Diet and risk of ethanol-induced hepatotoxicity: carbohydrate-fat relationships in rats. (1/751)

Nutritional status is a primary factor in the effects of xenobiotics and may be an important consideration in development of safety standards and assessment of risk. One important xenobiotic consumed daily by millions of people worldwide is alcohol. Some adverse effects of ethanol, such as alcohol liver disease, have been linked to diet. For example, ethanol-induced hepatotoxicity in animal models requires diets that have a high percentage of the total calories as unsaturated fat. However, little attention has been given to the role of carbohydrates (or carbohydrate to fat ratio) in the effects of this important xenobiotic on liver injury. In the present study, adult male Sprague-Dawley rats (8-10/group) were infused (intragastrically) diets high in unsaturated fat (25 or 45% total calories), sufficient protein (16%) and ethanol (38%) in the presence or absence of adequate carbohydrate (21 or 2.5%) for 42-55 days (d). Animals infused ethanol-containing diets adequate in carbohydrate developed steatosis, but had no other signs of hepatic pathology. However, rats infused with the carbohydrate-deficient diet had a 4-fold increase in serum ALT levels (p < 0.05), an unexpectedly high (34-fold) induction of hepatic microsomal CYP2E1 apoprotein (p < 0.001), and focal necrosis. The strong positive association between low dietary carbohydrate, enhanced CYP2E1 induction and hepatic necrosis suggests that in the presence of low carbohydrate intake, ethanol induction of CYP2E1 is enhanced to levels sufficient to cause necrosis, possibly through reactive oxygen species and other free radicals generated by CYP2E1 metabolism of ethanol and unsaturated fatty acids.  (+info)

Involvement of cytochromes P-450 2E1 and 3A4 in the 5-hydroxylation of salicylate in humans. (2/751)

Hydroxylation of salicylate into 2,3 and 2,5-dihydroxybenzoic acids (2,3-DHBA and 2,5-DHBA) by human liver microsomal preparations was investigated. Kinetic studies demonstrated that salicylate was 5-hydroxylated with two apparent Km: one high-affinity Km of 606 microM and one low-affinity Km greater than 2 mM. Liver microsomes prepared from 15 human samples catalyzed the formation of 2,5-DHBA at metabolic rate of 21.7 +/- 8.5 pmol/mg/min. The formation of 2, 3-DHBA was not P-450 dependent. Formation of 2,5-DHBA was inhibited by 36 +/- 14% following preincubation of microsomes with diethyldithiocarbamate, a mechanism-based selective inhibitor of P-450 2E1. Furthermore, the efficiency of inhibition was significantly correlated with four catalytic activities specific to P-450 2E1, whereas the residual activity was correlated with three P-450 3A4 catalytic activities. Troleandomycin, a mechanism-based inhibitor selective to P-450 3A4, inhibited by 30 +/- 12% the 5-hydroxylation of salicylate, and this inhibition was significantly correlated with nifedipine oxidation, specific to P-450 3A4. The capability of seven recombinant human P-450s to hydroxylate salicylate demonstrated that P-450 2E1 and 3A4 contributed to 2, 5-DHBA formation in approximately equal proportions. The Km values of recombinant P-450 2E1 and 3A4, 280 and 513 microM, respectively, are in the same range as the high-affinity Km measured with human liver microsomes. The plasmatic metabolic ratio 2,5-DHBA/salicylate, measured 2 h after ingestion of 1 g acetylsalicylate, was increased 3-fold in 12 alcoholic patients at the beginning of their withdrawal period versus 15 control subjects. These results confirm that P-450 2E1, inducible by ethanol, is involved in the 5-hydroxylation of salicylate in humans. Furthermore, this ratio was still increased by 2-fold 1 week after ethanol withdrawal. This finding suggests that P-450 3A4, known to be also inducible by alcoholic beverages, plays an important role in this increase, because P-450 2E1 returned to normal levels in less than 3 days after ethanol withdrawal. Finally, in vivo and in vitro data demonstrated that P-450 2E1 and P-450 3A4, both inducible by alcohols, catalyzed the 5-hydroxylation of salicylate.  (+info)

Characterization of cytochrome P450 expression in human oesophageal mucosa. (3/751)

The expression of cytochrome (CYP) P450 enzymes in human oesophageal mucosa was investigated in a total of 25 histologically non-neoplastic surgical tissue specimens by using specific antibodies in immunoblots and by RT-PCR mRNA analysis. The presence of CYP1A, 2E1, 3A and 4A enzymes was demonstrated by both techniques; CYP2A reactive protein was also detected by immunoblot. The presence of CYP4B1 mRNA was established but no specific antibody was available for detection of the corresponding protein by immunoblot. CYP2B6/7 mRNA was not detected in any sample. The mRNA transcripts for CYP1A1, 2E1, 4A11 and 4B1 were consistently detected in the majority of samples (>84%), whereas CYP1A2 mRNA was only detected in 11 of 19 specimens examined. An RT-PCR method to differentiate CYP3A4 and 3A5 mRNA was developed. This demonstrated CYP3A5 mRNA expression in all samples tested, whereas CYP3A4 mRNA was not detectable, suggesting that CYP3A5 is the major CYP3A protein in human oesophagus. There were significant interindividual variations in the amount of proteins, ranging from 8-fold for CYP4A to 43-fold for CYP2E1. For each patient, data on exposure to risk factors for oesophageal cancer were available, including tobacco smoke, alcohol, gastro-oesophageal reflux and hot beverage consumption. None of these risk factors or other patient characteristics (age, sex, tumour location and tumour stage) were correlated with the protein level of the individual CYP enzymes as determined by quantitation of immunoblot staining. However, the small series of samples precludes any strong conclusion concerning the lack of such correlations. There were no differences between squamous cell carcinomas and adenocarcinomas in either the qualitative or quantitative expression of the CYP enzymes. These data demonstrate that a range of CYP enzymes are expressed in human oesophageal mucosa and indicate that this tissue has the capacity to activate chemical carcinogens to reactive DNA binding metabolites.  (+info)

Clinical isoflurane metabolism by cytochrome P450 2E1. (4/751)

BACKGROUND: Some evidence suggests that isoflurane metabolism to trifluoroacetic acid and inorganic fluoride by human liver microsomes in vitro is catalyzed by cytochrome P450 2E1 (CYP2E1). This investigation tested the hypothesis that P450 2E1 predominantly catalyzes human isoflurane metabolism in vivo. Disulfiram, which is converted in vivo to a selective inhibitor of P450 2E1, was used as a metabolic probe for P450 2E1. METHODS: Twenty-two elective surgery patients who provided institutionally-approved written informed consent were randomized to receive disulfiram (500 mg orally, N = 12) or nothing (controls, N = 10) the evening before surgery. All patients received a standard isoflurane anesthetic (1.5% end-tidal in oxygen) for 8 hr. Urine and plasma trifluoroacetic acid and fluoride concentrations were quantitated in samples obtained for 4 days postoperatively. RESULTS: Patient groups were similar with respect to age, weight, gender, duration of surgery, blood loss, and delivered isoflurane dose, measured by cumulative end-tidal isoflurane concentrations (9.7-10.2 MAC-hr). Postoperative urine excretion of trifluoroacetic acid (days 1-4) and fluoride (days 1-3) was significantly (P<0.05) diminished in disulfiram-treated patients. Cumulative 0-96 hr excretion of trifluoroacetic acid and fluoride in disulfiram-treated patients was 34+/-72 and 270+/-70 micromoles (mean +/- SD), respectively, compared to 440+/-360 and 1500+/-800 micromoles in controls (P<0.05 for both). Disulfiram also abolished the rise in plasma metabolite concentrations. CONCLUSIONS: Disulfiram, a selective inhibitor of human hepatic P450 2E1, prevented 80-90% of isoflurane metabolism. These results suggest that P450 2E1 is the predominant P450 isoform responsible for human clinical isoflurane metabolism in vivo.  (+info)

Tightly regulated and inducible expression of rabbit CYP2E1 using a tetracycline-controlled expression system. (5/751)

A tetracycline (Tc)-controlled gene expression system that quantitatively controls gene expression in eukaryotic cells () was used to express cytochrome P-450 2E1 (CYP2E1) in HeLa cells in culture. The rabbit CYP2E1 cDNA was subcloned into the Tc-controlled expression vector (pUHD10-3) and transfected into a HeLa cell line constitutively expressing the Tc-controlled transactivator, a positive regulator of expression in the absence of Tc. The expression of CYP2E1 was tightly regulated. There was a time-dependent induction of CYP2E1 after removal of Tc. In the absence of Tc, the enzyme was induced more than 100-fold and expressed about 18 pmol of CYP2E1/mg microsomal protein. At maximal levels of expression the enzyme catalyzed the formation of 158 pmol 6-hydroxychlorzoxazone/min/mg total cellular protein. In addition, the level of the enzyme could be modulated by the concentration of Tc in the media. In the absence of Tc, exposure of cells to N-nitrosodimethylamine caused a significant dose-dependent decrease in cell viability. In contrast, menadione, a redox cycling toxicant, was less toxic to the cells after induction of CYP2E1 when compared with noninduced cells. Pulse-chase studies conducted 72 h after removal of Tc indicated a rapid turnover of CYP2E1 with a half-life of 3.9 h. Addition of the ligand, 4-methylpyrazole, and the suicide substrate, 1-aminobenzotrizole, decreased the degradation of CYP2E1. This cell line offers a useful system to examine the role of CYP2E1 in the cytotoxicity of xenobiotics and to investigate post-translational regulation of the enzyme.  (+info)

Cytochrome P-450-dependent bioactivation of 1,1-dichloroethylene to a reactive epoxide in human lung and liver microsomes. (6/751)

We investigated the cytochrome P-450-dependent metabolism of 1, 1-dichloroethylene (DCE) by human lung and liver microsomes and compared the results from analogous experiments in mice. Metabolites were identified by HPLC analysis of their glutathione conjugates and/or hydrolyzed products and were detected by using [14C]DCE. The role of human CYP2E1 in the metabolic reactions was examined by comparing p-nitrophenol hydroxylase activities with levels of metabolites formed and by using the CYP2E1-selective inhibitor diallyl sulfone. The major products formed in microsomal incubations containing NADPH were the DCE-epoxide-derived glutathione conjugates 2-(S-glutathionyl)acetyl glutathione and 2-S-glutathionyl acetate. Lower levels of the acetal of 2,2-dichloroacetaldehyde were also detected. In lung samples from eight patients, the amounts of epoxide-derived conjugates formed ranged from 15.6 +/- 4.23 to 34.9 +/- 12.75 pmol/mg protein/min. The levels in murine lung were higher at 40.0 +/- 3.8 pmol/mg protein/min. In liver samples from five patients, conjugate levels ranged from 46.5 +/- 8.3 to 240.0 +/- 10. 5 pmol/mg protein/min, whereas levels in murine liver were 83.0 +/- 6.2 pmol/mg protein/min. Conjugate levels formed in human liver correlated with the relative levels of p-nitrophenol hydroxylase activity present, but this relationship was equivocal in human lung. Diallyl sulfone inhibited the formation of the glutathione conjugates (20-65%) in liver samples from all four patients, whereas only one of five human lung samples exhibited this inhibition (27%). These results demonstrated that the DCE-epoxide is a major metabolite formed by human microsomes and is mediated by CYP2E1 in liver and in some individuals in lung.  (+info)

Inhibition of isoniazid-induced hepatotoxicity in rabbits by pretreatment with an amidase inhibitor. (7/751)

Isoniazid (INH), a widely used drug in the prophylaxis and treatment of tuberculosis, is associated with a 1 to 2% risk of severe and potentially fatal hepatotoxicity. There is evidence that the INH metabolite hydrazine plays an important role in the mechanism of this toxicity. Metabolism of INH leads to the production of hydrazine via both direct and indirect pathways. In both cases, the activity of an INH amidase is required to hydrolyze an amide bond. In the present study, using a model of INH-induced hepatotoxicity in rabbits, pretreatment of rabbits with the amidase inhibitor bis-p-nitrophenyl phosphate 30 min before injection of INH inhibited the formation of INH-derived hydrazine and decreased measures of hepatocellular damage, hepatic triglyceride accumulation, and hypertriglyceridemia. Bis-p-nitrophenyl phosphate also potently inhibited the production of hydrazine from INH in in vitro microsomal incubations (IC50 2 microM). Although hepatic glutathione stores are decreased, they are not depleted in animals with INH-induced hepatotoxicity. Significant effects on hepatic microsomal cytochrome P-450 1A1/2 and cytochrome P-450 2E1 activities suggest that these isozymes may be involved in the mechanism of the toxicity. In conclusion, this study demonstrates the importance of amidase activity in this rabbit model of hepatotoxicity and provides additional evidence in support of the role of hydrazine in the mechanism of INH-induced hepatotoxicity.  (+info)

Post-translational inhibition of cytochrome P-450 2E1 expression by chlomethiazole in Fao hepatoma cells. (8/751)

Chlomethiazole (CMZ) is a sedative and anticonvulsant drug that has been shown to be an efficient transcriptional inhibitor of expression of rat hepatic ethanol-inducible cytochrome P-450 2E1 (CYP2E1). Recent results have shown that human CYP2E1 expression in vivo is almost completely inhibited in control subjects and in alcoholic patients treated with CMZ. In the present investigation, we evaluated the mode of action of CMZ on CYP2E1 expression in Fao rat hepatoma cells. Transcriptional activity of the CYP2E1 gene was monitored using reverse transcription-polymerase chain reaction-based quantification of CYP2E1 heterologous nuclear RNA (hnRNA) against a mimic DNA standard, mRNA was detected by Northern blotting, enzyme protein was detected by Western blotting, and CYP2E1-dependent catalytic activity was detected by assay of chlorzoxazone-6-hydroxylation. Six hours after CMZ treatment, the levels of both CYP2E1 protein and catalytic activity were concomitantly reduced at an IC50 value of about 5 microM. Ethanol treatment of the cells caused a 2-fold induction of CYP2E1 protein levels, which was inhibited by CMZ. Change of medium unexpectedly caused an increase in CYP2E1 gene transcription 4 h later, as monitored by quantitative determination of CYP2E1 hnRNA. However, CMZ failed to influence the expression of CYP2E1 hnRNA or mRNA both constitutively and after medium change, indicating no effect on gene transcription or mRNA synthesis/stability. Cycloheximide treatment of the cells did not abolish the inhibitory action of CMZ, further indicating an action at the post-translational level; in addition, CMZ inhibited CYP2E1 expression in V79 cells with stably expressed CYP2E1 under the control of the SV40 promoter. The data indicate that the CYP2E1 gene is transcriptionally activated in response to medium change and that CMZ, apart from a transcriptional inhibitor of CYP2E1 expression, acts in addition as an efficient high-affinity post-translational inhibitor of CYP2E1, probably due to an allosteric destabilization of the enzyme. This indicates a very rapid and effective CMZ-mediated inhibition of CYP2E1 in vivo.  (+info)