Small molecule inhibitors of Apaf-1-related caspase- 3/-9 activation that control mitochondrial-dependent apoptosis. (1/62)

Apoptosis is a biological process relevant to human disease states that is strongly regulated through protein-protein complex formation. These complexes represent interesting points of chemical intervention for the development of molecules that could modulate cellular apoptosis. The apoptosome is a holoenzyme multiprotein complex formed by cytochrome c-activated Apaf-1 (apoptotic protease-activating factor), dATP and procaspase-9 that link mitochondria disfunction with activation of the effector caspases and in turn is of interest for the development of apoptotic modulators. In the present study we describe the identification of compounds that inhibit the apoptosome-mediated activation of procaspase-9 from the screening of a diversity-oriented chemical library. The active compounds rescued from the library were chemically optimised to obtain molecules that bind to both recombinant and human endogenous Apaf-1 in a cytochrome c-noncompetitive mechanism that inhibits the recruitment of procaspase-9 by the apoptosome. These newly identified Apaf-1 ligands decrease the apoptotic phenotype in mitochondrial-mediated models of cellular apoptosis.  (+info)

ARK, the Apaf-1 related killer in Drosophila, requires diverse domains for its apoptotic activity. (2/62)

In mammals and Drosophila, apoptotic caspases are under positive control of the CED-4-like proteins Apaf-1 and ARK, respectively. In an EMS-mutagenesis screen, we isolated 33 ark mutants as recessive suppressors of hid-induced apoptosis. The ark mutants are loss-of-function alleles characterized by reduced developmental apoptosis. Using the phenotypic series of these alleles, we identified helical domain I in the nucleotide oligomerization domain as critical for ARK's apoptotic activity. Interestingly, the WD40 region may also have an unanticipated positive requirement for the apoptotic activity of ARK. Considering structural information, we discuss the roles of these domains for assembly and activity of the ARK apoptosome, and propose that the WD40 region is anti-apoptotic in the absence of apoptotic signals, and pro-apoptotic in the presence of such signals. Furthermore, a defined null allele reveals that ark is required for most, but not all apoptosis suggesting the existence of an ARK-independent apoptotic pathway.  (+info)

Apoptosome dependent caspase-3 activation pathway is non-redundant and necessary for apoptosis in sympathetic neurons. (3/62)

Although sympathetic neurons are a well-studied model for neuronal apoptosis, the role of the apoptosome in activating caspases in these neurons remains debated. We find that the ability of sympathetic neurons to undergo apoptosis in response to nerve growth factor (NGF) deprivation is completely dependent on having an intact apoptosome pathway. Genetic deletion of Apaf-1, caspase-9, or caspase-3 prevents apoptosis after NGF deprivation, and importantly, allows these neurons to recover and survive long-term following readdition of NGF. The inability of caspase-3 deficient sympathetic neurons to undergo apoptosis is particularly striking, as apoptosis in dermal fibroblasts and cortical neurons proceeds even in the absence of caspase-3. Our results show that in contrast to dermal fibroblasts and cortical neurons, sympathetic neurons express no detectable levels of caspase-7. The strict requirement for an intact apoptosome, coupled with a lack of effector caspase redundancy, provides sympathetic neurons with a markedly increased control over their apoptotic pathway.  (+info)

The marine product cephalostatin 1 activates an endoplasmic reticulum stress-specific and apoptosome-independent apoptotic signaling pathway. (4/62)

Cephalostatin 1, a bis-steroidal marine natural product, has been reported to induce apoptosis without the requirement of an active caspase-8 or mitochondrial cytochrome c release and apoptosome formation. Here we show that despite the absence of these events, caspase-9 activation is essential for cephalostatin 1-induced apoptosis. Cephalostatin 1 initiates a rapid endoplasmic reticulum stress response characterized by phosphorylation of eukaryotic initiation factor-2 alpha-subunit and increased expression of the chaperone immunoglobulin heavy chain-binding protein GRP78 as well as the transcription factor C/EBP homologous protein (CHOP)/GADD153. Cephalostatin 1 activates apoptosis signal-regulating kinase 1 and c-Jun N-terminal kinase (JNK). However, this pathway does not play a major role in cephalostatin 1-induced apoptosis, as assessed by stable expression of a dominant negative apoptosis signal-regulating kinase 1. Importantly, the endoplasmic reticulum-associated caspase-4 is required and as shown by biochemical and genetic inhibition experiments, acts upstream of caspase-9 in cephalostatin-induced apoptosis.  (+info)

Apoptosome: a platform for the activation of initiator caspases. (5/62)

Apoptosome refers to the adaptor protein complex that mediates the activation of an initiator caspase at the onset of apoptosis. In mammalian cells, caspase-9, caspase-8, and caspase-2 rely on the apoptotic protease-activating factor 1 (Apaf-1)-apoptosome, death-inducing signaling complex (DISC), and PIDDosome, respectively, for activation. In Drosophila, activation of the caspase-9 homolog Dronc requires assembly of an apoptosome comprised of Dark/Hac-1/Dapaf-1. In Caenorhabditis elegans, activation of the caspase CED-3 is facilitated by the CED-4-apoptosome. Recent biochemical and structural investigation revealed significant insights into the assembly and function of the various apoptosomes. Nonetheless, conclusive mechanisms by which the initiator caspases are activated by the apoptosomes remain elusive. Several models have been proposed to explain the activation process. The induced proximity model summarizes the general process of initiator caspase activation. The proximity-driven dimerization model describes how initiator caspases respond to induced proximity and offers an explanation for their activation. Regardless of how initiator caspases are activated, enhanced activity must be correlated with altered active site conformation. The induced conformation model posits that the activated conformation for the active site of a given initiator caspase is attained through direct interaction with the apoptosome or through homo-oligomerization facilitated by the apoptosome.  (+info)

Bcl2L12 inhibits post-mitochondrial apoptosis signaling in glioblastoma. (6/62)

Glioblastoma (GBM) is an astrocytic brain tumor characterized by an aggressive clinical course and intense resistance to all therapeutic modalities. Here, we report the identification and functional characterization of Bcl2L12 (Bcl2-like-12) that is robustly expressed in nearly all human primary GBMs examined. Enforced Bcl2L12 expression confers marked apoptosis resistance in primary cortical astrocytes, and, conversely, its RNA interference (RNAi)-mediated knockdown sensitizes human glioma cell lines toward apoptosis in vitro and impairs tumor growth with increased intratumoral apoptosis in vivo. Mechanistically, Bcl2L12 expression does not affect cytochrome c release or apoptosome-driven caspase-9 activation, but instead inhibits post-mitochondrial apoptosis signaling at the level of effector caspase activation. One of Bcl2L12's mechanisms of action stems from its ability to interact with and neutralize caspase-7. Notably, while enforced Bcl2L12 expression inhibits apoptosis, it also engenders a pronecrotic state, which mirrors the cellular phenotype elicited by genetic or pharmacologic inhibition of post-mitochondrial apoptosis molecules. Thus, Bcl2L12 contributes to the classical tumor biological features of GBM such as intense apoptosis resistance and florid necrosis, and may provide a target for enhanced therapeutic responsiveness of this lethal cancer.  (+info)

Essential postmitochondrial function of p53 uncovered in DNA damage-induced apoptosis in neurons. (7/62)

In postmitotic sympathetic neurons, unlike most mitotic cells, death by apoptosis requires not only the release of cytochrome c from the mitochondria, but also an additional step to relieve X-linked inhibitor of apoptosis protein (XIAP)'s inhibition of caspases. Here, we examined the mechanism by which XIAP is inactivated following DNA damage and found that it is achieved by a mechanism completely different from that following apoptosis by nerve growth factor (NGF) deprivation. NGF deprivation relieves XIAP by selectively degrading it, whereas DNA damage overcomes XIAP via a p53-mediated induction of Apaf-1. Unlike wild-type neurons, p53-deficient neurons fail to overcome XIAP and remain resistant to cytochrome c after DNA damage. Restoring Apaf-1 induction in p53-deficient neurons is sufficient to overcome XIAP and sensitize cells to cytochrome c. Although a role for p53 in apoptosis upstream of cytochrome c release has been well established, this study uncovers an additional, essential role for p53 in regulating caspase activation downstream of mitochondria following DNA damage in neurons.  (+info)

Analysis of apoptosome dysregulation in pancreatic cancer and of its role in chemoresistance. (8/62)

The apoptosome is a multiprotein complex mediating the mitochondrial pathway of cell death. Its importance during development has been clearly demonstrated by knocking out key genes in mouse. APAF1 is the core protein of the apoptosome and its dosage is also critical in various cancer types, i.e., melanoma, germ line tumor, gastrointestinal cancer and B-type chronic lymphocytic leukemia. This is generally due to inactivation of the APAF1 locus by epigenetic phenomena or by activity of promoter regulators. We investigated the putative roles of the apoptosome in pancreatic ductal adenocarcinoma (PDAC). We found that both APAF1 mRNA and protein are dysregulated in human PDAC samples. Similarly, several PDAC cell lines exhibited variable levels of both APAF1 protein and mRNA. The response to cell death induction and its biochemical features were assessed by treatment of each line with commonly used chemotherapeutic agents. We found that the apoptosome pathway was not functional in most cell lines upon cytochrome c release from mitochondria. In addition, we restored APAF1 and Caspase-9 dosage in Panc-1 cells, where the apoptosome is downregulated, by overexpressing the murine cDNA of the two molecules, and we improved the death response to chemotherapeutic agents.  (+info)