Role of Bordetella pertussis virulence factors in adherence to epithelial cell lines derived from the human respiratory tract. (1/2491)

During colonization of the respiratory tract by Bordetella pertussis, virulence factors contribute to adherence of the bacterium to the respiratory tract epithelium. In the present study, we examined the roles of the virulence factors filamentous hemagglutinin (FHA), fimbriae, pertactin (Prn), and pertussis toxin (PT) in the adherence of B. pertussis to cells of the human bronchial epithelial cell line NCI-H292 and of the laryngeal epithelial cell line HEp-2. Using B. pertussis mutant strains and purified FHA, fimbriae, Prn, and PT, we demonstrated that both fimbriae and FHA are involved in the adhesion of B. pertussis to laryngeal epithelial cells, whereas only FHA is involved in the adherence to bronchial epithelial cells. For PT and Prn, no role as adhesion factor was found. However, purified PT bound to both bronchial and laryngeal cells and as such reduced the adherence of B. pertussis to these cells. These data may imply that fimbriae play a role in infection of only the laryngeal mucosa, while FHA is the major factor in colonization of the entire respiratory tract.  (+info)

Genetic characterization of a new type IV-A pilus gene cluster found in both classical and El Tor biotypes of Vibrio cholerae. (2/2491)

The Vibrio cholerae genome contains a 5.4-kb pil gene cluster that resembles the Aeromonas hydrophila tap gene cluster and other type IV-A pilus assembly operons. The region consists of five complete open reading frames designated pilABCD and yacE, based on the nomenclature of related genes from Pseudomonas aeruginosa and Escherichia coli K-12. This cluster is present in both classical and El Tor biotypes, and the pilA and pilD genes are 100% conserved. The pilA gene encodes a putative type IV pilus subunit. However, deletion of pilA had no effect on either colonization of infant mice or adherence to HEp-2 cells, demonstrating that pilA does not encode the primary subunit of a pilus essential for these processes. The pilD gene product is similar to other type IV prepilin peptidases, proteins that process type IV signal sequences. Mutational analysis of the pilD gene showed that pilD is essential for secretion of cholera toxin and hemagglutinin-protease, mannose-sensitive hemagglutination (MSHA), production of toxin-coregulated pili, and colonization of infant mice. Defects in these functions are likely due to the lack of processing of N termini of four Eps secretion proteins, four proteins of the MSHA cluster, and TcpB, all of which contain type IV-A leader sequences. Some pilD mutants also showed reduced adherence to HEp-2 cells, but this defect could not be complemented in trans, indicating that the defect may not be directly due to a loss of pilD. Taken together, these data demonstrate the effectiveness of the V. cholerae genome project for rapid identification and characterization of potential virulence factors.  (+info)

Molecular basis for the enterocyte tropism exhibited by Salmonella typhimurium type 1 fimbriae. (3/2491)

Salmonella typhimurium exhibits a distinct tropism for mouse enterocytes that is linked to their expression of type 1 fimbriae. The distinct binding traits of Salmonella type 1 fimbriae is also reflected in their binding to selected mannosylated proteins and in their ability to promote secondary bacterial aggregation on enterocyte surfaces. The determinant of binding in Salmonella type 1 fimbriae is a 35-kDa structurally distinct fimbrial subunit, FimHS, because inactivation of fimHS abolished binding activity in the resulting mutant without any apparent effect on fimbrial expression. Surprisingly, when expressed in the absence of other fimbrial components and as a translational fusion protein with MalE, FimHS failed to demonstrate any specific binding tropism and bound equally to all cells and mannosylated proteins tested. To determine if the binding specificity of Salmonella type 1 fimbriae was determined by the fimbrial shaft that is intimately associated with FimHS, we replaced the amino-terminal half of FimHS with the corresponding sequence from Escherichia coli FimH (FimHE) that contains the receptor binding domain of FimHE. The resulting hybrid fimbriae bearing FimHES on a Salmonella fimbrial shaft exhibited binding traits that resembled that of Salmonella rather than E. coli fimbriae. Apparently, the quaternary constraints imposed by the fimbrial shaft on the adhesin determine the distinct binding traits of S. typhimurium type 1 fimbriae.  (+info)

P fimbriae and other adhesins enhance intestinal persistence of Escherichia coli in early infancy. (4/2491)

Resident and transient Escherichia coli strains were identified in the rectal flora of 22 Pakistani infants followed from birth to 6 months of age. All strains were tested for O-antigen expression, adhesin specificity (P fimbriae, other mannose-resistant adhesins or type 1 fimbriae) and adherence to the colonic cell line HT-29. Resident strains displayed higher mannose-resistant adherence to HT-29 cells, and expressed P fimbriae (P = 0.0036) as well as other mannose-resistant adhesins (P = 0.012) more often than transient strains. In strains acquired during the first month of life, P fimbriae were 12 times more frequent in resident than in transient strains (P = 0.0006). The O-antigen distribution did not differ between resident and transient strains, and none of the resident P-fimbriated strains belonged to previously recognized uropathogenic clones. The results suggest that adhesins mediating adherence to intestinal epithelial cells, especially P fimbriae, enhance the persistence of E. coli in the large intestine of infants.  (+info)

Environmental signals modulate ToxT-dependent virulence factor expression in Vibrio cholerae. (5/2491)

The regulatory protein ToxT directly activates the transcription of virulence factors in Vibrio cholerae, including cholera toxin (CT) and the toxin-coregulated pilus (TCP). Specific environmental signals stimulate virulence factor expression by inducing the transcription of toxT. We demonstrate that transcriptional activation by the ToxT protein is also modulated by environmental signals. ToxT expressed from an inducible promoter activated high-level expression of CT and TCP in V. cholerae at 30 degrees C, but expression of CT and TCP was significantly decreased or abolished by the addition of 0.4% bile to the medium and/or an increase of the temperature to 37 degrees C. Also, expression of six ToxT-dependent TnphoA fusions was modulated by temperature and bile. Measurement of ToxT-dependent transcription of genes encoding CT and TCP by ctxAp- and tcpAp-luciferase fusions confirmed that negative regulation by 37 degrees C or bile occurs at the transcriptional level in V. cholerae. Interestingly, ToxT-dependent transcription of these same promoters in Salmonella typhimurium was relatively insensitive to regulation by temperature or bile. These data are consistent with ToxT transcriptional activity being modulated by environmental signals in V. cholerae and demonstrate an additional level of complexity governing the expression of virulence factors in this pathogen. We propose that negative regulation of ToxT-dependent transcription by environmental signals prevents the incorrect temporal and spatial expression of virulence factors during cholera pathogenesis.  (+info)

Roles of Pseudomonas aeruginosa las and rhl quorum-sensing systems in control of twitching motility. (6/2491)

Pseudomonas aeruginosa is a ubiquitous environmental bacterium and an important human pathogen. The production of several virulence factors by P. aeruginosa is controlled through two quorum-sensing systems, las and rhl. We have obtained evidence that both the las and rhl quorum-sensing systems are also required for type 4 pilus-dependent twitching motility and infection by the pilus-specific phage D3112cts. Mutants which lack the ability to synthesize PAI-1, PAI-2, or both autoinducers were significantly or greatly impaired in twitching motility and in susceptibility to D3112cts. Twitching motility and phage susceptibility in the autoinducer-deficient mutants were partially restored by exposure to exogenous PAI-1 and PAI-2. Both twitching motility and infection by pilus-specific phage are believed to be dependent on the extension and retraction of polar type 4 pili. Western blot analysis of whole-cell lysates and enzyme-linked immunosorbent assays of intact cells were used to measure the amounts of pilin on the cell surfaces of las and rhl mutants relative to that of the wild type. It appears that PAI-2 plays a crucial role in twitching motility and phage infection by affecting the export and assembly of surface type 4 pili. The ability of P. aeruginosa cells to adhere to human bronchial epithelial cells was also found to be dependent on the rhl quorum-sensing system. Microscopic analysis of twitching motility indicated that mutants which were unable to synthesize PAI-1 were defective in the maintenance of cellular monolayers and migrating packs of cells. Thus, PAI-1 appears to have an essential role in maintaining cell-cell spacing and associations required for effective twitching motility.  (+info)

The level of expression of the minor pilin subunit, CooD, determines the number of CS1 pili assembled on the cell surface of Escherichia coli. (7/2491)

CooD, the minor subunit of CS1 pili of enterotoxigenic Escherichia coli, is essential for the assembly of stable, functional pili. We previously proposed that CooD is a rate-limiting initiator of CS1 pilus assembly and predicted that the level of CooD expression should therefore determine the number of CS1 pili assembled on the cell surface. In this study, we confirm that CooD is required for the initiation of pilus assembly rather than for the stabilization of pili after they are assembled by demonstrating that specific modulation of cooD expression also modulates the number of CS1 pili on bacterial cells.  (+info)

Organization of biogenesis genes for aggregative adherence fimbria II defines a virulence gene cluster in enteroaggregative Escherichia coli. (8/2491)

Several virulence-related genes have been described for prototype enteroaggregative Escherichia coli (EAEC) strain 042, which has been shown to cause diarrhea in human volunteers. Among these factors are the enterotoxins Pet and EAST and the fimbrial antigen aggregative adherence fimbria II (AAF/II), all of which are encoded on the 65-MDa virulence plasmid pAA2. Using nucleotide sequence analysis and insertional mutagenesis, we have found that the genes required for the expression of each of these factors, as well as the transcriptional activator of fimbrial expression AggR, map to a distinct cluster on the pAA2 plasmid map. The cluster is 23 kb in length and includes two regions required for expression of the AAF/II fimbria. These fimbrial biogenesis genes feature a unique organization in which the chaperone, subunit, and transcriptional activator lie in one cluster, whereas the second, unlinked cluster comprises a silent chaperone gene, usher, and invasin reminiscent of Dr family fimbrial clusters. This plasmid-borne virulence locus may represent an important set of virulence determinants in EAEC strains.  (+info)