Genomic imprinting: implications for human disease. (1/164)

Genomic imprinting refers to an epigenetic marking of genes that results in monoallelic expression. This parent-of-origin dependent phenomenon is a notable exception to the laws of Mendelian genetics. Imprinted genes are intricately involved in fetal and behavioral development. Consequently, abnormal expression of these genes results in numerous human genetic disorders including carcinogenesis. This paper reviews genomic imprinting and its role in human disease. Additional information about imprinted genes can be found on the Genomic Imprinting Website at http://www.geneimprint.com.  (+info)

Loss of imprinting of a paternally expressed transcript, with antisense orientation to KVLQT1, occurs frequently in Beckwith-Wiedemann syndrome and is independent of insulin-like growth factor II imprinting. (2/164)

Genomic imprinting plays a fundamental role in cancer and some hereditary diseases, including Beckwith-Wiedemann syndrome (BWS), a disorder of prenatal overgrowth and predisposition to embryonal malignancies such as Wilms tumor. We have previously shown that the KVLQT1 gene on chromosomal band 11p15 is imprinted, with expression of the maternal allele, and that the maternal allele is disrupted in rare BWS patients with balanced germ-line chromosomal rearrangements. We now show that an antisense orientation transcript within KVLQT1, termed LIT1 (long QT intronic transcript 1) is expressed normally from the paternal allele, from which KVLQT1 transcription is silent, and that in the majority of patients with BWS, LIT1 is abnormally expressed from both the paternal and maternal alleles. Eight of sixteen informative BWS patients (50%) showed biallelic expression, i.e., loss of imprinting (LOI) of LIT1. Similarly, 21 of 36 (58%) BWS patients showed loss of maternal allele-specific methylation of a CpG island upstream of LIT1. Surprisingly, LOI of LIT1 was not linked to LOI of insulin-like growth factor II (IGF2), which was found in 2 of 10 (20%) BWS patients, even though LOI of IGF2 occurs frequently in Wilms and other tumors, and in some patients with BWS. Thus, LOI of LIT1 is the most common genetic alteration in BWS. We propose that 11p15 harbors two imprinted gene domains-a more centromeric domain including KVLQT1 and p57(KIP2), alterations in which are more common in BWS, and a more telomeric domain including IGF2, alterations in which are more common in cancer.  (+info)

Anesthetic considerations of two sisters with Beckwith-Wiedemann syndrome. (3/164)

Anesthetic considerations of 21-mo-old and 4-yr-old sisters with Beckwith-Wiedemann syndrome during surgical repair of cleft palate and reduction of macroglossia are presented and discussed. This syndrome is characterized by exomphalos, macroglossia, gigantism, hypoglycemia in infancy, and many other clinical features. This syndrome is also known as exomphalos, macroglossia, and gigantism (EMG) syndrome. Principal problems associated with anesthetic management in this syndrome are hypoglycemia and macroglossia. Careful intraoperative plasma glucose monitoring is particularly important to prevent the neurologic sequelae of unrecognized hypoglycemia. It is expected that airway management would be complicated by the macroglossia, which might cause difficult bag/mask ventilation and endotracheal intubation following the induction of anesthesia and muscle paralysis, so preparations for airway difficulty (e.g., awake vocal cord inspection) should be considered before induction. A nasopharyngeal airway is useful in relieving postoperative airway obstruction.  (+info)

LIT1, an imprinted antisense RNA in the human KvLQT1 locus identified by screening for differentially expressed transcripts using monochromosomal hybrids. (4/164)

Mammalian imprinted genes are frequently arranged in clusters on particular chromosomes. The imprinting cluster on human chromosome 11p15 is associated with Beckwith-Wiedemann syndrome (BWS) and a variety of human cancers. To clarify the genomic organization of the imprinted cluster, an extensive screen for differentially expressed transcripts in the 11p15 region was performed using monochromosomal hybrids with a paternal or maternal human chromosome 11. Here we describe an imprinted antisense transcript identified within the KvLQT1 locus, which is associated with multiple balanced chromosomal rearrangements in BWS and an additional breakpoint in embryonal rhabdoid tumors. The transcript, called LIT1 (long QT intronic transcript 1), was expressed preferentially from the paternal allele and produced in most human tissues. Methylation analysis revealed that an intronic CpG island was specifically methylated on the silent maternal allele and that four of 13 BWS patients showed complete loss of maternal methylation at the CpG island, suggesting that antisense regulation is involved in the development of human disease. In addition, we found that eight of eight Wilms' tumors exhibited normal imprinting of LIT1 and five of five tumors displayed normal differential methylation at the intronic CpG island. This contrasts with five of six tumors showing loss of imprinting of IGF2. We conclude that the imprinted gene domain at the KvLQT1 locus is discordantly regulated in cancer from the imprinted domain at the IGF2 locus. Thus, this positional approach using human monochromosomal hybrids could contribute to the efficient identification of imprinted loci in humans.  (+info)

A maternally methylated CpG island in KvLQT1 is associated with an antisense paternal transcript and loss of imprinting in Beckwith-Wiedemann syndrome. (5/164)

Loss of imprinting at IGF2, generally through an H19-independent mechanism, is associated with a large percentage of patients with the overgrowth and cancer predisposition condition Beckwith-Wiedemann syndrome (BWS). Imprinting control elements are proposed to exist within the KvLQT1 locus, because multiple BWS-associated chromosome rearrangements disrupt this gene. We have identified an evolutionarily conserved, maternally methylated CpG island (KvDMR1) in an intron of the KvLQT1 gene. Among 12 cases of BWS with normal H19 methylation, 5 showed demethylation of KvDMR1 in fibroblast or lymphocyte DNA; whereas, in 4 cases of BWS with H19 hypermethylation, methylation at KvDMRl was normal. Thus, inactivation of H19 and hypomethylation at KvDMR1 (or an associated phenomenon) represent distinct epigenetic anomalies associated with biallelic expression of IGF2. Reverse transcription-PCR analysis of the human and syntenic mouse loci identified the presence of a KvDMR1-associated RNA transcribed exclusively from the paternal allele and in the opposite orientation with respect to the maternally expressed KvLQT1 gene. We propose that KvDMR1 and/or its associated antisense RNA (KvLQT1-AS) represents an additional imprinting control element or center in the human 11p15.5 and mouse distal 7 imprinted domains.  (+info)

Glypican-3-deficient mice exhibit developmental overgrowth and some of the abnormalities typical of Simpson-Golabi-Behmel syndrome. (6/164)

Glypicans are a family of heparan sulfate proteoglycans that are linked to the cell surface through a glycosyl-phosphatidylinositol anchor. One member of this family, glypican-3 (Gpc3), is mutated in patients with the Simpson-Golabi-Behmel syndrome (SGBS). These patients display pre- and postnatal overgrowth, and a varying range of dysmorphisms. The clinical features of SGBS are very similar to the more extensively studied Beckwith-Wiedemann syndrome (BWS). Since BWS has been associated with biallelic expression of insulin-like growth factor II (IGF-II), it has been proposed that GPC3 is a negative regulator of IGF-II. However, there is still no biochemical evidence indicating that GPC3 plays such a role.Here, we report that GPC3-deficient mice exhibit several of the clinical features observed in SGBS patients, including developmental overgrowth, perinatal death, cystic and dyplastic kidneys, and abnormal lung development. A proportion of the mutant mice also display mandibular hypoplasia and an imperforate vagina. In the particular case of the kidney, we demonstrate that there is an early and persistent developmental abnormality of the ureteric bud/collecting system due to increased proliferation of cells in this tissue element. The degree of developmental overgrowth of the GPC3-deficient mice is similar to that of mice deficient in IGF receptor type 2 (IGF2R), a well characterized negative regulator of IGF-II. Unlike the IGF2R-deficient mice, however, the levels of IGF-II in GPC3 knockouts are similar to those of the normal littermates.  (+info)

Analysis of germline CDKN1C (p57KIP2) mutations in familial and sporadic Beckwith-Wiedemann syndrome (BWS) provides a novel genotype-phenotype correlation. (7/164)

Beckwith-Wiedemann syndrome (BWS) is a human imprinting disorder with a variable phenotype. The major features are anterior abdominal wall defects including exomphalos (omphalocele), pre- and postnatal overgrowth, and macroglossia. Additional less frequent complications include specific developmental defects and a predisposition to embryonal tumours. BWS is genetically heterogeneous and epigenetic changes in the IGF2/H19 genes resulting in overexpression of IGF2 have been implicated in many cases. Recently germline mutations in the cyclin dependent kinase inhibitor gene CDKN1C (p57KIP2) have been reported in a variable minority of BWS patients. We have investigated a large series of familial and sporadic BWS patients for evidence of CDKN1C mutations by direct gene sequencing. A total of 70 patients with classical BWS were investigated; 54 were sporadic with no evidence of UPD and 16 were familial from seven kindreds. Novel germline CDKN1C mutations were identified in five probands, 3/7 (43%) familial cases and 2/54 (4%) sporadic cases. There was no association between germline CDKN1C mutations and IGF2 or H19 epigenotype abnormalities. The clinical phenotype of 13 BWS patients with germline CDKN1C mutations was compared to that of BWS patients with other defined types of molecular pathology. This showed a significantly higher frequency of exomphalos in the CDKN1C mutation cases (11/13) than in patients with an imprinting centre defect (associated with biallelic IGF2 expression and H19 silencing) (0/5, p<0.005) or patients with uniparental disomy (0/9, p<0.005). However, there was no association between germline CDKN1C mutations and risk of embryonal tumours. No CDKN1C mutations were identified in six non-BWS patients with overgrowth and Wilms tumour. These findings (1) show that germline CDKN1C mutations are a frequent cause of familial but not sporadic BWS, (2) suggest that CDKN1C mutations probably cause BWS independently of changes in IGF2/H19 imprinting, (3) provide evidence that aspects of the BWS phenotype may be correlated with the involvement of specific imprinted genes, and (4) link genotype-phenotype relationships in BWS and the results of murine experimental models of BWS.  (+info)

CDKN1C expression in Beckwith-Wiedemann syndrome patients with allele imbalance. (8/164)

In this study, we have examined CDKN1C expression in BWS patients with allele imbalance (AI) affecting the 11p15 region. Two of two informative patients with AI, attributable to mosaic paternal isodisomy, exhibited reduced levels of CDKN1C expression in the liver and kidney, respectively, relative to expression levels in the equivalent tissues in normal controls. Although overall expression was reduced, some expression from the paternally derived CDKN1C allele was evident, consistent with incomplete paternal imprinting of the gene. One patient showed evidence of maternal allele silencing in addition to AI. These findings show for the first time that CDKN1C expression is reduced in BWS patients with AI and suggest that CDKN1C haploinsufficiency contributes to the BWS phenotype in patients with mosaic paternal isodisomies of chromosome 11.  (+info)