Melanoma cells present a MAGE-3 epitope to CD4(+) cytotoxic T cells in association with histocompatibility leukocyte antigen DR11. (1/5661)

In this study we used TEPITOPE, a new epitope prediction software, to identify sequence segments on the MAGE-3 protein with promiscuous binding to histocompatibility leukocyte antigen (HLA)-DR molecules. Synthetic peptides corresponding to the identified sequences were synthesized and used to propagate CD4(+) T cells from the blood of a healthy donor. CD4(+) T cells strongly recognized MAGE-3281-295 and, to a lesser extent, MAGE-3141-155 and MAGE-3146-160. Moreover, CD4(+) T cells proliferated in the presence of recombinant MAGE-3 after processing and presentation by autologous antigen presenting cells, demonstrating that the MAGE-3 epitopes recognized are naturally processed. CD4(+) T cells, mostly of the T helper 1 type, showed specific lytic activity against HLA-DR11/MAGE-3-positive melanoma cells. Cold target inhibition experiments demonstrated indeed that the CD4(+) T cells recognized MAGE-3281-295 in association with HLA-DR11 on melanoma cells. This is the first evidence that a tumor-specific shared antigen forms CD4(+) T cell epitopes. Furthermore, we validated the use of algorithms for the prediction of promiscuous CD4(+) T cell epitopes, thus opening the possibility of wide application to other tumor-associated antigens. These results have direct implications for cancer immunotherapy in the design of peptide-based vaccines with tumor-specific CD4(+) T cell epitopes.  (+info)

Disorders in cell circuitry associated with multistage carcinogenesis: exploitable targets for cancer prevention and therapy. (2/5661)

The development of a malignant tumor involves the progressive acquisition of mutations and epigenetic abnormalities in multiple genes that have highly diverse functions. Some of these genes code for pathways of signal transduction that mediate the action of growth factors. The enzyme protein kinase C plays an important role in these events and in the process of tumor promotion. Therefore, we examined the effects of three inhibitors of protein kinase C, CGP 41251, RO 31-8220, and calphostin C, on human glioblastoma cells. These compounds inhibited growth and induced apoptosis; these activities were associated with a decrease in the level of CDC2 and cyclin B1/CDC2-associated kinase activity. This may explain why the treated cells accumulated in G2-M. In a separate series of studies, we examined abnormalities in cell cycle control genes in human cancer. We have found that cyclin D1 is frequently overexpressed in a variety of human cancers. Mechanistic studies indicate that cyclin D1 can play a critical role in carcinogenesis because: overexpression enhances cell transformation and tumorigenesis; introduction of an antisense cyclin D1 cDNA into either human esophageal or colon cancer cells reverts their malignant phenotype; and overexpression of cyclin D1 can enhance the amplification of other genes. The latter finding suggests that cyclin D1 can enhance genomic instability and, thereby, the process of tumor progression. Therefore, inhibitors of the function of cyclin D1 may be useful in both cancer chemoprevention and therapy. We obtained evidence for the existence of homeostatic feedback loops between cyclins D1 or E and the cell cycle inhibitory protein p27Kip1. On the basis of these and other findings, we hypothesize that, because of their disordered circuitry, cancer cells suffer from "gene addiction" and "gene hypersensitivity," disorders that might be exploited in both cancer prevention and therapy.  (+info)

Impaired invariant chain degradation and antigen presentation and diminished collagen-induced arthritis in cathepsin S null mice. (3/5661)

Cathepsins have been implicated in the degradation of proteins destined for the MHC class II processing pathway and in the proteolytic removal of invariant chain (Ii), a critical regulator of MHC class II function. Mice lacking the lysosomal cysteine proteinase cathepsin S (catS) demonstrated a profound inhibition of Ii degradation in professional APC in vivo. A marked variation in the generation of MHC class II-bound Ii fragments and presentation of exogenous proteins was observed between B cells, dendritic cells, and macrophages lacking catS. CatS-deficient mice showed diminished susceptibility to collagen-induced arthritis, suggesting a potential therapeutic target for regulation of immune responsiveness.  (+info)

A transfection compound series based on a versatile Tris linkage. (4/5661)

The family of cationic lipid transfection reagents described here demonstrates a modular design that offers potential for the ready synthesis of a wide variety of molecular variants. The key feature of these new molecules is the use of Tris as a linker for joining the hydrophobic domain to a cationic head group. The molecular design offers the opportunity to conveniently synthesise compounds differing in charge, the number and nature of hydrophobic groups in the hydrophobic domain and the characteristics of the spacer between the cationic and hydrophobic moieties. We show that prototype reagents of this design can deliver reporter genes into cultured cells with efficiencies rivaling those of established cationic lipid transfection reagents. A feature of these reagents is that they are not dependent on formulation with a neutral lipid for activity.  (+info)

Rational design and synthesis of a novel anti-leukemic agent targeting Bruton's tyrosine kinase (BTK), LFM-A13 [alpha-cyano-beta-hydroxy-beta-methyl-N-(2, 5-dibromophenyl)propenamide]. (5/5661)

In a systematic effort to design potent inhibitors of the anti-apoptotic tyrosine kinase BTK (Bruton's tyrosine kinase) as anti-leukemic agents with apoptosis-promoting and chemosensitizing properties, we have constructed a three-dimensional homology model of the BTK kinase domain. Our modeling studies revealed a distinct rectangular binding pocket near the hinge region of the BTK kinase domain with Leu460, Tyr476, Arg525, and Asp539 residues occupying the corners of the rectangle. The dimensions of this rectangle are approximately 18 x 8 x 9 x 17 A, and the thickness of the pocket is approximately 7 A. Advanced docking procedures were employed for the rational design of leflunomide metabolite (LFM) analogs with a high likelihood to bind favorably to the catalytic site within the kinase domain of BTK. The lead compound LFM-A13, for which we calculated a Ki value of 1.4 microM, inhibited human BTK in vitro with an IC50 value of 17.2 +/- 0.8 microM. Similarly, LFM-A13 inhibited recombinant BTK expressed in a baculovirus expression vector system with an IC50 value of 2.5 microM. The energetically favorable position of LFM-A13 in the binding pocket is such that its aromatic ring is close to Tyr476, and its substituent group is sandwiched between residues Arg525 and Asp539. In addition, LFM-A13 is capable of favorable hydrogen bonding interactions with BTK via Asp539 and Arg525 residues. Besides its remarkable potency in BTK kinase assays, LFM-A13 was also discovered to be a highly specific inhibitor of BTK. Even at concentrations as high as 100 micrograms/ml (approximately 278 microM), this novel inhibitor did not affect the enzymatic activity of other protein tyrosine kinases, including JAK1, JAK3, HCK, epidermal growth factor receptor kinase, and insulin receptor kinase. In accordance with the anti-apoptotic function of BTK, treatment of BTK+ B-lineage leukemic cells with LFM-A13 enhanced their sensitivity to ceramide- or vincristine-induced apoptosis. To our knowledge, LFM-A13 is the first BTK-specific tyrosine kinase inhibitor and the first anti-leukemic agent targeting BTK.  (+info)

Design of highly specific cytotoxins by using trans-splicing ribozymes. (6/5661)

We have designed ribozymes based on a self-splicing group I intron that can trans-splice exon sequences into a chosen RNA target to create a functional chimeric mRNA and provide a highly specific trigger for gene expression. We have targeted ribozymes against the coat protein mRNA of a widespread plant pathogen, cucumber mosaic virus. The ribozymes were designed to trans-splice the coding sequence of the diphtheria toxin A chain in frame with the viral initiation codon of the target sequence. Diphtheria toxin A chain catalyzes the ADP ribosylation of elongation factor 2 and can cause the cessation of protein translation. In a Saccharomyces cerevisiae model system, ribozyme expression was shown to specifically inhibit the growth of cells expressing the virus mRNA. A point mutation at the target splice site alleviated this ribozyme-mediated toxicity. Increasing the extent of base pairing between the ribozyme and target dramatically increased specific expression of the cytotoxin and reduced illegitimate toxicity in vivo. Trans-splicing ribozymes may provide a new class of agents for engineering virus resistance and therapeutic cytotoxins.  (+info)

A cytosine analog that confers enhanced potency to antisense oligonucleotides. (7/5661)

Antisense technology is based on the ability to design potent, sequence-specific inhibitors. The G-clamp heterocycle modification, a cytosine analog that clamps on to guanine by forming an additional hydrogen bond, was rationally designed to enhance oligonucleotide/RNA hybrid affinity. A single, context-dependent substitution of a G-clamp heterocycle into a 15-mer phosphorothioate oligodeoxynucleotide (S-ON) targeting the cyclin-dependent kinase inhibitor, p27(kip1), enhanced antisense activity as compared with a previously optimized C5-propynyl-modified p27(kip1) S-ON and functionally replaced 11 C5-propynyl modifications. Dose-dependent, sequence-specific antisense inhibition was observed at nanomolar concentrations of the G-clamp S-ONs. A single nucleotide mismatch between the G-clamp S-ON and the p27(kip1) mRNA reduced the potency of the antisense ON by five-fold. A 2-base-mismatch S-ON eliminated antisense activity, confirming the sequence specificity of G-clamp-modified S-ONs. The G-clamp-substituted p27(kip1) S-ON activated RNase H-mediated cleavage and demonstrated increased in vitro binding affinity for its RNA target compared with conventional 15-mer S-ONs. Furthermore, incorporation of a single G-clamp modification into a previously optimized 20-mer phosphorothioate antisense S-ON targeting c-raf increased the potency of the S-ON 25-fold. The G-clamp heterocycle is a potent, mismatch-sensitive, automated synthesizer-compatible antisense S-ON modification that will have important applications in the elucidation of gene function, the validation of gene targets, and the development of more potent antisense-based pharmaceuticals.  (+info)

Crystal structure of human type II inosine monophosphate dehydrogenase: implications for ligand binding and drug design. (8/5661)

Inosine monophosphate dehydrogenase (IMPDH) controls a key metabolic step in the regulation of cell growth and differentiation. This step is the NAD-dependent oxidation of inosine 5' monophosphate (IMP) to xanthosine 5' monophosphate, the rate-limiting step in the synthesis of the guanine nucleotides. Two isoforms of IMPDH have been identified, one of which (type II) is significantly up- regulated in neoplastic and differentiating cells. As such, it has been identified as a major target in antitumor and immunosuppressive drug design. We present here the 2.9-A structure of a ternary complex of the human type II isoform of IMPDH. The complex contains the substrate analogue 6-chloropurine riboside 5'-monophosphate (6-Cl-IMP) and the NAD analogue selenazole-4-carboxamide adenine dinucleotide, the selenium derivative of the active metabolite of the antitumor drug tiazofurin. The enzyme forms a homotetramer, with the dinucleotide binding at the monomer-monomer interface. The 6 chloro-substituted purine base is dehalogenated, forming a covalent adduct at C6 with Cys-331. The dinucleotide selenazole base is stacked against the 6-Cl-IMP purine ring in an orientation consistent with the B-side stereochemistry of hydride transfer seen with NAD. The adenosine end of the ligand interacts with residues not conserved between the type I and type II isoforms, suggesting strategies for the design of isoform-specific agents.  (+info)