Characterization of the interaction domains of Ure2p, a prion-like protein of yeast. (1/2775)

In the yeast Saccharomyces cerevisiae, the non-Mendelian inherited genetic element [URE3] behaves as a prion. A hypothesis has been put forward which states that [URE3] arises spontaneously from its cellular isoform Ure2p (the product of the URE2 gene), and propagates through interactions of the N-terminal domain of the protein, thus leading to its aggregation and loss of function. In the present study, various N- and C-terminal deletion mutants of Ure2p were constructed and their cross-interactions were tested in vitro and in vivo using affinity binding and a two-hybrid analysis. We show that the self-interaction of the protein is mediated by at least two domains, corresponding to the first third of the protein (the so-called prion-forming domain) and the C-terminal catalytic domain.  (+info)

Inflammatory cell-mediated tumour progression and minisatellite mutation correlate with the decrease of antioxidative enzymes in murine fibrosarcoma cells. (2/2775)

We isolated six clones of weakly tumorigenic fibrosarcoma (QR) from the tumorigenic clone BMT-11 cl-9. The QR clones were unable to grow in normal C57BL/6 mice when injected s.c. (1x10(5) cells). However, they formed aggressive tumours upon co-implantation with a 'foreign body', i.e. a gelatin sponge, and the rate of tumour take ranged from 8% to 58% among QR clones. The enhanced tumorigenicity was due to host cell-mediated reaction to the gelatin sponge (inflammation). Immunoblot analysis and enzyme activity assay revealed a significant inverse correlation between the frequencies of tumour formation by QR clones and the levels of manganese superoxide dismutase (Mn-SOD, P<0.005) and glutathione peroxidase (GPchi, P<0.01) in the respective tumour clones. Electron spin resonance (ESR) revealed that superoxide-scavenging ability of cell lysates of the QR clone with high level of Mn-SOD was significantly higher than that with low level of the antioxidative enzyme in the presence of potassium cyanide, an inhibitor for copper-zinc superoxide dismutase (CuZn-SOD) (P<0.001). Minisatellite mutation (MSM) induced by the inflammatory cells in tumour cells were investigated by DNA fingerprint analysis after QR clones had been co-cultured with gelatin-sponge-reactive cells. The MSM rate was significantly higher in the subclones with low levels of Mn-SOD and GPchi (P<0.05) than in the subclones with high levels of both enzymes. The MSM of the subclones with low levels of both enzymes was inhibited in the presence of mannitol, a hydroxyl radical scavenger. The content of 8-hydroxydeoxyguanosine (8-OHdG) by which the cellular DNA damage caused by active oxygen species can be assessed was significantly low in the tumours arising from the QR clone with high levels of Mn-SOD and GPchi even if the clone had been co-implanted with gelatin sponge, compared with the arising tumour from the QR clone with low levels of those antioxidative enzymes (P<0.001). In contrast, CuZn-SOD and catalase levels in the six QR clones did not have any correlation with tumour progression parameters. These results suggest that tumour progression is accelerated by inflammation-induced active oxygen species particularly accompanied with declined levels of intracellular antioxidative enzymes in tumour cells.  (+info)

Prion domain initiation of amyloid formation in vitro from native Ure2p. (3/2775)

The [URE3] non-Mendelian genetic element of Saccharomyces cerevisiae is an infectious protein (prion) form of Ure2p, a regulator of nitrogen catabolism. Here, synthetic Ure2p1-65 were shown to polymerize to form filaments 40 to 45 angstroms in diameter with more than 60 percent beta sheet. Ure2p1-65 specifically induced full-length native Ure2p to copolymerize under conditions where native Ure2p alone did not polymerize. Like Ure2p in extracts of [URE3] strains, these 180- to 220-angstrom-diameter filaments were protease resistant. The Ure2p1-65-Ure2p cofilaments could seed polymerization of native Ure2p to form thicker, less regular filaments. All filaments stained with Congo Red to produce the green birefringence typical of amyloid. This self-propagating amyloid formation can explain the properties of [URE3].  (+info)

Selenium redox biochemistry of zinc-sulfur coordination sites in proteins and enzymes. (4/2775)

Selenium has been increasingly recognized as an essential element in biology and medicine. Its biochemistry resembles that of sulfur, yet differs from it by virtue of both redox potentials and stabilities of its oxidation states. Selenium can substitute for the more ubiquitous sulfur of cysteine and as such plays an important role in more than a dozen selenoproteins. We have chosen to examine zinc-sulfur centers as possible targets of selenium redox biochemistry. Selenium compounds release zinc from zinc/thiolate-coordination environments, thereby affecting the cellular thiol redox state and the distribution of zinc and likely of other metal ions. Aromatic selenium compounds are excellent spectroscopic probes of the otherwise relatively unstable functional selenium groups. Zinc-coordinated thiolates, e.g., metallothionein (MT), and uncoordinated thiolates, e.g., glutathione, react with benzeneseleninic acid (oxidation state +2), benzeneselenenyl chloride (oxidation state 0) and selenocystamine (oxidation state -1). Benzeneseleninic acid and benzeneselenenyl chloride react very rapidly with MT and titrate substoichiometrically and with a 1:1 stoichiometry, respectively. Selenium compounds also catalyze the release of zinc from MT in peroxidation and thiol/disulfide-interchange reactions. The selenoenzyme glutathione peroxidase catalytically oxidizes MT and releases zinc in the presence of t-butyl hydroperoxide, suggesting that this type of redox chemistry may be employed in biology for the control of metal metabolism. Moreover, selenium compounds are likely targets for zinc/thiolate coordination centers in vivo, because the reactions are only partially suppressed by excess glutathione. This specificity and the potential to undergo catalytic reactions at low concentrations suggests that zinc release is a significant aspect of the therapeutic antioxidant actions of selenium compounds in antiinflammatory and anticarcinogenic agents.  (+info)

Alloxan in vivo does not only exert deleterious effects on pancreatic B cells. (5/2775)

The aim of the experiment was to investigate the mechanism of harmful alloxan action in vivo. 75 mg/kg b.w. of this diabetogenic agent were administered to fasting rats. Two minutes later the animals were decapitated. It was observed that alloxan caused a distinct rise in blood insulin and glucose levels with a concomitant drop of free fatty acids. The amount of sulfhydryl groups in the liver of alloxan-treated rats was decreased and glutathione peroxidase activity was substantially higher. These results indicate that some changes observed in alloxan-induced diabetes can not only be the consequence of B cells damage by alloxan but may also be the result of its direct influence on other tissues. It was also observed that glucose given 20 min before alloxan injection only partially protected against the deleterious effects of alloxan.  (+info)

Effects of pre- or postpartum selenium supplementation on selenium status in beef cows and their calves. (6/2775)

The effect of Se supplementation before or after calving on Se status in deficient cows and their calves was studied using 72 beef cows in two experiments. In Exp. 1, cows calving in February or March 1997 were supplemented orally for 15 d in late pregnancy with 13.0, 32.5, or 45.5 mg of Se/d as sodium selenite. Glutathione peroxidase (GSH-Px) activities were measured in red blood cells (RBC) or plasma of cows and calves at d 15 and between d 17 and 88 after calving. In Exp. 2, cows calving in January 1997 were supplemented orally with .0, 13.0, or 32.5 mg of Se/d for 15 d postpartum, and calves were injected with 1.38 mg of Se when 2 d old and at an average age of 49 d. The GSH-Px activities were measured in 30-d-old calves and in cows and calves between d 77 and 115 after calving. In both experiments, Se supplementation resulted in adequate Se status for the dams. The increase in RBC GSH-Px activity was faster with 45.5 mg of Se/d, and GSH-Px activities remained high for up to 98 d after the end of supplementation. The improvement in Se status in calves as a result of maternal supplementation was greater in Exp. 1 than in Exp. 2, suggesting that the placental transfer of Se is more efficient than milk transfer. Prepartum oral Se supplementation of deficient beef cows with 13.0 mg of Se/d for 15 d allowed adequate Se status of dams and calves, and 45.5 mg of Se/d resulted in a faster improvement of Se status. Parenteral administration of 1.38 mg of Se to newborn calves did not sustain normal Se status in calves issued from deficient cows.  (+info)

Age-related changes in antioxidant enzyme activities in the small intestine and liver from Wistar rats. (7/2775)

The present study was designed to determine age-related changes in intestinal and hepatic antioxidant enzymes including superoxide dismutase (SOD), glutathione peroxidase (GSH-PX), and glutathione-S-transferase (GST), and lipid peroxidation in male Wistar rats (n = 8) aged 2 wk, 2.5 mon, 5 mon, 10 mon, and 23 mon. In the small intestine, cytosolic SOD, GSH-PX activities and lipid peroxidation were not affected by age, but intestinal GST activity was noticeably enhanced as age increased. In particular, intestinal GST activity in 23 mon old rats was 3 times as strong as that in 2 wk old rats. In the liver, the activity of hepatic cytosolic SOD was not affected by age, whereas GSH-PX and GST activities in rats aged 10 mon and 23 mon were much stronger than those in rats aged 2 wk, 2.5 mon, and 5 mon. The increased lipid peroxidation in 2.5 mon and 5 mon old rats was observed when compared with that of other groups. It is therefore concluded from the results presented here that age greatly increases GST activity in the small intestinal mucosae and increasing GSH-PX, GST activities and lipid peroxidation in the liver from male Wistar rats.  (+info)

Granulomatous inflammatory response to recombinant filarial proteins of Brugia species. (8/2775)

The lymphatic inflammatory response in Brugia-infected jirds peaks early during primary infections and then decreases in severity as judged by the numbers of lymph thrombi present within these vessels. Antigen-specific hypersensitivity reactions in these animals was measured by a pulmonary granulomatous inflammatory response (PGRN) induced by somatic adult worm antigen (SAWA)-coated beads, and by cellular proliferative responses of renal lymph node cells. The kinetics of these responses temporally correspond to lymphatic lesion formation. The importance of any single antigen to the induction of this inflammatory response has not been elucidated. In this study, the PGRN was used to measure the cellular immune response to four recombinant filarial proteins during the course of a primary B. pahangi infection. These proteins were BpL4, glycoprotein (glutathione peroxidase) gp29, heat shock protein (hsp) 70, and filarial chitinase. All were fusion proteins of maltose-binding protein (MBP). Control beads included those coated with diethanolamine (DEA), SAWA, or MBP. The measurements of PRGN were made at 14, 28, 56, and > 150 days postinfection (PI) in infected jirds, in jirds sensitized with SAWA, and in uninfected jirds. The secretory homolog of glutathione peroxidase gp29 was the only recombinant protein tested that induced a significantly greater PGRN (P < 0.05) than controls. This was seen at 28 days PI. These observations indicate that gp29 may be part of the worm antigen complex that induces an early inflammatory response, a response similar to that observed with SAWA. These studies indicate that this approach is useful in investigating the functional ability of specific proteins in the induction and down-regulation of immune-mediated inflammatory responses elicited by filarial parasites. Absence of a granulomatous response to the other recombinant proteins used may be related to the nature and sensitivity of the assay used or the character of recombinant proteins tested.  (+info)