Functional consequences of mutations in the human alpha1A calcium channel subunit linked to familial hemiplegic migraine. (1/7242)

Mutations in alpha1A, the pore-forming subunit of P/Q-type calcium channels, are linked to several human diseases, including familial hemiplegic migraine (FHM). We introduced the four missense mutations linked to FHM into human alpha1A-2 subunits and investigated their functional consequences after expression in human embryonic kidney 293 cells. By combining single-channel and whole-cell patch-clamp recordings, we show that all four mutations affect both the biophysical properties and the density of functional channels. Mutation R192Q in the S4 segment of domain I increased the density of functional P/Q-type channels and their open probability. Mutation T666M in the pore loop of domain II decreased both the density of functional channels and their unitary conductance (from 20 to 11 pS). Mutations V714A and I1815L in the S6 segments of domains II and IV shifted the voltage range of activation toward more negative voltages, increased both the open probability and the rate of recovery from inactivation, and decreased the density of functional channels. Mutation V714A decreased the single-channel conductance to 16 pS. Strikingly, the reduction in single-channel conductance induced by mutations T666M and V714A was not observed in some patches or periods of activity, suggesting that the abnormal channel may switch on and off, perhaps depending on some unknown factor. Our data show that the FHM mutations can lead to both gain- and loss-of-function of human P/Q-type calcium channels.  (+info)

Maintenance of motility in mouse sperm permeabilized with streptolysin O. (2/7242)

One approach to studying the mechanisms governing sperm motility is to permeabilize sperm and examine the regulation of motility by manipulating the intracellular milieu of the cell. The most common method of sperm permeabilization, detergent treatment, has the disadvantage that the membranes and many proteins are extracted from the cell. To avoid this problem, we have developed a method that uses streptolysin O to create stable pores within the plasma membrane while leaving internal membranes intact. Sperm were permeabilized, preincubated, and then treated with 0.6 U/ml of streptolysin O. Permeabilization was assessed by fluorescent dye technologies and endogenous protein phosphorylation using exogenously added [gamma-32P]ATP. Streptolysin O-induced permeabilization rendered the sperm immotile, and the effect was Ca2+-dependent. When the cells were treated simultaneously with a medium containing ATP, streptolysin O-treated sperm maintained flagellar movement. These results demonstrate that the streptolysin O permeabilization model system is a useful experimental method for studying the mechanisms that regulate sperm motility since it allows the flagellar apparatus to be exposed to various exogenously added molecules.  (+info)

Gating connexin 43 channels reconstituted in lipid vesicles by mitogen-activated protein kinase phosphorylation. (3/7242)

The regulation of gap junctional permeability by phosphorylation was examined in a model system in which connexin 43 (Cx43) gap junction hemichannels were reconstituted in lipid vesicles. Cx43 was immunoaffinity-purified from rat brain, and Cx43 channels were reconstituted into unilamellar phospholipid liposomes. The activities of the reconstituted channels were measured by monitoring liposome permeability. Liposomes containing the Cx43 protein were fractionated on the basis of permeability to sucrose using sedimentation in an iso-osmolar density gradient. The gradient allowed separation of the sucrose-permeable and -impermeable liposomes. Liposomes that were permeable to sucrose were also permeable to the communicating dye molecule lucifer yellow. Permeability, and therefore activity of the reconstituted Cx43 channels, were directly dependent on the state of Cx43 phosphorylation. The permeability of liposomes containing Cx43 channels was increased by treatment of liposomes with calf intestinal phosphatase. Moreover, liposomes formed with Cx43 that had been dephosphorylated by calf intestinal phosphatase treatment showed increased permeability to sucrose. The role of phosphorylation in the gating mechanism of Cx43 channels was supported further by the observation that phosphorylation of Cx43 by mitogen-activated protein kinase reversibly reduced the permeability of liposomes containing dephosphorylated Cx43. Our results show a direct correlation between gap junctional permeability and the phosphorylation state of Cx43.  (+info)

Modulation of distal colonic epithelial barrier function by dietary fibre in normal rats. (4/7242)

BACKGROUND: Dietary fibre influences the turnover and differentiation of the colonic epithelium, but its effects on barrier function are unknown. AIMS: To determine whether altering the type and amount of fibre in the diet affects paracellular permeability of intestinal epithelium, and to identify the mechanisms of action. METHODS: Rats were fed isoenergetic low fibre diets with or without supplements of wheat bran (10%) or methylcellulose (10%), for four weeks. Paracellular permeability was determined by measurement of conductance and 51Cr-EDTA flux across tissue mounted in Ussing chambers. Faecal short chain fatty acid (SCFA) concentrations were assessed by gas chromatography, epithelial kinetics stathmokinetically, and mucosal brush border hydrolase activities spectrophotometrically. RESULTS: Body weight was similar across the dietary groups. Conductance and 51Cr-EDTA flux were approximately 25% higher in animals fed no fibre, compared with those fed wheat bran or methylcellulose in the distal colon, but not in the caecum or jejunum. Histologically, there was no evidence of epithelial injury or erosion associated with any diet. The fibres exerted different spectra of effects on luminal SCFA concentrations and pH, and on mucosal indexes, but both bulked the faeces, were trophic to the epithelium, and stimulated expression of a marker of epithelial differentiation. CONCLUSIONS: Both a fermentable and a non-fermentable fibre reduce paracellular permeability specifically in the distal colon, possibly by promoting epithelial cell differentiation. The mechanisms by which the two fibres exert their effects are likely to be different.  (+info)

Effects of inhibitors and substitutes for chloride in lumen on p-aminohippurate transport by isolated perfused rabbit renal proximal tubules. (5/7242)

The transport step for p-aminohippurate (PAH) from cell to lumen across the luminal membrane of rabbit proximal tubules has not been adequately defined. To examine this process more closely, we determined the effects of possible transport inhibitors and substitutes for chloride on PAH secretion in isolated perfused S2 segments of rabbit proximal tubules. The addition of 4-acetamido-4'-isothiocyano-2,2' disulfonic stilbene (10(-4) M) to the perfusate irreversibly inhibited PAH secretion, whereas the addition of probenecid (10(-4) M) to the perfusate reversibly inhibited PAH secretion. PAH secretion was unaffected by thiocyanate replacement of chloride in the luminal perfusate, reversibly inhibited by 15 to 20% by methyl sulfate replacement, and irreversibly inhibited by isethionate replacement. Because the luminal membrane is at least as permeable to thiocyanate as to chloride, less permeable to methyl sulfate, and much less permeable to isethionate, these data suggest that the PAH transport step from cells to lumen does not require chloride in the lumen but does require a highly permeant anion. During inhibition of PAH transport from cells to lumen, PAH uptake across the basolateral membrane was also reduced, suggesting some type of feedback inhibition. The data are compatible with PAH transport across the luminal membrane by an anion exchanger, a potential-driven uniporter, both carriers, or a carrier that can function in both modes.  (+info)

Increased lipophilicity and subsequent cell partitioning decrease passive transcellular diffusion of novel, highly lipophilic antioxidants. (6/7242)

Oxidative stress is considered a cause or propagator of acute and chronic disorders of the central nervous system. Novel 2, 4-diamino-pyrrolo[2,3-d]pyrimidines are potent inhibitors of iron-dependent lipid peroxidation, are cytoprotective in cell culture models of oxidative injury, and are neuroprotective in brain injury and ischemia models. The selection of lead candidates from this series required that they reach target cells deep within brain tissue in efficacious amounts after oral dosing. A homologous series of 26 highly lipophilic pyrrolopyrimidines was examined using cultured cell monolayers to understand the structure-permeability relationship and to use this information to predict brain penetration and residence time. Pyrrolopyrimidines were shown to be a more permeable structural class of membrane-interactive antioxidants where transepithelial permeability was inversely related to lipophilicity or to cell partitioning. Pyrrole substitutions influence cell partitioning where bulky hydrophobic groups increased partitioning and decreased permeability and smaller hydrophobic groups and more hydrophilic groups, especially those capable of weak hydrogen bonding, decreased partitioning, and increased permeability. Transmonolayer diffusion for these membrane-interactive antioxidants was limited mostly by desorption from the receiver-side membrane into the buffer. Thus, in this case, these in vitro cell monolayer models do not adequately mimic the in vivo situation by underestimating in vivo bioavailability of highly lipophilic compounds unless acceptors, such as serum proteins, are added to the receiving buffer.  (+info)

Elevated expression of the CD4 receptor and cell cycle arrest are induced in Jurkat cells by treatment with the novel cyclic dinucleotide 3',5'-cyclic diguanylic acid. (7/7242)

The effect of the novel, naturally occurring nucleotide cyclic diguanylic acid (c-di-GMP) on the lymphoblastoid CD4+ Jurkat cell line was studied. When exposed to 50 microM c-di-GMP, Jurkat cells exhibited a markedly elevated expression of the CD4 receptor of up to 6.3-fold over controls. C-di-GMP also causes blockage of the cell cycle at the S-phase, characterized by increased cellular thymidine uptake, reduction in G2/M-phase cells, increase in S-phase cells and decreased cell division. Additionally c-di-GMP naturally enters these cells and binds irreversibly to the P21ras protein. The effects described appear to be unique for c-di-GMP.  (+info)

Stimulation of strontium accumulation in linoleate-enriched Saccharomyces cerevisiae is a result of reduced Sr2+ efflux. (8/7242)

The influence of modified plasma membrane fatty acid composition on cellular strontium accumulation in Saccharomyces cerevisiae was investigated. Growth of S. cerevisiae in the presence of 1 mM linoleate (18:2) (which results in 18:2 incorporation to approximately 70% of total cellular and plasma membrane fatty acids, with no effect on growth rate) yielded cells that accumulated Sr2+ intracellularly at approximately twice the rate of S. cerevisiae grown without a fatty acid supplement. This effect was evident over a wide range of external Sr2+ concentrations (25 microM to 5 mM) and increased with the extent of cellular 18:2 incorporation. Stimulation of Sr2+ accumulation was not evident following enrichment of S. cerevisiae with either palmitoleate (16:1), linolenate (18:3) (n-3 and n-6 isomers), or eicosadienoate (20:2) (n-6 and n-9 isomers). Competition experiments revealed that Ca2+- and Mg2+-induced inhibition of Sr2+ accumulation did not differ between unsupplemented and 18:2-supplemented cells. Treatment with trifluoperazine (TFP) (which can act as a calmodulin antagonist and Ca2+-ATPase inhibitor), at a low concentration that precluded nonspecific K+ efflux, increased intracellular Sr2+ accumulation by approximately 3.6- and 1.4-fold in unsupplemented and 18:2-supplemented cells, respectively. Thus, TFP abolished the enhanced Sr2+ accumulation ability of 18:2-supplemented cells. Moreover, the rate of Sr2+ release from Sr2+-loaded fatty acid-unsupplemented cells was found to be at least twice as great as that from Sr2+-loaded 18:2-enriched cells. The influence of enrichment with other fatty acids on Sr2+ efflux was variable. The results reveal an enhanced Sr2+ accumulation ability of S. cerevisiae following 18:2-enrichment, which is attributed to diminished Sr2+ efflux activity in these cells.  (+info)