Fish oil feeding delays influenza virus clearance and impairs production of interferon-gamma and virus-specific immunoglobulin A in the lungs of mice. (1/2282)

Ingestion of fish oil can suppress the inflammatory response to injury and may impair host resistance to infection. To investigate the effect of a diet containing fish oil on immunity to viral infection, 148 BALB/c mice were fed diets containing 3 g/100 g of sunflower oil with either 17 g/100 g of fish oil or beef tallow for 14 d before intranasal challenge with live influenza virus. At d 1 and d 5 after infection, the mice fed fish oil had higher lung viral load and lower body weight (P < 0.05). In addition to the greater viral load and weight loss at d 5 after infection, the fish oil group consumed less food (P < 0.05) while the beef tallow group was clearing the virus, had regained their preinfection weights and was returning to their preinfection food consumption. The fish oil group had impaired production of lung interferon-gamma (IFN-gamma), serum immunoglobulin (Ig) G and lung IgA-specific antibodies (all P < 0. 05) although lung IFN-alpha/beta and the relative proportions of bronchial lymph node CD4+ and CD8+ T lymphocytes did not differ between groups after infection. The present study demonstrates a delay in virus clearance in mice fed fish oil associated with reduced IFN-gamma and antibody production and a greater weight loss and suppression of appetite following influenza virus infection. However, differences observed during the course of infection did not affect the ultimate outcome as both groups cleared the virus and returned to preinfection food consumption and body weight by d 7.  (+info)

Virus infection leads to localized hyperacetylation of histones H3 and H4 at the IFN-beta promoter. (2/2282)

Transcriptional activation of the human interferon-beta (IFN-beta) gene by virus infection requires the assembly of a higher order nucleoprotein complex, the enhanceosome, which consists of the transcriptional activators NF-kappa B (p50/p65), ATF-2/c-jun, IRF-3 and IRF-7, architectural protein HMGI(Y), and the coactivators p300 and CBP. In this report, we show that virus infection of cells results in a dramatic hyperacetylation of histones H3 and H4 that is localized to the IFN-beta promoter. Furthermore, expressing a truncated version of IRF-3, which lacks a p300/CBP interaction domain, suppresses both histone hyperacetylation and activation of the IFN-beta gene. Thus, coactivator-mediated localized hyperacetylation of histones may play a crucial role in inducible gene expression.  (+info)

Suppression of angiogenesis, tumorigenicity, and metastasis by human prostate cancer cells engineered to produce interferon-beta. (3/2282)

We determined whether the IFN-beta gene can be used to suppress angiogenesis, tumor growth, and metastasis of human prostate cancer cells growing in the prostate of nude mice. Highly metastatic PC-3M human prostate cancer cells were engineered to constitutively produce murine IFN-beta subsequent to infection with a retroviral vector containing murine IFN-beta cDNA. Parental (PC-3M-P), control vector-transduced (PC-3M-Neo), and IFN-beta-transduced (PC-3M-IFN-beta) cells were injected into the prostate (orthotopic) or subcutis (ectopic) of nude mice. PC-3M-P and PC-3M-Neo cells produced rapidly growing tumors and regional lymph node metastases, whereas PC-3M-IFN-beta cells did not. PC-3M-IFN-beta cells also suppressed the tumorigenicity of bystander nontransduced prostate cancer cells. PC-3M-IFN-beta cells produced small tumors (3-5 mm in diameter) in nude mice treated with anti-asialo GM1 antibodies and in severe combined immunodeficient/Beige mice. Immunohistochemical staining revealed that PC-3M-IFN-beta tumors were homogeneously infiltrated by macrophages, whereas control tumors contained fewer macrophages at their periphery. Most tumor cells in the control tumors were stained positive by an antibody to proliferative cell nuclear antigen; very few were positively stained by terminal deoxynucleotidyl transferase-mediated dUTP-biotin nick-end labeling. In sharp contrast, PC-3M-IFN-beta tumors contained fewer proliferative cell nuclear antigen-positive cells and many terminal deoxynucleotidyl transferase-mediated dUTP-biotin nick-end labeling-positive cells. Staining with antibody against CD31 showed that control tumors contained more blood vessels than PC-3M-IFN-beta tumors. PC-3M-IFN-beta cells were more sensitive to lysis mediated by natural killer cells in vitro or to cytostasis mediated by macrophages than control transduced cells. Conditioned medium from PC-3M-IFN-beta cells augmented splenic cell-mediated cytolysis to control tumor cells, which could be neutralized by antibody against IFN-beta. Collectively, the data suggest that the suppression of tumorigenicity and metastasis of PC-3M-IFN-beta cells is due to inhibition of angiogenesis and activation of host effector cells.  (+info)

Chronic motor neuropathies: response to interferon-beta1a after failure of conventional therapies. (4/2282)

OBJECTIVES: The effect of interferon-beta1a (INF-beta1a; Rebif) was studied in patients with chronic motor neuropathies not improving after conventional treatments such as immunoglobulins, steroids, cyclophosphamide or plasma exchange. METHODS: A prospective open study was performed with a duration of 6-12 months. Three patients with a multifocal motor neuropathy and one patient with a pure motor form of chronic inflammatory demyelinating polyneuropathy were enrolled. Three patients had anti-GM1 antibodies. Treatment consisted of subcutaneous injections of IBF-beta1a (6 MIU), three times a week. Primary outcome was assessed at the level of disability using the nine hole peg test, the 10 metres walking test, and the modified Rankin scale. Secondary outcome was measured at the impairment level using a slightly modified MRC sumscore. RESULTS: All patients showed a significant improvement on the modified MRC sumscore. The time required to walk 10 metres and to fulfil the nine hole peg test was also significantly reduced in the first 3 months in most patients. However, the translation of these results to functional improvement on the modified Rankin was only seen in two patients. There were no severe adverse events. Motor conduction blocks were partially restored in one patient only. Anti-GM1 antibody titres did not change. CONCLUSION: These findings indicate that severely affected patients with chronic motor neuropathies not responding to conventional therapies may improve when treated with INF-beta1a. From this study it is suggested that INF-beta1a should be administered in patients with chronic motor neuropathies for a period of up to 3 months before deciding to cease treatment. A controlled trial is necessary to confirm these findings.  (+info)

IkappaB-mediated inhibition of virus-induced beta interferon transcription. (5/2282)

We have examined the consequences of overexpression of the IkappaBalpha and IkappaBbeta inhibitory proteins on the regulation of NF-kappaB-dependent beta interferon (IFN-beta) gene transcription in human cells after Sendai virus infection. In transient coexpression studies or in cell lines engineered to express different forms of IkappaB under tetracycline-inducible control, the IFN-beta promoter (-281 to +19) linked to the chloramphenicol acetyltransferase reporter gene was differentially inhibited in response to virus infection. IkappaBalpha exhibited a strong inhibitory effect on virus-induced IFN-beta expression, whereas IkappaBbeta exerted an inhibitory effect only at a high concentration. Despite activation of the IkappaB kinase complex by Sendai virus infection, overexpression of the double-point-mutated (S32A/S36A) dominant repressors of IkappaBalpha (TD-IkappaBalpha) completely blocked IFN-beta gene activation by Sendai virus. Endogenous IFN-beta RNA production was also inhibited in Tet-inducible TD-IkappaBalpha-expressing cells. Inhibition of IFN-beta expression directly correlated with a reduction in the binding of NF-kappaB (p50-RelA) complex to PRDII after Sendai virus infection in IkappaBalpha-expressing cells, whereas IFN-beta expression and NF-kappaB binding were only slightly reduced in IkappaBbeta-expressing cells. These experiments demonstrate a major role for IkappaBalpha in the regulation of NF-kappaB-induced IFN-beta gene activation and a minor role for IkappaBbeta in the activation process.  (+info)

Sendai virus and simian virus 5 block activation of interferon-responsive genes: importance for virus pathogenesis. (6/2282)

Sendai virus (SeV) is highly pathogenic for mice. In contrast, mice (including SCID mice) infected with simian virus 5 (SV5) showed no overt signs of disease. Evidence is presented that a major factor which prevented SV5 from productively infecting mice was its inability to circumvent the interferon (IFN) response in mice. Thus, in murine cells that produce and respond to IFN, SV5 protein synthesis was rapidly switched off. In marked contrast, once SeV protein synthesis began, it continued, even if the culture medium was supplemented with alpha/beta IFN (IFN-alpha/beta). However, in human cells, IFN-alpha/beta did not inhibit the replication of either SV5 or SeV once virus protein synthesis was established. To begin to address the molecular basis for these observations, the effects of SeV and SV5 infections on the activation of an IFN-alpha/beta-responsive promoter and on that of the IFN-beta promoter were examined in transient transfection experiments. The results demonstrated that (i) SeV, but not SV5, inhibited an IFN-alpha/beta-responsive promoter in murine cells; (ii) both SV5 and SeV inhibited the activation of an IFN-alpha/beta-responsive promoter in human cells; and (iii) in both human and murine cells, SeV was a strong inducer of the IFN-beta promoter, whereas SV5 was a poor inducer. The ability of SeV and SV5 to inhibit the activation of IFN-responsive genes in human cells was confirmed by RNase protection experiments. The importance of these results in terms of paramyxovirus pathogenesis is discussed.  (+info)

Specific binding of high-mobility-group I (HMGI) protein and histone H1 to the upstream AT-rich region of the murine beta interferon promoter: HMGI protein acts as a potential antirepressor of the promoter. (7/2282)

The high-mobility-group I (HMGI) protein is a nonhistone component of active chromatin. In this work, we demonstrate that HMGI protein specifically binds to the AT-rich region of the murine beta interferon (IFN-beta) promoter localized upstream of the murine virus-responsive element (VRE). Contrary to what has been described for the human promoter, HMGI protein did not specifically bind to the VRE of the murine IFN-beta promoter. Stably transfected promoters carrying mutations on this HMGI binding site displayed delayed virus-induced kinetics of transcription. When integrated into chromatin, the mutated promoter remained repressed and never reached normal transcriptional activity. Such a phenomenon was not observed with transiently transfected promoters upon which chromatin was only partially reconstituted. Using UV footprinting, we show that the upstream AT-rich sequences of the murine IFN-beta promoter constitute a preferential binding region for histone H1. Transfection with a plasmid carrying scaffold attachment regions as well as incubation with distamycin led to the derepression of the IFN-beta promoter stably integrated into chromatin. In vitro, HMGI protein was able to displace histone H1 from the upstream AT-rich region of the wild-type promoter but not from the promoter carrying mutations on the upstream high-affinity HMGI binding site. Our results suggest that the binding of histone H1 to the upstream AT-rich region of the promoter might be partly responsible for the constitutive repression of the promoter. The displacement by HMGI protein of histone H1 could help to convert the IFN-beta promoter from a repressed to an active state.  (+info)

Interferon-beta1A-induced polyarthritis in a patient with the HLA-DRB1*0404 allele. (8/2282)

Human interferon-alpha (IFNalpha) and IFNbeta are administered for treatment of several diseases, including viral infections, malignancies, and multiple sclerosis (MS). IFNalpha therapy has been associated with the production of autoantibodies and the development of a variety of autoimmune disorders, including polyarthritis. This report describes the development of seronegative, symmetric polyarthritis in a patient with relapsing-remitting MS, after 8 weeks of therapy with IFNbeta1a. HLA phenotyping analysis of the patient revealed the presence of HLA-DRB1*0404, an allele known to be associated with the development of rheumatoid arthritis. Therefore, IFNbeta1a may have induced arthritis in a patient who was genetically predisposed to develop arthritis on the basis of HLA determinants. The English-language literature regarding IFNalpha- and IFNbeta-induced polyarthritis is reviewed, and possible mechanisms for IFNalpha- and IFNbeta-induced autoimmunity, including the contribution of HLA determinants and nitric oxide overproduction, are discussed.  (+info)