Inhibition of expression of P-selectin by antioxidant in cholesterol-fed rats. (1/222)

Butylated hydroxytoluene (BHT) can inhibit experimental atherosclerosis in animals. Although the agent is an antioxidant, the exact mechanism of the reaction in atherosclerosis is still unknown. To investigate the effects of BHT on expression of P-selectin (PADGEM, GMP-140), intercellular adhesion molecule-1 (ICAM-1) and class II MHC (Ia) antigen, we proposed an experiment on rats. Male rats (n=18 per group) were fed either a normal cholesterol control diet, a normal cholesterol diet containing 0.5% BHT (BD), a high cholesterol diet containing 1.5% cholesterol and 0.1% sodium cholate (CD), or the CD diet containing 0.5% BHT (BCD). Rats were sacrificed after 3 days, and after 1, 2, 4, 10, and 17 weeks of dietary treatment. Although there was no gross or light microscopic atherosclerotic lesions, scanning electron microscopy revealed monocytic adhesion to aortic endothelium and mild endothelial injuries in CD and BCD groups. Immunohistochemically, the addition of BHT to a high cholesterol diet inhibited P-selectin expression but not in ICAM-1 and Ia antigen. These findings suggest that in rats, high cholesterol diets induce expression of ICAM-1, P-selectin and Ia antigen. In addition, the antiatherogenic effect of BHT may play a role in the inhibition of P-selectin.  (+info)

Antioxidants reversibly inhibit the spontaneous resumption of meiosis. (2/222)

We previously showed that the cell-permeant antioxidant 2(3)-tert-butyl-4-hydroxyanisole (BHA) inhibited germinal vesicle breakdown (GVBD) in oocyte-cumulus complexes (OCC) of the rat. The objective of the present studies was to assess other antioxidants and whether such inhibition was reversible. Spontaneous GVBD in OCC incubated for 2 h was significantly inhibited (P < 0.005) by nordihydroguaiaretic acid (NDGA; GVBD = 19.4%), BHA (GVBD = 25.7%), octyl gallate (OG; GVBD = 52.2%), ethoxyquin (EQ; GVBD = 58.8%), 2, 6-di-tert-butyl-hydroxymethyl phenol (TBHMP; GVBD = 59%), butylated hydroxytoluene (BHT; GVBD = 59.5%), and tert-butyl hydroperoxide (TBHP; GVBD = 60.0%). Other antioxidants that produced lower but significant (P < 0.05) inhibition of oocyte maturation included propyl gallate (PG; GVBD = 70.3%), 2,4,5-trihydroxybutrophenone (THBP; GVBD = 71.4%), and lauryl gallate (LG; GVBD = 71.4%). Antioxidants that had no effect on oocyte maturation at the same concentration (100 microM) included ascorbic acid, vitamin E, and Trolox. Inhibition of GVBD was evident for up to 8 h of incubation of OCC and denuded oocytes (DO) with BHA or NDGA and was reversed by washing. NDGA was less potent than BHA for inhibition of GVBD in DO, unlike that seen with OCC. Oocyte maturation was induced by incubation of follicles for 3 h with human chorionic gonadotropin (hCG), and this response was inhibited by BHA or NDGA. These findings support the conclusion that cell-permeant antioxidants inhibit spontaneous resumption of meiosis, which may implicate a role of oxygen radicals in oocyte maturation.  (+info)

Antimalarial activities of WR-194,965, an alpha-amino-o-cresol derivative. (3/222)

Pilot appraisals of the activities of WR-194,965 and WR-204,165, two closely related o-cresol derivatives (both Mannich bases), in owl monkeys infected with the multidrug-resistant Vietnam Smith strain of Plasmodium falciparum showed that these compounds had similar levels of efficacy. Total course doses effecting 90% cures (CD(90)s) were 27 and 37 mg/kg of body weight for the respective compounds, values almost identical to the CD(90) of mefloquine (a highly promising 4-quinolinemethanol) against infections with the same strain, and the CD(90)s of chloroquine against infections with 4-aminoquinoline-susceptible strains. Expanded studies of the activities of WR-194,965 against infections with the Smith strain of P. falciparum and Vietnam Palo Alto strain of P. vivax, designed to guide projected evaluations in human volunteers, showed: (i) that the activity of this compound was a function of total dose administered, with single doses as effective as the same amount delivered in three or seven successive daily fractions; (ii) that all regimens effected rapid clearance of parasitemia; and (iii) that based on CD(90)s, this agent was twice as active against infections with the Palo Alto strain of P. vivax as against the Smith strain of P. falciparum. These findings, together with results of preclinical pharmacological studies pursued elsewhere, provided support for studies in human volunteers now underway.  (+info)

Nrf2 is essential for protection against acute pulmonary injury in mice. (4/222)

Nrf2 is a member of the "cap 'n' collar" family of transcription factors. These transcription factors bind to the NF-E2 binding sites (GCTGAGTCA) that are essential for the regulation of erythroid-specific genes. Nrf2 is expressed in a wide range of tissues, many of which are sites of expression for phase 2 detoxification genes. Nrf2(-/-) mice are viable and have a normal phenotype under normal laboratory conditions. The NF-E2 binding site is a subset of the antioxidant response elements that have the sequence GCNNNGTCA. The antioxidant response elements are regulatory sequences found on promoters of several phase 2 detoxification genes that are inducible by xenobiotics and antioxidants. We report here that Nrf2(-/-) mice are extremely susceptible to the administration of the antioxidant butylated hydroxytoluene. With doses of butylated hydroxytoluene that are tolerated by wild-type mice, the Nrf2(-/-) mice succumb from acute respiratory distress syndrome. Gene expression studies show that the expression of several detoxification enzymes is altered in the Nrf2(-/-) mice. The Nrf2(-/-) mice may prove to be a good in vivo model for toxicological studies. As oxidative damage causes DNA breakage, these mice may also be useful for testing carcinogenic agents.  (+info)

Compensatory lung growth after partial pneumonectomy enhances lung tumorigenesis induced by 3-methylcholanthrene. (5/222)

In small mammals, partial pneumonectomy (PNX) elicits rapid hyperplastic compensatory growth of the remaining lung parenchyma to restore normal lung mass, structure, and function. In BALB mice subjected to PNX, compensatory lung growth is complete within 10 days. Because cellular hyperplasia contributes to the mechanism of tumor promotion by butylated hydroxytoluene (BHT), we hypothesized that hyperplastic compensatory lung growth would promote tumor formation in carcinogen-treated animals in a manner similar to that observed after BHT. In mice subjected to PNX, within 1 week of treatment with the carcinogen 3-methylcholanthrene (MCA; 10 microg/g body weight), lung tumor multiplicity was 3-7-fold higher in animals subjected to PNX than in mice subjected to a sham operation. The increase in tumor multiplicity occurred when PNX was performed 1, 3, and 6 days before or 1 day after MCA treatment. In the absence of PNX, lung tumor multiplicity in MCA-treated mice given one injection of BHT (200 mg/kg body weight) increased significantly (P < 0.01) as compared to that in mice given MCA alone. Tumor multiplicity continued to increase linearly (R2 = 0.99) with each subsequent BHT injection. Lung tumor multiplicity and tumor size in mice given one or two injections of BHT were comparable to those in animals subjected to PNX. These data demonstrate that post-PNX compensatory lung growth stimulates tumorigenesis in MCA-treated mice and provides a novel model for investigating tumor formation.  (+info)

Effects of butylated hydroxyanisole (BHA) and butylated hydroxytoluene (BHT) on the acetylation of 2-aminofluorene and DNA-2-aminofluorene adducts in the rat. (6/222)

The effects of the synthetic phenolic antioxidants (butylated hydroxyanisole and butylated hydroxytoluene) on the in vivo acetylation of 2-aminofluorene and formation of DNA-2-aminofluorene adducts were investigated in male Sprague-Dawley rats. For in vitro examination, cytosols and intact cells, with or without butylated hydroxyanisole and butylated hydroxytoluene co-treatment, showed different percentages of 2-aminofluorene acetylation and DNA-2-aminofluorene adducts. For in vivo examination, pre-treatment of male rats with butylated hydroxyanisole and butylated hydroxytoluene (10 mg/kg) 48 h prior to the administration of 2-aminofluorene (50 mg/kg) resulted in 34% and 18%, 29% and 20% decreases, respectively, in the urinary and fecal recovery of N-acetyl-2-aminofluorene, and 34% and 19% decreases, respectively, in the metabolic clearance of 2-aminofluorene to N-acetyl-2-aminofluorene. Following exposure of rats to the 2-aminofluorene, with or without pretreatment with butylated hydroxyanisole and butylated hydroxytoluene, DNA-2-aminofluorene adducts were observed in the target tissues of liver and bladder, and also in circulating leukocytes. The DNA-2-aminofluorene adducts in liver, bladder, and leukocytes were decreased by pretreatment with butylated hydroxyanisole and butylated hydroxytoluene. This is the first demonstration that synthetic phenolic antioxidants decrease the N-acetylation of carcinogens and formation of DNA-carcinogen adducts in vivo.  (+info)

Strain-dependent lung tumor formation in mice transplacentally exposed to 3-methylcholanthrene and post-natally exposed to butylated hydroxytoluene. (7/222)

The carcinogenic effects of in utero exposure to 3-methylcholanthrene (MC) have been demonstrated in the tumor-resistant C57BL/6 (B6) and DBA (D2) strains of mice. In this study, we determined the effects of in utero exposure to MC in BALB/c mice, a strain which demonstrates greater susceptibility to lung tumor induction, and compared our findings with those previously found in [D2xB6D2F(1)]F(2) mice. In addition, we assessed the molecular pathogenesis of the chemically induced tumors and examined the effects of the putative lung tumor promoter butylated hydroxytoluene (BHT) in BALB/c mice. BALB/c mice were treated on day 17 of gestation with 5, 15 or 45 mg/kg MC and 6 weeks after birth with BHT for 6 consecutive weeks. Mice were killed at 6 months of age. Ki-ras, p16Ink4a and p19ARF gene loci were amplified from paraffin-embedded lung tumor tissue and screened for the presence of point mutations via allele-specific oligonucleotide hybridization and single strand conformation polymorphism (SSCP) analyses. Ki-ras point mutations were found in 56% (20/36) of BALB/c lung tumors, with 33% (2/6) of the hyperplasias, 58% (10/19) of the adenomas and 73% (8/11) of the carcinomas exhibiting point mutations at this gene locus. Similar incidences of Ki-ras mutations were previously found following transplacental exposure of [D2xB6D2F(1)]F(2) mice to MC and treatment of adult A/J mice with urethane. Interestingly, a strain-dependent difference was observed in the mutational spectrum. Sixty-two and 38% of the lung lesions in BALB/c mice exhibited G-->C and G-->T transversions, respectively, in contrast to the 13 and 84% incidences previously observed in [D2xB6D2F(1)]F(2) mice. SSCP analysis of the tumor suppressor gene p16Ink4a showed a 6% incidence of point mutations, consistent with that found in [D2xB6D2F(1)]F(2) mice. No mutations were found in exon 1beta of the p19ARF gene of either strain. BHT, a lung tumor promoter in adult mice, had no statistically significant effects on either tumor incidence, tumor multiplicity or the mutational spectrum produced in the Ki-ras gene by in utero MC treatment. However, though not significant, there was an observable trend in increased tumor multiplicity in mice co-treated with BHT. These data demonstrate the transplacental carcinogenic effect of MC in BALB/c mice and show that mutagenic damage to Ki-ras is a critical early event mediating murine lung tumorigenesis in both the tumor-sensitive and tumor-resistant strains. Unlike what occurs when adult BALB/c mice are treated with MC, BHT does not appear to significantly promote the formation of lung tumors following transplacental exposure to MC, possibly due to the rapid growth and cell proliferation in the developing organism. Strain-dependent differences in the Ki-ras mutational spectrum may be associated with their differential susceptibility to lung tumor initiation.  (+info)

Effects of MK-447 on platelet shape change, aggregation, and ATP release by collagen, ADP, and stable analogue of thromboxane A2 in rabbit platelets. (8/222)

AIM: To investigate the effects of MK-447 on platelet shape change, aggregation, and ATP release by collagen (Col), ADP, and stable analogue of thromboxane A2 (STA2) in rabbits. METHODS: Platelet shape change and aggregation were quantified in light transmission by turbidimetric method and release reaction was assessed by the amount of ATP in platelet-rich plasma (PRP). RESULTS: (1) MK-447 100-700 mumol.L-1 caused only the shape change, which was not inhibited by indometacin 3 mumol.L-1. Platelet shape changes by Col, ADP, and STA2 were reduced (P < 0.01) after the addition of MK-447. The lag phase was prolonged (P < 0.01) in Col and shortened (P < 0.01) in ADP. (2) MK-447 reduced the aggregation by Col 5 mg.L-1 (P < 0.01), and enhanced that by ADP 0.3-10 mumol.L-1 and STA2 0.1-3 mumol.L-1 (P < 0.01). (3) The release reaction by STA2 1-3 mumol.L-1 was also increased (P < 0.01). The effects of MK-447 on STA2 were not inhibited by S-145. CONCLUSION: MK-447 induced the platelet shape change, and showed the dual effects, inhibition or enhancement, on the actions by different aggregating agents.  (+info)