Comparative molecular genetic profiles of anaplastic astrocytomas/glioblastomas multiforme and their subsequent recurrences. (1/4803)

Malignant glial tumors (anaplastic astrocytomas and glioblastomas multiforme) arise mostly either from the progression of low grade precursor lesions or rapidly in a de novo fashion and contain distinct genetic alterations. There is, however, a third subset of malignant gliomas in which genetic lesions remain to be identified. Following surgical resection, all gliomas appear to have an inherent tendency to recur. Comparative molecular analysis of ten primary malignant gliomas (three anaplastic astrocytomas and seven glioblastomas multiforme) with their recurrences identified two distinct subgroups of recurrent tumors. In one group, primary tumors harbored genetic aberrations frequently associated with linear progression or de novo formation pathways of glial tumorigenesis and maintained their genetic profiles upon recurrence. In the other subset with no detectable known genetic mutations at first presentation, the recurrent tumors sustained specific abnormalities associated with pathways of linear progression or de novo formation. These included loss of genes on chromosomes 17 and 10, mutations in the p53 gene, homozygous deletion of the DMBTA1 and p16 and/ or p15 genes and amplification and/or overexpression of CDK4 and alpha form of the PDGF receptor. Recurrent tumors from both groups also displayed an abnormal expression profile of the metalloproteinase, gel A, and its inhibitor, TIMP-2, consistent with their highly invasive behavior. Delineation of the molecular differences between malignant glioblastomas and their subsequent recurrences may have important implications for the development of rational clinical approaches for this neoplasm that remains refractory to existing therapeutic modalities.  (+info)

Expression and tissue localization of membrane-type 1, 2, and 3 matrix metalloproteinases in human astrocytic tumors. (2/4803)

Three different membrane-type matrix metalloproteinases (MT1-, MT2-, and MT3-MMPs) are known to activate in vitro the zymogen of MMP-2 (pro-MMP-2, progelatinase A), which is one of the key MMPs in invasion and metastasis of various cancers. In the present study, we have examined production and activation of pro-MMP-2, expression of MT1-, MT2-, and MT3-MMPs and their correlation with pro-MMP-2 activation, and localization of MMP-2, MT1-MMP, and MT2-MMP in human astrocytic tumors. The sandwich enzyme immunoassay demonstrates that the production levels of pro-MMP-2 in the anaplastic astrocytomas and glioblastomas are significantly higher than that in the low-grade astrocytomas (P<0.05 and P<0.01, respectively), metastatic brain tumors (P<0.05), or normal brains (P<0.01). Gelatin zymography indicates that the pro-MMP-2 activation ratio is significantly higher in the glioblastomas than in other astrocytic tumors (P<0.01), metastatic brain tumors (P<0.01), and normal brains (P<0.01). The quantitative reverse transcription polymerase chain reaction analyses demonstrate that MT1-MMP and MT2-MMP are expressed predominantly in glioblastoma tissues (17/17 and 12/17 cases, respectively), and their expression levels increase significantly as tumor grade increases. MT3-MMP is detectable in both astrocytic tumor and normal brain tissues, but the mean expression level is approximately 50-fold lower compared with that of MT1-MMP and MT2-MMP in the glioblastomas. The activation ratio of pro-MMP-2 correlates directly with the expression levels of MT1-MMP and MT2-MMP but not MT3-MMP. In situ hybridization indicates that neoplastic astrocytes express MT1-MMP and MT2-MMP in the glioblastoma tissues (5/5 cases and 5/5 cases, respectively). Immunohistochemically, MT1-MMP and MT2-MMP are localized to the neoplastic astrocytes in glioblastoma samples (17/17 cases and 12/17 cases, respectively), which are also positive for MMP-2. In situ zymography shows gelatinolytic activity in the glioblastoma tissues but not in the normal brain tissues. These results suggest that both MT1-MMP and MT2-MMP play a key role in the activation of pro-MMP-2 in the human malignant astrocytic tumors and that the gelatinolytic activity is involved in the astrocytic tumor invasion.  (+info)

Enhanced tumor growth and invasiveness in vivo by a carboxyl-terminal fragment of alpha1-proteinase inhibitor generated by matrix metalloproteinases: a possible modulatory role in natural killer cytotoxicity. (3/4803)

Matrix metalloproteinases (MMPs) are believed to contribute to the complex process of cancer progression. They also exhibit an alpha1-proteinase inhibitor (alphaPI)-degrading activity generating a carboxyl-terminal fragment of approximately 5 kd (alphaPI-C). This study reports that overexpression of alphaPI-C in S2-020, a cloned subline derived from the human pancreas adenocarcinoma cell line SUIT-2, potentiates the growth capability of the cells in nude mice. After stable transfection of a vector containing a chimeric cDNA encoding a signal peptide sequence of tissue inhibitor of metalloproteinase-1 followed by cDNA for alphaPI-C into S2-020 cells, three clones that stably secrete alphaPI-C were obtained. The ectopic expression of alphaPI-C did not alter in vitro cellular growth. However, subcutaneous injection of the alphaPI-C-secreting clones resulted in tumors that were 1.5 to 3-fold larger than those of control clones with an increased tendency to invasiveness and lymph node metastasis. These effects could be a result of modulation of natural killer (NK) cell-mediated control of tumor growth in nude mice, as the growth advantage of alphaPI-C-secreting clones was not observed in NK-depleted mice, and alphaPI-C-secreting clones showed decreased NK sensitivity in vitro. In addition, production of alphaPI and generation of the cleaved form of alphaPI by MMP were observed in various human tumor cell lines and in a highly metastatic subline of SUIT-2 in vitro. These results provide experimental evidence that the alphaPI-degrading activity of MMPs may play a role in tumor progression not only via the inactivation of alphaPI but also via the generation of alphaPI-C.  (+info)

Collagenase-3 (MMP-13) is expressed by tumor cells in invasive vulvar squamous cell carcinomas. (4/4803)

Collagenase-3 (MMP-13) is a human matrix metalloproteinase specifically expressed by invading tumor cells in squamous cell carcinomas (SCCs) of the head and neck. Here, we have further elucidated the role of MMP-13 in tumor invasion by examining its expression in invasive malignant tumors of the female genital tract. Using in situ hybridization, expression of MMP-13 mRNA was detected in 9 of 12 vulvar SCCs, primarily in tumor cells, but not in intact vulvar epithelium, in cervical SCCs (n = 12), or in endometrial (n = 11) or ovarian adenocarcinomas (n = 8). MMP-13 expression was especially abundant in vulvar carcinomas showing metastasis to lymph nodes and was associated with expression of membrane type 1 MMP by tumor cells and gelatinase-A (MMP-2) by stromal cells, as detected by immunohistochemistry. MMP-13 mRNAs were detected in 9 of 11 cell lines established from vulvar carcinomas and in 4 of 6 cell lines from cervical carcinomas, whereas endometrial (n = 10) and ovarian (n = 9) carcinoma cell lines were negative for MMP-13 mRNA. No correlation was detected between MMP-13 expression and p53 gene mutations in vulvar SCC cell lines. However, MMP-13 expression was detected in 5 of 6 vulvar and cervical SCC cell lines harboring HPV 16 or 68 DNA. These results show that MMP-13 is specifically expressed by malignantly transformed squamous epithelial cells, including vulvar SCC cells, and appears to serve as a marker for their invasive capacity.  (+info)

The cytoplasmic carboxy-terminal amino acid determines the subcellular localization of proTGF-(alpha) and membrane type matrix metalloprotease (MT1-MMP). (5/4803)

Transforming growth factor alpha (TGF-(alpha)) is synthesized as a precursor transmembrane molecule (proTGF-(alpha)) whose ectodomain is shed from the cell surface generating mature, soluble, growth factor. In agreement with recent reports, here we show that the structural determinant that targets proTGF-(alpha) to the cell surface maps to the very C-terminal cytoplasmic amino acid, valine. The primary localization of proTGF-(alpha) C-terminal mutants is a perinuclear area that colocalizes with ER markers. Since the ectodomain shedding machinery that acts on proTGF-(alpha) is known to be located at the cell surface, deficient transport provides an explanation for the previously reported lack of PKC activated ectodomain shedding of proTGF-(alpha) C-terminal mutants. The transport of wild-type proTGF-(alpha) to the cell surface was found to be mediated by a mechanism that includes a specific component saturable by wild-type proTGF-(alpha) but not by cell surface transmembrane proteins whose trafficking is independent of their cytoplasmic tail such as betaglycan. C-terminal valines are likely to be a general determinant of the subcellular location of cell surface transmembrane proteins since the maturation and trafficking of MT1-MMP C-terminal mutants are severely impaired. Our data suggest the existence of a targeting mechanism that acts on cell surface transmembrane molecules as diverse as proTGF-(alpha) and MT1-MMP and that the interaction with such a mechanism depends on the identity of the C-terminal amino acid of the targeted molecules.  (+info)

A novel clan of zinc metallopeptidases with possible intramembrane cleavage properties. (6/4803)

Computer-based database searching and protein multiple sequence alignment has identified a novel clan of zinc metallopeptidases, which, by phylogenetic analysis, has been shown to contain six subfamilies. The family is characterized by four common transmembrane segments and three conserved sequence motifs. The combination of topology analysis and motif identification has detected three potential Zn2+ coordinating residues. Only two of the sequences of this novel zinc metallopeptidase clan possess any functional annotation, one of which is able to cleave its substrate within a cytosol/transmembrane segment junction. A number of observations suggest that the remaining members of this novel clan may also cleave their substrates within transmembrane segments.  (+info)

Expression of stromelysin-3 in atherosclerotic lesions: regulation via CD40-CD40 ligand signaling in vitro and in vivo. (7/4803)

Stromelysin-3 is an unusual matrix metalloproteinase, being released in the active rather than zymogen form and having a distinct substrate specificity, targeting serine proteinase inhibitors (serpins), which regulate cellular functions involved in atherosclerosis. We report here that human atherosclerotic plaques (n = 7) express stromelysin-3 in situ, whereas fatty streaks (n = 5) and normal arterial specimens (n = 5) contain little or no stromelysin-3. Stromelysin-3 mRNA and protein colocalized with endothelial cells, smooth muscle cells, and macrophages within the lesion. In vitro, usual inducers of matrix metalloproteinases such as interleukin-1, interferon-gamma, or tumor necrosis factor alpha did not augment stromelysin-3 in vascular wall cells. However, T cell-derived as well as recombinant CD40 ligand (CD40L, CD154), an inflammatory mediator recently localized in atheroma, induced de novo synthesis of stromelysin-3. In addition, stromelysin-3 mRNA and protein colocalized with CD40L and CD40 within atheroma. In accordance with the in situ and in vitro data obtained with human material, interruption of the CD40-CD40L signaling pathway in low density lipoprotein receptor-deficient hyperlipidemic mice substantially decreased expression of the enzyme within atherosclerotic plaques. These observations establish the expression of the unusual matrix metalloproteinase stromelysin-3 in human atherosclerotic lesions and implicate CD40-CD40L signaling in its regulation, thus providing a possible new pathway that triggers complications within atherosclerotic lesions.  (+info)

Dynorphin A processing enzyme: tissue distribution, isolation, and characterization. (8/4803)

Limited proteolysis of the dynorphin precursor (prodynorphin) at dibasic and monobasic processing sites results in the generation of bioactive dynorphins. In the brain and neurointermediate lobe of the pituitary, prodynorphin is processed to produce alpha and beta neo endorphins, dynorphins (Dyn) A-17 and Dyn A-8, Dyn B-13, and leucine-enkephalin. The formation of Dyn A-8 from Dyn A-17 requires a monobasic cleavage between Ile and Arg. We have identified an enzymatic activity capable of processing at this monobasic site in the rat brain and neurointermediate lobe of the bovine pituitary; this enzyme is designated "dynorphin A-17 processing enzyme." In the rat brain and neurointermediate lobe, a majority of the Dyn A processing enzyme activity is membrane-associated and can be released by treatment with 1% Triton X-100. This enzyme has been purified to apparent homogeneity from the membrane extract of the neurointermediate lobe using preparative iso-electrofocussing in a granulated gel pH 3.5 to 10, FPLC using anion exchange chromatography, and non-denaturing electrophoresis. The Dyn A processing enzyme exhibits a pI of about 5.8 and a molecular mass of about 65 kDa under reducing conditions. The Dyn A processing enzyme is a metalloprotease and has a neutral pH optimum. It exhibits substantial sensitivity to metal chelating agents and thiol agents suggesting that this enzyme is a thiol-sensitive metalloprotease. Specific inhibitors of other metallopeptidases such as enkephalinase [EC 3.4.24.11], the enkephalin generating neutral endopeptidase [EC 3.4.24.15], or NRD convertase do not inhibit the Dyn A processing enzyme activity. In contrast, specific inhibitors of angiotensin converting enzyme inhibit the activity. The purified enzyme is able to process a number of neuropeptides at both monobasic and dibasic sites. These characteristics are consistent with a role for the Dyn A processing enzyme in the processing of Dyn A-17 and other neuropeptides in the brain.  (+info)