Growth characteristics of Heterosigma akashiwo virus and its possible use as a microbiological agent for red tide control. (1/1048)

The growth characteristics of Heterosigma akashiwo virus clone 01 (HaV01) were examined by performing a one-step growth experiment. The virus had a latent period of 30 to 33 h and a burst size of 7.7 x 10(2) lysis-causing units in an infected cell. Transmission electron microscopy showed that the virus particles formed on the peripheries of viroplasms, as observed in a natural H. akashiwo cell. Inoculation of HaV01 into a mixed algal culture containing four phytoplankton species, H. akashiwo H93616, Chattonella antiqua (a member of the family Raphidophyceae), Heterocapsa triquetra (a member of the family Dinophyceae), and Ditylum brightwellii (a member of the family Bacillariophyceae), resulted in selective growth inhibition of H. akashiwo. Inoculation of HaV01 and H. akashiwo H93616 into a natural seawater sample produced similar results. However, a natural H. akashiwo red tide sample did not exhibit any conspicuous sensitivity to HaV01, presumably because of the great diversity of the host species with respect to virus infection. The growth characteristics of the lytic virus infecting the noxious harmful algal bloom-causing alga were considered, and the possibility of using this virus as a microbiological agent against H. akashiwo red tides is discussed.  (+info)

Determination and phylogenetic analysis of partial sequences from TT virus isolates. (2/1048)

Sera from French in-patients were tested for the presence of the TT virus (TTV) genome using PCR and degenerate primers located in ORF1. Thirty-six sequences were determined and compared with those deposited in databases, revealing a high degree of genetic variability between TTV isolates (up to 47% for amino acid sequences). Phylogenetic analysis demonstrated the existence of three main groups corresponding to the previously described genotypes 1 and 2 and to a new genotype 3. Isolates could be assigned to distinct genotypes if their genetic distance was > 27%. No comparable genetic criteria were found for the definition of sub-types in the region studied. A 15-31 month follow-up of three haemodialysis patients proved the existence of chronic infection by TTV. In one patient, two strains belonging to different genotypes were detected at the same time. Sequences of both ORF1 and ORF2 remained unchanged for a given strain during the follow-up.  (+info)

Molecular and biophysical characterization of TT virus: evidence for a new virus family infecting humans. (3/1048)

The recent isolation of a novel DNA virus from the serum of a Japanese patient (T.T.) has provided the latest possible candidate virus associated with cryptogenic hepatitis. In the present study, we report the complete nucleotide sequence of this virus (TTV) isolated from the serum of a West African. Based on PCR studies designed to amplify overlapping regions of the viral genome and sensitivity to digestion with mung bean nuclease, the viral genome is circular and negative stranded, and comprises 3,852 nt, which is 113 nt longer than the prototype isolate from Japan. Cesium chloride density gradient centrifugation demonstrated banding of the virus at 1.31-1.34 g/ml; filtration studies indicated that TTV had a particle size of 30-50 nm. These results suggest that the virus is similar to the Circoviridae, viruses known to infect plants and vertebrates (e. g., birds and swine); however, sequence similarity searches of available databases did not reveal identity between TTV and other viruses. Phylogenetic analyses of a 260-nt region from 151 globally distributed isolates demonstrated the existence of three major TTV genotypes. Several individuals at high risk for infection with parenterally transmitted viruses were infected with more than one genotype. There was no correlation between genotype and geographic origin. Finally, intravenous inoculation of TTV-positive human serum into chimpanzees demonstrated that TTV can be transmitted to primates; no biochemical or histological evidence for hepatitis was obtained. The distinct biophysical and molecular characteristics of TTV suggest that it is a member of a new family of viruses, which we have tentatively named the Circinoviridae.  (+info)

Susceptibility of TT virus to interferon therapy. (4/1048)

TT virus (TTV) is a newly identified single-stranded DNA virus. We retrospectively analysed serum samples from sixteen patients, infected with both hepatitis C virus (HCV) and TTV, and who had been treated with interferon. An elevated serum alanine aminotransferase level after interferon was associated with persistence of HCV (abnormal in five of seven patients with persistence of HCV compared with normal in all nine patients who showed eradication of HCV) irrespective of persistence of TTV. Comparison of partial viral DNA nucleotide sequences and phylogenetic analysis showed that viral strains that had a high identity to the prototype virus were more resistant to interferon than those showing low nucleotide sequence identity. Although we observed no liver cell injury caused by persistent TTV infection, the mechanism(s) of TTV resistance to interferon should be further investigated for a better understanding of viral diseases and establishment of therapy.  (+info)

Early acquisition of TT virus (TTV) in an area endemic for TTV infection. (5/1048)

TT virus (TTV) is widely distributed, with high frequencies of viremia in South America, Central Africa, and Papua New Guinea. The incidence and timing of infection in children born in a rural area of the Democratic Republic of Congo was investigated. TTV viremia was detected in 61 (58%) of 105 women attending an antenatal clinic and in 36 (54%) of 68 infants. Most infants acquired the infection at >/=3 months postpartum. Surprisingly, TTV infection was detected in a large proportion of children with TTV-negative mothers (13 [43%] of 30). Nucleotide sequences of TTV-infected children were frequently epidemiologically unlinked to variants detected in the mother. These three aspects contrast with the maternal transmission of hepatitis G virus/GB virus C in this cohort and suggest an environmental source of TTV infection comparable to hepatitis A virus and other enterically transmitted infections.  (+info)

Prevalence of TT virus infection in US blood donors and populations at risk for acquiring parenterally transmitted viruses. (6/1048)

Two overlapping sets of TT virus (TTV)-specific polymerase chain reaction primers were used to test for presence of TTV, which was found in approximately 10% of US volunteer blood donors, 13% of commercial blood donors, and 17% of intravenous drug abusers. The rate of TTV infection among US non-A, non-B, non-C, non-D, non-E hepatitis patients was only 2%. Among commercial blood donors and intravenous drug abusers, only 1%-3% of the TTV-positive individuals were coinfected with GB virus C (GBV-C), a parenterally transmitted virus. This suggests that GBV-C and TTV may have different routes of transmission. Comparison of the sensitivities of 2 TTV polymerase chain reaction (PCR) primer sets showed that the majority of samples were detected with only 1 of the 2 sets. Therefore, previous studies in which only a single PCR primer pair was used may have significantly underestimated the true prevalence of TTV.  (+info)

Excretion into bile of a novel unenveloped DNA virus (TT virus) associated with acute and chronic non-A-G hepatitis. (7/1048)

Recently, an unenveloped, single-stranded DNA virus named TT virus (TTV) has been reported in association with hepatitis of non-A-G etiology. Five patients with TTV viremia, who received bile drainage or cholecystectomy, were tested for TTV DNA in bile by polymerase chain reaction with heminested primers. TTV DNA was detected in bile from all patients; titers were 10-100 times higher than in serum in 4 and at a comparable level in the remaining 1 patient. TTV DNA was detected in feces, also, in 1 of the 2 patients tested. The buoyant density of TTV in bile from 1 tested patient (1.33-1.35 g/cm3) was the same as that in feces (1.32-1.35 g/cm3). TTV may be secreted via bile into feces in a transmissible form and would spread by a fecal-oral route for deep and wide penetration into the general population.  (+info)

TT virus in bone marrow transplant recipients. (8/1048)

TT virus (TTV) is a newly discovered transfusion-transmissible DNA virus, which may cause posttransfusion hepatitis. The virus was detected in 12% of Japanese blood donors. The aim of the study is to investigate the prevalence and clinical influence of TTV in bone marrow transplant (BMT) recipients. Sera from 25 BMT recipients obtained 6 to 12 weeks after the transplant were examined for TTV-DNA by the seminested polymerase chain reaction. Serial samples were additionally analyzed in patients with TTV-DNA. Fifteen of 25 recipients (60%) were positive for TTV-DNA after transplant, whereas it was detected in only two of 20 BMT donors (10%). In patients positive for TTV-DNA before BMT, the amount of TTV-DNA decreased to an undetectable level during the myelosuppressed period after BMT. We also found that there was a novel group of TTV, G3, classified by the nucleotide sequences. The median peak alanine aminotransferase (ALT) levels were 135.0 IU/L and 116.5 IU/L (normal range, 4 to 36 IU/L) in TTV-positive and TTV-negative recipients, respectively. In one of the seven TTV-positive patients who developed hepatic injury (ALT > 150 IU/L), a serial change in the serum TTV titer showed a good correlation with the ALT level. We concluded that (1) the prevalence of TTV is high in BMT recipients, (2) TTV might be replicated mainly in hematopoietic cells, (3) transfusion-transmitted TTV may cause persistent infection, (4) a novel genetic group of TTV, G3, was discovered, and (5) TTV does not seem to frequently cause hepatic injury, although one patient was strongly suggested to have TTV-induced hepatitis.  (+info)