X- and Y-chromosome specific variants of the amelogenin gene allow sex determination in sheep (Ovis aries) and European red deer (Cervus elaphus). (1/54)

BACKGROUND: Simple and precise methods for sex determination in animals are a pre-requisite for a number of applications in animal production and forensics. However, some of the existing methods depend only on the detection of Y-chromosome specific sequences. Therefore, the abscence of a signal does not necessarily mean that the sample is of female origin, because experimental errors can also lead to negative results. Thus, the detection of Y- and X-chromosome specific sequences is advantageous. RESULTS: A novel method for sex identification in mammals (sheep, Ovis aries and European red deer, Cervus elaphus) is described, using a polymerase chain reaction (PCR) and sequencing of a part of the amelogenin gene. A partial sequence of the amelogenin gene of sheep and red deer was obtained, which exists on both X and Y chromosomes with a deletion region on the Y chromosome. With a specific pair of primers a DNA fragment of different length between the male and female mammal was amplified. CONCLUSION: PCR amplification using the amelogenin gene primers is useful in sex identification of samples from sheep and red deer and can be applied to DNA analysis of micro samples with small amounts of DNA such as hair roots as well as bones or embryo biopsies.  (+info)

Deletions on mouse Yq lead to upregulation of multiple X- and Y-linked transcripts in spermatids. (2/54)

Deletions on the mouse Y-chromosome long arm (MSYq) lead to teratozoospermia and in severe cases to infertility. We find that the downstream transcriptional changes in the testis resulting from the loss of MSYq-encoded transcripts involve upregulation of multiple X- and Y-linked spermatid-expressed genes, but not related autosomal genes. Therefore, this indicates that in normal males, there is a specific repression of X and Y (gonosomal) transcription in post-meiotic cells, which depends on MSYq-encoded transcripts. Together with the known sex ratio skew in favour of females in the offspring of fertile MSYqdel males, this strongly suggests the existence of an intragenomic conflict between X- and Y-linked genes. Two potential antagonists in this conflict are the X-linked multicopy gene Xmr and its multicopy MSYq-linked relative Sly, which are upregulated and downregulated, respectively, in the testes of MSYqdel males. Xmr is also expressed during meiotic sex chromosome inactivation (MSCI), indicating a link between the MSCI and the MSYq-dependent gonosomal repression in spermatids. We therefore propose that this repression and MSCI itself are evolutionary adaptations to maintain a normal sex ratio in the face of X/Y antagonism.  (+info)

A method for using incomplete triads to test maternally mediated genetic effects and parent-of-origin effects in relation to a quantitative trait. (3/54)

The authors recently developed a semiparametric family-based test for linkage and association between markers and quantitative traits. This quantitative polytomous logistic regression test allows for analysis of families with incomplete information on parental genotype. In addition, it is not necessary to assume normality of the quantitative trait. Previous simulations have shown that the new test is as powerful as the other widely used tests for linkage disequilibrium in relation to a quantitative trait. Here the authors propose an extension to quantitative polytomous logistic regression that allows testing for maternally mediated effects and parent-of-origin effects in the same framework. Missing data on parental genotype are accommodated through an expectation-maximization algorithm approach. Simulations show robustness of the new tests and good power for detecting effects in the presence or absence of offspring effects. Methods are illustrated with birth weight and gestational length, two quantitative outcomes for which data were collected in a Montreal, Canada, study of intrauterine growth restriction between May 1998 and June 2000.  (+info)

Contribution of NZB autoimmunity 2 to Y-linked autoimmune acceleration-induced monocytosis in association with murine systemic lupus. (4/54)

The accelerated development of systemic lupus erythematosus (SLE) in BXSB male mice is associated with the presence of the Y-linked autoimmune acceleration (Yaa) mutation, which induces an age-dependent monocytosis. Using a cohort of C57BL/6 (B6) x (NZB x B6)F1 backcross male mice bearing the Yaa mutation, we defined the pathogenic role and genetic basis for Yaa-associated monocytosis. We observed a remarkable correlation of monocytosis with autoantibody production and subsequent development of lethal lupus nephritis, indicating that monocytosis is an additional useful indicator for severe SLE. In addition, we identified an NZB-derived locus on chromosome 1 predisposing to the development of monocytosis, which peaked at Fcgr2b encoding FcgammaRIIB and directly overlapped with the previously identified NZB autoimmunity 2 (Nba2) locus. The contribution of Nba2 to monocytosis was confirmed by the analysis of Yaa-bearing B6 mice congenic for the NZB-Nba2 locus. Finally, we observed a very low-level expression of FcgammaRIIB on macrophages bearing the NZB-type Fcgr2b allele, compared with those bearing the B6-type allele, and the development of monocytosis in FcgammaRIIB haploinsufficient B6 mice carrying the Yaa mutation. These data suggest that the Nba2 locus may play a supplementary role in the pathogenesis of SLE by promoting the development of monocytosis and the activation of effector cells bearing stimulatory FcgammaR, in addition to its implication in the dysregulated activation of autoreactive B cells.  (+info)

Tspy is nonfunctional in the Mongolian gerbil but functional in the Syrian hamster. (5/54)

The TSPY gene is conserved in placental mammals and encodes the testis-specific protein, Y encoded. Within the testis, TSPY expression is restricted to germ cells, and it is assumed that TSPY plays a role in the proliferation of germ cells. Since it was first discovered in humans, TSPY orthologous gene families have been subsequently characterized in many mammalian lineages. In contrast to the situation in cattle and primates, in which TSPY is organized in a moderately repetitive cluster, including functional members and pseudogenes, a peculiar situation is observed in rodents, in which Tspy has been become low or single copy and degenerated to a pseudogene in some species of the subgenus Mus. We have extended this approach and investigated Tspy gene evolution in the Syrian hamster (Mesocricetus auratus) and the Mongolian gerbil (Meriones unguiculatus). Whereas the Syrian hamster Tspy is functionally conserved, organized in multiple copies, and expressed only in testis, the closely related Mongolian gerbil possesses a single-copy pseudogene that is unable to generate a functional transcript. Thus, the Tspy locus has degenerated at least twice at different points of rodent evolution, strongly supporting the hypothesis that the decay of Y-chromosomal genes is an intrinsic evolutionary process. TSPY is the first example of a Y-chromosomal tandem repetitive gene whose decay could be studied in two independent mammalian lineages.  (+info)

Wild-derived XY sex-reversal mutants in the Medaka, Oryzias latipes. (6/54)

The medaka, Oryzias latipes, has an XX/XY sex-determination mechanism. A Y-linked DM domain gene, DMY, has been isolated by positional cloning as a sex-determining gene in this species. Previously, we found 23 XY sex-reversed females from 11 localities by examining the genotypic sex of wild-caught medaka. Genetic analyses revealed that all these females had Y-linked gene mutations. Here, we aimed to clarify the cause of this sex reversal. To achieve this, we screened for mutations in the amino acid coding sequence of DMY and examined DMY expression at 0 days after hatching (dah) using densitometric semiquantitative RT-PCR. We found that the mutants could be classified into two groups. One contained mutations in the amino acid coding sequence of DMY, while the other had reduced DMY expression at 0 dah although the DMY coding sequence was normal. For the latter, histological analyses indicated that YwOurYwOur (YwOur, Y chromosome derived from an Oura XY female) individuals with the lowest DMY expression among the tested mutants were expected to develop into females at 0 dah. These results suggest that early testis development requires DMY expression above a threshold level. Mutants with reduced DMY expression may prove valuable for identifying DMY regulatory elements.  (+info)

Paternal inheritance in parthenogenetic forms of the planarian Schmidtea polychroa. (7/54)

Parthenogenesis usually includes clonal inheritance, which is thought to increase the risk of the clonal populations' extinction. Yet many parthenogenetic organisms appear to have survived for extended periods. A possible explanation is that parthenogens occasionally reproduce through sex-like processes. Although there is indirect evidence for occasional sex, the underlying mechanisms are currently unknown. In the present study, we examined sex-like processes in the planarian flatworm Schmidtea (Dugesia) polychroa. Parthenogenetic forms of this species are simultaneous hermaphrodites that require sperm to trigger embryogenesis, whereas paternal genetic material is usually excluded from the oocyte (sperm-dependent parthenogenesis). Based on a comparison of parents and offspring, using highly polymorphic microsatellites, we demonstrate the incorporation of paternal alleles in about 5% of the offspring. We detected two distinct processes: chromosome addition and chromosome displacement. Such rare sexual processes may explain the long-term persistence of the many purely parthenogenetic populations of S. polychroa in northern Europe.  (+info)

Microsatellite length differences between humans and chimpanzees at autosomal Loci are not found at equivalent haploid Y chromosomal Loci. (8/54)

When homologous microsatellites are compared between species, significant differences in mean length are often noted. A dominant cause of these length differences is ascertainment bias due to selection for maximum repeat number and repeat purity when the markers are being developed. However, even after ascertainment bias has been allowed for through reciprocal comparisons, significant length differences remain, suggesting that the average microsatellite mutation rate differs between species. Two classes of mechanism have been proposed: rapid evolution of enzymes involved in the generation and repair of slippage products (enzyme evolution model) and heterozygote instability, whereby interchromosomal events at heterozygous sites offer extra opportunities for mutations to occur (heterozygote instability model). To examine which of these hypotheses is most likely, we compared ascertainment bias and species length differences between humans and chimpanzees in autosomal and Y chromosomal microsatellites. We find that levels of ascertainment bias are indistinguishable, but that interspecies length differences are significantly greater for autosomal loci compared with haploid Y chromosomal loci. Such a pattern is consistent with predictions from the heterozygote instability model and is not expected under models of microsatellite evolution that do not include interchromosomal events such as the enzyme evolution model.  (+info)