory effects on p38-and p42/p44-CCDPK signaling. (3/257)

AIM: To investigate the effect of VEGF on TNF-alpha- or H2O2-induced apoptosis in cultured bovine aortic endothelial cells (BAEC) and the underlied signal transduction mechanisms related to Ca2+-calmodulin dependent protein kinase (CCDPK). METHODS: BAEC were cultured and passaged in DMEM. Morphologic changes and quantification of apoptotic cells were determined under fluorescence microscope with Hoechst 33258 staining. Cell viability was detected with MTT method. DNA fragmentation was visualized by agarose gel electrophoresis. The expression of phospho-p38 and phospho-p42/p44 CCDPK was measured by Western blotting. RESULTS: TNF-alpha 5000 kU/L and H2O2 300 micromol/L elicited DNA fragmentation in BAEC. Vascular endothelial growth factor (VEGF) 100 microg/L significantly protected BAEC from apoptosis induced by TNF-alpha or H2O2, as shown in cell viability assay and apoptotic cell counting. DNA fragmentation induced by TNF-alpha or H2O2 was also reduced by VEGF 100 microg/L. VEGF enhanced TNF-alpha and H2O2 stimulated expression of phospho-p42/p44 CCDPK, simultaneously inhibited TNF-alpha- and H2O2-induced activation of phospho-p38 CCDPK. Both the VEGF-induced up-regulation of phospho-p42/p44 CCDPK and its anti-apoptotic action were prevented by the specific p42/p44 CCDPK inhibitor U0126. CONCLUSION: VEGF protects BAEC from apoptosis induced by TNF-alpha and H2O2, and its co-modulatory effects by activation of p42/p44 CCDPK signaling together with inhibition of p38 CCDPK signaling appear to be an important mechanism for its survival effect on endothelial cells.  (+info)

p38 mitogen-activated protein kinase is activated and linked to TNF-alpha signaling in inflammatory bowel disease. (4/257)

Inflammatory bowel diseases (IBD)--Crohn's disease and ulcerative colitis--are relapsing chronic inflammatory disorders which involve genetic, immunological, and environmental factors. The regulation of TNF-alpha, a key mediator in the inflammatory process in IBD, is interconnected with mitogen-activated protein kinase pathways. The aim of this study was to characterize the activity and expression of the four p38 subtypes (p38alpha-delta), c-Jun N-terminal kinases (JNKs), and the extracellular signal-regulated kinases (ERK)1/2 in the inflamed intestinal mucosa. Western blot analysis revealed that p38alpha, JNKs, and ERK1/2 were significantly activated in IBD, with p38alpha showing the most pronounced increase in kinase activity. Protein expression of p38 and JNK was only moderately altered in IBD patients compared with normal controls, whereas ERK1/2 protein was significantly down-regulated. Immunohistochemical analysis of inflamed mucosal biopsies localized the main expression of p38alpha to lamina propria macrophages and neutrophils. ELISA screening of the supernatants of Crohn's disease mucosal biopsy cultures showed that incubation with the p38 inhibitor SB 203580 significantly reduced secretion of TNF-alpha. In vivo inhibition of TNF-alpha by a single infusion of anti-TNF-alpha Ab (infliximab) resulted in a highly significant transient increase of p38alpha activity during the first 48 h after infusion. A significant infliximab-dependent p38alpha activation was also observed in THP-1 myelomonocytic cells. In human monocytes, infliximab enhanced TNF-alpha gene expression, which could be inhibited by SB 203580. In conclusion, p38alpha signaling is involved in the pathophysiology of IBD.  (+info)

Insulin restores differentiation of Ras-transformed C2C12 myoblasts by inducing NF-kappaB through an AKT/P70S6K/p38-MAPK pathway. (5/257)

v-H-ras transformed C2C12 (C2Ras) myoblasts, overexpressing p21-Ras protein in the Ras-GTP active form, showed a differentiation-defective phenotype when cultured in low serum as compared with C2C12 myoblasts. Accordingly, the purpose of the present study was to delineate the signaling pathways that restore C2Ras myoblasts differentiation. Inhibition of p42/p44-MAPK with the chemical inhibitor PD98059, and activation of AKT/P70S6K and p38-MAPK with insulin, produced growth arrest (precluding the expression of PCNA, cyclin-D1 and retinoblastoma at the hyperphosphorylated state and inducing the expression of the cell cycle inhibitor p21(Cip)) and myogenesis (multinucleated myotubes formation and induction of creatine kinase, caveolin-3 and alpha-actin). Both events were accompanied by down-regulation of AP-1 and up-regulation of NF-kappaB transcriptional activities. Furthermore, inhibition of NF-kappaB transcriptional activity by the use of the proteasome inhibitor MG132 totally precluded differentiation by insulin+PD98059, demonstrating a direct role for NF-kappaB on C2Ras myogenesis. C2Ras myoblasts failed to restore differentiation when rapamycin or PD169316 were added in the presence of insulin+PD98059, indicating that the activation of both P70S6K and p38-MAPK was necessary to reach a fully differentiated phenotype. Finally, transient transfection of a constitutively active Myr-EGFP-AKT-HA construct (in the presence of PD98059) restored C2Ras myogenesis by its ability to activate P70S6K and p38-MAPK. A crosstalk between P70S6K and p38-MAPK was observed under rapamycin treatment in both insulin or active AKT induced myogenesis. Our results are delineating an AKT/P70S6K/p38-MAPK pathway involved in skeletal muscle differentiation.  (+info)

The stress-activated protein kinases p38 alpha and JNK1 stabilize p21(Cip1) by phosphorylation. (6/257)

Stress signals activate the SAPK/JNK and p38 MAPK classes of protein kinases, which mediate cellular responses, including steps in apoptosis and the maturation of some cell types. We now show that stress signals initiated by transforming growth factor-beta 1 (TGF-beta 1) induce G(1) arrest through protein stabilization of the CDK inhibitor p21(Cip1). TGF-beta 1 was previously shown to increase p21 protein levels, which in turn mediated G(1) arrest through inactivation of the CDK2-cyclin E complex in HD3 cells (Yan, Z., Kim, G.-Y., Deng, X., and Friedman, E. (2002) J. Biol. Chem. 277, 9870-9879). We now demonstrate that the increase in p21 abundance is caused by a post-transcriptional, SMAD-independent mechanism. TGF-beta1 activated p38 alpha and JNK1, which initiated the phosphorylation of p21. TGF-beta1 treatment increased the half-life of p21 by 3-4-fold. The increase in p21 stability was detected following activation of p38 alpha and JNK1, and treatment of cells with the p38 inhibitor SB203580 prevented this increase in p21 stability. p38 alpha and JNK1 phosphorylated p21 in vivo, and both p38 alpha and JNK1 phosphorylated p21 at Ser(130) in vitro. Peptide mapping demonstrated that both TGF-beta 1 and p38 alpha induced phosphorylation of p21 at Ser(130) in vivo, and mutation of Ser(130) to alanine rendered p21 less stable than wild-type p21. TGF-beta 1 increased the stability of wild-type p21, but not the p21-S130A mutant. These findings demonstrate that SAPKs can mediate cell cycle arrest through post-translational modification of p21.  (+info)

Fibroblast growth factor homologous factors and the islet brain-2 scaffold protein regulate activation of a stress-activated protein kinase. (7/257)

Fibroblast growth factor homologous factors (FHFs) form native intracellular complexes with the mitogen-activated protein kinase (MAPK) scaffold protein islet-brain 2 (IB2) in adult brain. FHF binding to IB2 facilitates recruitment of the MAPK p38delta (SAPK4), while failing to stimulate binding of JNK, the preferred kinase of the related scaffold IB1 (JIP-1). We now report further biochemical evidence supporting FHFs as regulators of IB2 scaffold activity. Mixed lineage kinase 3 (MLK3) and IB2 synergistically activate p38delta but not the MAPKs JNK-1 and p38alpha. Binding of p38delta to IB2 is mediated by the carboxyl-terminal half of the scaffold (IB2(Delta1-436)). FHF2 also binds weakly to IB2(Delta1-436) and can thereby increase p38delta interaction with IB2(Delta1-436). FHF-induced recruitment of p38delta to IB2 is accompanied by increased levels of activated p38delta, and synergistic activation of p38delta by MLK3 and IB2 is further enhanced by FHF2. Consistent with a role for FHFs as signaling molecules, FHF2 isolated from rat brain is serine/threonine-phosphorylated, and FHF can serve as a substrate for p38delta in vitro. These results support the existence of a signaling module in which IB2 scaffolds a MLK3/MKK/p38delta kinase cascade. FHFs aid in recruitment of p38 to IB2 and may serve as kinase substrates.  (+info)

Requirement of mitogen-activated protein kinase kinase 3 (MKK3) for activation of p38alpha and p38delta MAPK isoforms by TGF-beta 1 in murine mesangial cells. (8/257)

Transforming growth factor-beta1 (TGF-beta1) is a potent inducer of extracellular matrix (ECM) synthesis that leads to renal fibrosis. Intracellular signaling mechanisms involved in this process remain incompletely understood. Mitogen-activated protein kinase (MAPK) is a major stress signal-transducing pathway, and we have previously reported activation of p38 MAPK by TGF-beta1 in rat mesangial cells and its role in the stimulation of pro-alpha1(I) collagen. In this study, we further investigated the mechanism of p38 MAPK activation by TGF-beta1 and the role of MKK3, an upstream MAPK kinase of p38 MAPK, by examining the effect of targeted disruption of the Mkk3 gene. We first isolated glomerular mesangial cells from MKK3-null (Mkk3-/-) and wild-type (Mkk3+/+) control mice. Treatment with TGF-beta1 induced rapid phosphorylation of MKK3 as well as p38 MAPK within 15 min in cultured wild-type (Mkk3+/+) mouse mesangial cells. In contrast, TGF-beta1 failed to induce phosphorylation of either MKK3 or p38 MAPK in MKK3-deficient (Mkk3-/-) mouse mesangial cells, indicating that MKK3 is required for TGF-beta1-induced p38 MAPK activation. TGF-beta1 selectively activated the p38 MAPK isoforms p38alpha and p38delta in wild-type (Mkk3+/+) mesangial cells, but not in MKK3-deficient (Mkk3-/-) mesangial cells. Thus, activation of p38alpha and p38delta is dependent on the activation of upstream MKK3 by TGF-beta1. Furthermore, MKK3 deficiency resulted in a selective disruption of TGF-beta1-stimulated up-regulation of pro-alpha1(I) collagen expression but not TGF-beta1 induction of fibronectin and PAI-1. These data demonstrate that the MKK3 is a critical component of the TGF-beta1 signaling pathway, and its activation is required for subsequent p38alpha and p38delta MAPK activation and collagen stimulation by TGF-beta1.  (+info)