Transfer of a cathelicidin peptide antibiotic gene restores bacterial killing in a cystic fibrosis xenograft model. (1/295)

Recent studies suggest that the gene defect in cystic fibrosis (CF) leads to a breach in innate immunity. We describe a novel genetic strategy for reversing the CF-specific defect of antimicrobial activity by transferring a gene encoding a secreted cathelicidin peptide antibiotic into the airway epithelium grown in a human bronchial xenograft model. The airway surface fluid (ASF) from CF xenografts failed to kill Pseudomonas aeruginosa or Staphylococcus aureus. Partial reconstitution of CF transmembrane conductance regulator expression after adenovirus-mediated gene transfer restored the antimicrobial activity of ASF from CF xenografts to normal levels. Exposure of CF xenografts to an adenovirus expressing the human cathelicidin LL-37/hCAP-18 increased levels of this peptide in the ASF three- to fourfold above the normal concentrations, which were equivalent in ASF from CF and normal xenografts before gene transfer. The increase of LL-37 was sufficient to restore bacterial killing to normal levels. The data presented describe an alternative genetic approach to the treatment of CF based on enhanced expression of an endogenous antimicrobial peptide and provide strong evidence that expression of antimicrobial peptides indeed protects against bacterial infection.  (+info)

The human cationic antimicrobial protein (hCAP18), a peptide antibiotic, is widely expressed in human squamous epithelia and colocalizes with interleukin-6. (2/295)

Peptide antibiotics are widespread in nature and, by providing a rapid first line of defense, may be key players in the innate immune system. Although epithelia are the main barriers shielding the internal environment from microorganisms, the role for peptide antibiotics in epithelial protection is unclear. We recently reported that the human cationic antimicrobial protein hCAP18, the precursor of the antimicrobial peptide called LL-37, is not expressed by normal human keratinocytes but is induced in various inflammatory skin disorders. In the present study we demonstrate that hCAP18 is consistently expressed at both mRNA and protein levels in squamous epithelia of the mouth, tongue, esophagus, cervix, and vagina in humans. The gene for hCAP18 contains promoter elements that are potentially regulated by interleukin-6, and our data further show a colocalization between interleukin-6 and hCAP18 expression in these tissues. Our finding that hCAP18 is widely produced in squamous epithelia suggests a role for this peptide in epithelial antimicrobial defense. Furthermore, colocalization with interleukin-6 indicates a potential local mechanism for the upregulation of hCAP18 at the epithelial surfaces.  (+info)

Structure and organization of the human antimicrobial peptide LL-37 in phospholipid membranes: relevance to the molecular basis for its non-cell-selective activity. (3/295)

The antimicrobial peptide LL-37 belongs to the cathelicidin family and is the first amphipathic alpha-helical peptide isolated from human. LL-37 is considered to play an important role in the first line of defence against local infection and systemic invasion of pathogens at sites of inflammation and wounds. Understanding its mode of action may assist in the development of antimicrobial agents mimicking those of the human immune system. In vitro studies revealed that LL-37 is cytotoxic to both bacterial and normal eukaryotic cells. To gain insight into the mechanism of its non-cell-selective cytotoxicity, we synthesized and structurally and functionally characterized LL-37, its N-terminal truncated form FF-33, and their fluorescent derivatives (which retained structure and activity). The results showed several differences, between LL-37 and other native antimicrobial peptides, that may shed light on its in vivo activities. Most interestingly, LL-37 exists in equilibrium between monomers and oligomers in solution at very low concentrations. Also, it is significantly resistant to proteolytic degradation in solution, and when bound to both zwitterionic (mimicking mammalian membranes) and negatively charged membranes (mimicking bacterial membranes). The results also showed a role for the N-terminus in proteolytic resistance and haemolytic activity, but not in antimicrobial activity. The LL-37 mode of action with negatively charged membranes suggests a detergent-like effect via a 'carpet-like' mechanism. However, the ability of LL-37 to oligomerize in zwitterionic membranes might suggest the formation of a transmembrane pore in normal eukaryotic cells. To examine this possibility we used polarized attenuated total reflectance Fourier-transform infrared spectroscopy and found that the peptide is predominantly alpha-helical and oriented nearly parallel with the surface of zwitterionic-lipid membranes. This result does not support the channel-forming hypothesis, but rather it supports the detergent-like effect.  (+info)

The human antibacterial cathelicidin, hCAP-18, is bound to lipoproteins in plasma. (4/295)

Cathelicidins are a family of antibacterial and lipopolysaccharide-binding proteins. hCAP-18, the only human cathelicidin, is a major protein of the specific granules of human neutrophils. The plasma level of hCAP-18 is >20-fold higher than that of other specific granule proteins relative to their levels within circulating neutrophils. The aim of this study was to elucidate the background for this high plasma level of hCAP-18. Plasma was subjected to molecular sieve chromatography, and hCAP-18 was found in distinct high molecular mass fractions that coeluted with apolipoproteins A-I and B, respectively. The association of hCAP-18 with lipoproteins was validated by the cofractionation of hCAP-18 with lipoproteins using two different methods for isolation of lipoproteins from plasma. Furthermore, the level of hCAP-18 in delipidated plasma was <1% of that in normal plasma. Immunoprecipitation of very low, low, and high density lipoprotein particles with anti-apolipoprotein antibodies resulted in coprecipitation of hCAP-18. The binding of hCAP-18 to lipoproteins was mediated by the antibacterial C-terminal part of the protein. The binding of hCAP-18 to lipoproteins suggests that lipoproteins may play an important role as a reservoir of this antimicrobial protein.  (+info)

Novel cathelicidins in horse leukocytes(1). (5/295)

Cathelicidins are precursors of defense peptides of the innate immunity and are widespread in mammals. Their structure comprises a conserved prepropiece and an antimicrobial domain that is structurally varied both intra- and inter-species. We investigated the complexity of the cathelicidin family in horse by a reverse transcription-PCR-based cloning strategy of myeloid mRNA and by Southern and Western analyses. Three novel cathelicidin sequences were deduced from bone marrow mRNA and designated equine cathelicidins eCATH-1, eCATH-2 and eCATH-3. Putative antimicrobial domains of 26, 27 and 40 residues with no significant sequence homology to other peptides were inferred at the C-terminus of the sequences. Southern analysis of genomic DNA using a probe based on the cathelicidin-conserved propiece revealed a polymorphic DNA region with several hybridization-positive fragments and suggested the presence of additional genes. A null eCATH-1 allele was also demonstrated with a frequency of 0.71 in the horse population analyzed and low amounts of eCATH-1-specific mRNA were found in myeloid cells of gene-positive animals. A Western analysis using antibodies to synthetic eCATH peptides revealed the presence of eCATH-2 and eCATH-3 propeptides, but not of eCATH-1-related polypeptides, in horse neutrophil granules and in the secretions of phorbol myristate acetate-stimulated neutrophils. These results thus suggest that eCATH-2 and eCATH-3 are functional genes, whereas eCATH-1 is unable to encode a polypeptide.  (+info)

Augmentation of innate host defense by expression of a cathelicidin antimicrobial peptide. (6/295)

Antimicrobial peptides, such as defensins or cathelicidins, are effector substances of the innate immune system and are thought to have antimicrobial properties that contribute to host defense. The evidence that vertebrate antimicrobial peptides contribute to innate immunity in vivo is based on their expression pattern and in vitro activity against microorganisms. The goal of this study was to investigate whether the overexpression of an antimicrobial peptide results in augmented protection against bacterial infection. C57BL/6 mice were given an adenovirus vector containing the cDNA for LL-37/hCAP-18, a human cathelicidin antimicrobial peptide. Mice treated with intratracheal LL-37/hCAP-18 vector had a lower bacterial load and a smaller inflammatory response than did untreated mice following pulmonary challenge with Pseudomonas aeruginosa PAO1. Systemic expression of LL-37/hCAP-18 after intravenous injection of recombinant adenovirus resulted in improved survival rates following intravenous injection of lipopolysaccharide with galactosamine or Escherichia coli CP9. In conclusion, the data demonstrate that expression of an antimicrobial peptide by gene transfer results in augmentation of the innate immune response, providing support for the hypothesis that vertebrate antimicrobial peptides protect against microorganisms in vivo.  (+info)

SMAP-29: a potent antibacterial and antifungal peptide from sheep leukocytes. (7/295)

SMAP-29 is a cathelicidin-derived peptide deduced from sheep myeloid mRNA. The C-terminally amidated form of this peptide was chemically synthesized and shown to exert a potent antimicrobial activity. Antibiotic-resistant clinical isolates highly susceptible to this peptide include MRSA and VREF isolates, that are a major worldwide problem, and mucoid Pseudomonas aeruginosa associated with chronic respiratory inflammation in CF patients. In addition, SMAP-29 is also active against fungi, including Cryptococcus neoformans isolated from immunocompromised patients. SMAP-29 causes significant morphological alterations of the bacterial surfaces, as shown by scanning electron microscopy, and is also hemolytic against human, but not sheep erythrocytes. Its potent antimicrobial activity suggests that this peptide is an excellent candidate as a lead compound for the development of novel antiinfective agents.  (+info)

Biological activities of lipopolysaccharides of Proteus spp. and their interactions with polymyxin B and an 18-kDa cationic antimicrobial protein (CAP18)-derived peptide. (8/295)

The saccharide constituents of lipopolysaccharides (LPS) of Proteus spp. vary with the strain and contain unique components about which little is known. The biological activities of LPS and lipid A from S- and R-forms of 10 Proteus strains were examined. LPS from all S-form Proteus strains was lethal to D-(+)-galactosamine (GalN)-loaded, LPS-responsive, C3H/HeN mice, but not to LPS-hypo-responsive C3H/HeJ mice. P. vulgaris 025 LPS evoked strong anaphylactoid reactions in N-acetylmuramyl-L-alanyl-D-isoglutamine (MDP)-primed C3H/HeJ mice. LPS from S- and R-form Proteus strains induced production of nitric oxide (NO) and tumour necrosis factor (TNF) by macrophages isolated from C3H/HeN but not C3H/HeJ mice. Lipid A from Proteus strains also induced NO and TNF production, although lipid A was less potent than LPS. The effects of LPS were mainly dependent on CD14; LPS-induced NO and TNF production in CD14+ J774.1 cells was significantly greater than in CD14-J7.DEF.3 cells. All LPS from Proteus strains, and especially from P. vulgaris 025, exhibited higher anti-complementary activity than LPS from Escherichia coli or Pseudomonas aeruginosa. Polymyxin B inactivated proteus LPS in a dose-dependent manner, but these LPS preparations were more resistant to polymyxin B than E. coli LPS. CAP18(109-135), a granulocyte-derived peptide, inhibited proteus LPS endotoxicity only when the LPS:CAP18(109-135) ratio was appropriate, which suggests that CAP18(109-135) acts through a different mechanism than polymyxin B. The results indicate that LPS from Proteus spp. are potently endotoxic, but that the toxicity is different from that of LPS from E. coli or Salmonella spp. and even varies among different Proteus strains. The variation in biological activities among proteus LPS may be due to unique components within the respective LPS.  (+info)