Regulation of chicken erythrocyte AMP deaminase by phytic acid. (1/1491)

AMP deaminase [EC 3.5.6.4] purified from chicken erythrocytes was inhibited by phytic acid (inositol hexaphosphate), which is the principal organic phosphate in chicken red cells. Kinetic analysis has indicated that this inhibition is of an allosteric type. The estimated Ki value was within the normal range of phytic acid concentration, suggesting that this compound acts as a physiological effector. Divalent cations such as Ca2+ and Mg2+ were shown to affect AMP deaminase by potentiating inhibition by lower concentrations of phytic acid, and by relieving the inhibition at higher concentrations of phytic acid. These results suggests that Ca2+ and Mg2+ can modify the inhibition of AMP deaminase by phytic acid in chicken red cells.  (+info)

Tyrosine kinase inhibitors and immunosuppressants perturb the myo-inositol but not the betaine cotransporter in isotonic and hypertonic MDCK cells. (2/1491)

BACKGROUND: The sodium/myo-inositol cotransporter (SMIT) and the betaine cotransporter (BGT1) are essential for the accumulation of myo-inositol and betaine, and hence cell survival in a hypertonic environment. The underlying molecular mechanism involves an increase in transcription of the SMIT and BGT1 genes through binding of a trans-acting factor to enhancer elements in the 5' flanking region of both genes, resulting in increased mRNA abundance and increased activity of the cotransporters. Current evidence regarding transcriptional and post-transcriptional regulation indicates that both cotransporters are regulated in parallel. METHODS: To investigate the signal transduction of hypertonic stress, we examined the effect of tyrosine kinase inhibitors and immunosuppressants on the hypertonicity-induced activity of the two cotransporters in Madin-Darby canine kidney (MDCK) cells. RESULTS: None of the agents studied affected BGT1 activity in isotonic or hypertonic conditions. Treatment of MDCK cells with genistein, a tyrosine kinase inhibitor, increased SMIT activity in hypertonic but not isotonic conditions. The stimulation of SMIT by genistein was accompanied by a parallel increase in mRNA abundance. In contrast, treating cells with tyrphostin A23, another tyrosine kinase inhibitor, or cyclosporine A, an immunosuppressant, inhibited SMIT activity in hypertonic cells. FK506, another immunosuppressant, increased SMIT activity, but only in isotonic conditions. CONCLUSIONS: These results provide the first evidence of divergent regulatory pathways modulating SMIT and BGT activity.  (+info)

Pilocarpine toxicity in retinal ganglion cells. (3/1491)

PURPOSE: Muscarinic agents reduce intraocular pressure by enhancing aqueous outflow, probably by stimulating ciliary muscle contraction. However, pilocarpine is a well characterized neurotoxin and is widely used to generate animal seizure models. It was therefore investigated whether pilocarpine was also toxic to retinal ganglion cells. METHODS: Dissociated whole retinal preparations were prepared from postnatal day 16 to 19 rats. Retinal ganglion cells had been previously back-labeled with a fluorescent tracer. Retinal cells were incubated with pilocarpine, lithium, and inositol derivatives, and viability of the retrogradely labeled retinal ganglion cells was assayed after 24 hours. RESULTS: Pilocarpine was toxic to retinal ganglion cells in a dose-dependent fashion. This toxicity was potentiated by lithium and blocked by epi- and myo-inositol. CONCLUSIONS: Pilocarpine is toxic to retinal ganglion cells in a mixed culture assay. This toxicity appears to depend on the inositol pathway and is similar to its mode of action in other neurons. However, 0.4 mM pilocarpine (the lowest concentration that did not affect ganglion cell survival) is roughly 1000-fold higher than the vitreal concentration and 20-fold higher than the scleral concentration that can be obtained with topical administration of 2% pilocarpine in the rabbit eye.  (+info)

Abnormal myo-inositol and phospholipid metabolism in cultured fibroblasts from patients with ataxia telangiectasia. (4/1491)

Ataxia telangiectasia (AT) is a complex autosomal recessive disorder that has been associated with a wide range of physiological defects including an increased sensitivity to ionizing radiation and abnormal checkpoints in the cell cycle. The mutated gene product, ATM, has a domain possessing homology to phosphatidylinositol-3-kinase and has been shown to possess protein kinase activity. In this study, we have investigated how AT affects myo-inositol metabolism and phospholipid synthesis using cultured human fibroblasts. In six fibroblast lines from patients with AT, myo-inositol accumulation over a 3-h period was decreased compared to normal fibroblasts. The uptake and incorporation of myo-inositol into phosphoinositides over a 24-h period, as well as the free myo-inositol content was also lower in some but not all of the AT fibroblast lines. A consistent finding was that the proportion of 32P in total labeled phospholipid that was incorporated into phosphatidylglycerol was greater in AT than normal fibroblasts, whereas the fraction of radioactivity in phosphatidic acid was decreased. Turnover studies revealed that AT cells exhibit a less active phospholipid metabolism as compared to normal cells. In summary, these studies demonstrate that two manifestations of the AT defect are alterations in myo-inositol metabolism and phospholipid synthesis. These abnormalities could have an effect on cellular signaling pathways and membrane production, as well as on the sensitivity of the cells to ionizing radiation and proliferative responses.  (+info)

Hyperglycemia causes oxidative stress in pancreatic beta-cells of GK rats, a model of type 2 diabetes. (5/1491)

Reactive oxygen species are involved in a diversity of biological phenomena such as inflammation, carcinogenesis, aging, and atherosclerosis. We and other investigators have shown that the level of 8-hydroxy-2'-deoxyguanosine (8-OHdG), a marker for oxidative stress, is increased in either the urine or the mononuclear cells of the blood of type 2 diabetic patients. However, the association between type 2 diabetes and oxidative stress in the pancreatic beta-cells has not been previously described. We measured the levels of 8-OHdG and 4-hydroxy-2-nonenal (HNE)-modified proteins in the pancreatic beta-cells of GK rats, a model of nonobese type 2 diabetes. Quantitative immunohistochemical analyses with specific antibodies revealed higher levels of 8-OHdG and HNE-modified proteins in the pancreatic beta-cells of GK rats than in the control Wistar rats, with the levels increasing proportionally with age and fibrosis of the pancreatic islets. We further investigated whether the levels of 8-OHdG and HNE-modified proteins would be modified in the pancreatic beta-cells of GK rats fed with 30% sucrose solution or 50 ppm of voglibose (alpha-glucosidase inhibitor). In the GK rats, the levels of 8-OHdG and HNE-modified proteins, as well as islet fibrosis, were increased by sucrose treatment but reduced by voglibose treatment. These results indicate that the pancreatic beta-cells of GK rats are oxidatively stressed, and that chronic hyperglycemia might be responsible for the oxidative stress observed in the pancreatic beta-cells.  (+info)

The effect of inositol hexaphosphate on the absorption spectra of alpha and beta chains in nitrosyl hemoglobin. (6/1491)

The spectral changes of nitrosyl hemoglobin on addition of inositol hexaphosphate were studied in hybrid-heme hemoglobins. The results showed that the decrease in absorption in the Soret region was mainly due to a spectral change in alpha chains, and that the tension on heme in the quaternary T structure was much stronger in alpha than in beta chains.  (+info)

Cerebral metabolic abnormalities in congestive heart failure detected by proton magnetic resonance spectroscopy. (7/1491)

OBJECTIVES: Using proton magnetic resonance spectroscopy, we investigated cerebral metabolism and its determinants in congestive heart failure (CHF), and the effects of cardiac transplantation on these measurements. BACKGROUND: Few data are available about cerebral metabolism in CHF. METHODS: Fifty patients with CHF (ejection fraction < or = 35%) and 20 healthy volunteers were included for this study. Of the patients, 10 patients underwent heart transplantation. All subjects performed symptom-limited bicycle exercise test. Proton magnetic resonance spectroscopy (1H MRS) was obtained from localized regions (8 to 10 ml) of occipital gray matter (OGM) and parietal white matter (PWM). Absolute levels of the metabolites (N-acetylaspartate, creatine, choline, myo-inositol) were calculated. RESULTS: In PWM only creatine level was significantly lower in CHF than in control subjects, but in OGM all four metabolite levels were decreased in CHF. The creatine level was independently correlated with half-recovery time and duration of heart failure symptoms in PWM (r = -0.56, p < 0.05), and with peak oxygen consumption and serum sodium concentration in OGM (r = 0.58, p < 0.05). Cerebral metabolic abnormalities were improved after successful cardiac transplantation. CONCLUSIONS: This study shows that cerebral metabolism is abnormally deranged in advanced CHF and it may serve as a potential marker of the disease severity.  (+info)

The yeast inositol-sensitive upstream activating sequence, UASINO, responds to nitrogen availability. (8/1491)

The INO1 gene of yeast is expressed in logarithmically growing, wild-type cells when inositol is absent from the medium. However, the INO1 gene is repressed when inositol is present during logarithmic growth and it is also repressed as cells enter stationary phase whether inositol is present or not. In this report, we demonstrate that transient nitrogen limitation also causes INO1 repression. The repression of INO1 in response to nitrogen limitation shares many features in common with repression in response to the presence of inositol. Specifically, the response to nitrogen limitation is dependent upon the presence of a functional OPI1 gene product, it requires ongoing phosphatidylcholine biosynthesis and it is mediated by the repeated element, UASINO, found in the promoter of INO1 and other co-regulated genes of phospholipid biosynthesis. Thus, we propose that repression of INO1 in response to inositol and in response to nitrogen limitation occurs via a common mechanism that is sensitive to the status of ongoing phospholipid metabolism.  (+info)