Chromatin condensation is confined to the loop and involves an all-or-none structural change. (1/2103)

Using differential scanning calorimetry in combination with pulsed field gel electrophoresis, we relate here the changes in the thermal profile of rat liver nuclei induced by very mild digestion of chromatin by endogenous nuclease with the chain length distribution of the DNA fragments. The enthalpy of the endotherm at 106 degrees C, which reflects the denaturation of the heterochromatic domains, decreases dramatically after the induction of a very small number of double-strand breaks per chromosome; the thermal transition disappears when the loops have undergone on average one DNA chain scission event. Quantitative analysis of the experimental data shows that the loop behaves like a topologically isolated domain. Also discussed is the process of heterochromatin formation, which occurs according to an all-or-none mechanism. In the presence of spermine, a strong condensation agent, only the loops that have undergone one break are able to refold, in confirmation of the extremely cooperative nature of the transition. Furthermore, our results suggest a relationship between the states that give rise to the endotherms at 90 degrees C and 106 degrees C and the morphologies referred to as class II and class III in a previous physicochemical study of the folding of chromatin fragments (Widom, 1986. J. Mol. Biol. 190:411-424) and support the view that the overall process of condensation follows a sequential (two-step) pathway.  (+info)

Proposed mechanism for sperm chromatin condensation/decondensation in the male rat. (2/2103)

Condensation of sperm chromatin occurs after spermatozoa have left the caput epididymis and are in transit to the cauda epididymis, during which time large numbers of disulfide bonds are formed. The formation of these disulfide bonds requires the repeated oxidation of the cofactor, NAD(P)H. To date, the means by which this oxidation is achieved has yet to be elucidated. Spermatozoa lose the bulk of their cytoplasm prior to leaving the testis; and, as a result, any shuttle systems for removing and transferring reducing equivalents into the mitochondria are unlikely to be operational. In an apparent preparation for the loss of cytoplasm, however, the following events occur during spermatogenesis. First, androgen-binding protein (ABP) is produced by the Sertoli cells of the testis; second, high affinity binding sites for ABP are inserted into the membrane surrounding the nucleus; and third, a nuclear location is acquired for the enzyme, 3alpha-hydroxysteroid dehydrogenase (3alpha-HSD). We propose that after the loss of cytoplasm, the nuclear region of spermatozoa is directly accessible to constituents contained in the lumen of the caput epididymis. As a consequence, luminal ABP attaches itself to the nuclear membrane via its binding sites, and is internalized. After internalization, ABP exerts its principle function, which is to bind to luminal 5alpha-dihydrotestosterone (5alpha-DHT), thereby ensuring its availability to the enzyme, 3alpha-HSD. In the conversion of 5alpha-DHT to 3alpha-androstanediol (3alpha-Diol), NAD(P)H is oxidized. Spermatozoa that reach the cauda epididymis have fully condensed chromatin. In addition, the nuclear region retains appreciable amounts of 5alpha-DHT and 3alpha-Diol, both bound to ABP. During fertilization, the bound 3alpha-Diol is converted back to 5alpha-DHT, reducing equivalents are transferred to NAD(P)+, and disulfide bonds are broken.IVF clinics report that spermatozoa with incompletely condensed chromatin have a low percentage of fertilization. If our proposed mechanism for chromatin condensation/decondensation is borne out by further research, IVF clinics might consider preincubating spermatozoa with 5alpha-DHT in order to increase the efficiency of fertilization.  (+info)

Expression of the Wdr9 gene and protein products during mouse development. (3/2103)

Human WDR9 has been mapped to chromosome 21, within one of the Down syndrome (DS) critical regions. Here, we study the expression pattern of the murine Wdr9 gene and its protein product. We show that Wdr9 is broadly expressed in the mouse embryo by means of in situ hybridization and immunohistochemistry. Wdr9 expression levels are dynamic during embryonic development as revealed by Northern blot analysis. We further show that WDR9 is a nuclear protein associated with BRG1, a SWI/SNF complex component. We also demonstrate that a polyglutamine-containing region of the protein functions as a transcriptional activation domain. We propose that WDR9 is a transcriptional regulator involved in chromatin remodeling through the action of two bromodomains and contacts to the SWI/SNF complex. These results may provide a molecular basis for the association of WDR9 with DS.  (+info)

Identification of SATB2 as the cleft palate gene on 2q32-q33. (4/2103)

Cytogenetic evidence, in the form of deletions and balanced translocations, points to the existence of a locus on 2q32-q33, for which haploinsufficiency results in isolated cleft palate (CPO). Here we show by high-resolution FISH mapping of two de novo CPO-associated translocations involving 2q32-q33 that one breakpoint interrupts the transcription unit of the gene encoding the DNA-binding protein SATB2 (formerly KIAA1034). The breakpoint in the other translocation is located 130 kb 3' to the SATB2 polyadenylation signal, within a conserved region of non-coding DNA. The SATB2 gene is transcribed in a telomeric to centromeric direction and lies in a gene-poor region of 2q32-q33; the nearest confirmed gene is 1.26 Mb centromeric to the SATB2 polyadenylation signal. SATB2-encoding transcripts are assembled from 11 exons that span 191 kb of genomic DNA. They encode a protein of 733 amino acids that has two CUT domains and a homeodomain and shows a remarkable degree of evolutionary conservation, with only three amino acid substitutions between mouse and human. This protein belongs to the same family as SATB1, a nuclear matrix-attachment region binding protein implicated in transcriptional control and control of chromatin remodelling. There are also sequence similarities to the Drosophila protein DVE. Whole mount in situ hybridization to mouse embryos shows site- and stage-specific expression of SATB2 in the developing palate. Despite the strong evidence supporting an important role for SATB2 in palate development, mutation analysis of 70 unrelated patients with CPO did not reveal any coding region variants.  (+info)

Chromatin assembly factor 1 is essential and couples chromatin assembly to DNA replication in vivo. (5/2103)

De novo chromatin assembly maintains histone density on the daughter strands in the wake of the replication fork. The heterotrimer chromatin assembly factor 1 (CAF-1) couples DNA replication to histone deposition in vitro, but is not essential for yeast cell proliferation. Depletion of CAF-1 in human cell lines demonstrated that CAF-1 was required for efficient progression through S-phase. Cells lacking CAF-1 accumulated in early and mid S-phase and replicated DNA slowly. The checkpoint kinase Chk1, but not Chk2, was phosphorylated in response to CAF-1 depletion, consistent with a DNA replication defect. CAF-1-depleted cell extracts completely lacked DNA replication-coupled chromatin assembly activity, suggesting that CAF-1 is required for efficient S-phase progression in human cells. These results indicate that, in contrast to yeast, human CAF-1 is necessary for coupling chromatin assembly with DNA replication.  (+info)

Fission yeast Tup1-like repressors repress chromatin remodeling at the fbp1+ promoter and the ade6-M26 recombination hotspot. (6/2103)

Chromatin remodeling plays crucial roles in the regulation of gene expression and recombination. Transcription of the fission yeast fbp1(+) gene and recombination at the meiotic recombination hotspot ade6-M26 (M26) are both regulated by cAMP responsive element (CRE)-like sequences and the CREB/ATF-type transcription factor Atf1*Pcr1. The Tup11 and Tup12 proteins, the fission yeast counterparts of the Saccharomyces cerevisiae Tup1 corepressor, are involved in glucose repression of the fbp1(+) transcription. We have analyzed roles of the Tup1-like corepressors in chromatin regulation around the fbp1(+) promoter and the M26 hotspot. We found that the chromatin structure around two regulatory elements for fbp1(+) was remodeled under derepressed conditions in concert with the robust activation of fbp1(+) transcription. Strains with tup11delta tup12delta double deletions grown in repressed conditions exhibited the chromatin state associated with wild-type cells grown in derepressed conditions. Interestingly, deletion of rst2(+), encoding a transcription factor controlled by the cAMP-dependent kinase, alleviated the tup11delta tup12delta defects in chromatin regulation but not in transcription repression. The chromatin at the M26 site in mitotic cultures of a tup11delta tup12delta mutant resembled that of wild-type meiotic cells. These observations suggest that these fission yeast Tup1-like corepressors repress chromatin remodeling at CRE-related sequences and that Rst2 antagonizes this function.  (+info)

Methylation at lysine 4 of histone H3 in ecdysone-dependent development of Drosophila. (7/2103)

Steroid hormones fulfil important functions in animal development. In Drosophila, ecdysone triggers moulting and metamorphosis through its effects on gene expression. Ecdysone works by binding to a nuclear receptor, EcR, which heterodimerizes with the retinoid X receptor homologue Ultraspiracle. Both partners are required for binding to ligand or DNA. Like most DNA-binding transcription factors, nuclear receptors activate or repress gene expression by recruiting co-regulators, some of which function as chromatin-modifying complexes. For example, p160 class coactivators associate with histone acetyltransferases and arginine histone methyltransferases. The Trithorax-related gene of Drosophila encodes the SET domain protein TRR. Here we report that TRR is a histone methyltransferases capable of trimethylating lysine 4 of histone H3 (H3-K4). trr acts upstream of hedgehog (hh) in progression of the morphogenetic furrow, and is required for retinal differentiation. Mutations in trr interact in eye development with EcR, and EcR and TRR can be co-immunoprecipitated on ecdysone treatment. TRR, EcR and trimethylated H3-K4 are detected at the ecdysone-inducible promoters of hh and BR-C in cultured cells, and H3-K4 trimethylation at these promoters is decreased in embryos lacking a functional copy of trr. We propose that TRR functions as a coactivator of EcR by altering the chromatin structure at ecdysone-responsive promoters.  (+info)

Retinoic acid receptor alpha fusion to PML affects its transcriptional and chromatin-remodeling properties. (8/2103)

PML-RAR is an oncogenic transcription factor forming in acute promyelocytic leukemias (APL) because of a chromosomal translocation. Without its ligand, retinoic acid (RA), PML-RAR functions as a constitutive transcriptional repressor, abnormally associating with the corepressor-histone deacetylase complex and blocking hematopoietic differentiation. In the presence of pharmacological concentrations of RA, PML-RAR activates transcription and stimulates differentiation. Even though it has been suggested that chromatin alteration is important for APL onset, the PML-RAR effect on chromatin of target promoters has not been investigated. Taking advantage of the Xenopus oocyte system, we compared the wild-type transcription factor RARalpha with PML-RAR as both transcriptional regulators and chromatin structure modifiers. Without RA, we found that PML-RAR is a more potent transcriptional repressor that does not require the cofactor RXR and produces a closed chromatin configuration. Surprisingly, repression by PML-RAR occurs through a further pathway that is independent of nucleosome deposition and histone deacetylation. In the presence of RA, PML-RAR is a less efficient transcriptional activator that is unable to modify the DNA nucleoprotein structure. We propose that PML-RAR, aside from its ability to recruit aberrant quantities of histone deacetylase complexes, has acquired additional repressive mechanisms and lost important activating functions; the comprehension of these mechanisms might reveal novel targets for antileukemic intervention.  (+info)