Assessment of the gonadotrophin-gonadal axis in androgen insensitivity syndrome. (1/139)

OBJECTIVE: To study the value of measuring serum luteinising hormone (LH), follicle stimulating hormone (FSH), testosterone, and dihydrotestosterone (DHT) in androgen insensitivity syndrome (AIS). DESIGN: Retrospective study of patients on a nationwide register of AIS. PATIENTS: Sixty one cases of AIS with androgen receptor (AR) dysfunction (abnormalities of the AR gene and/or abnormal AR binding) were divided into three age groups: infants, < 1 year old; children, 1-13 years old; and postpubertal, > 13 years old. MEASUREMENTS: Age, dose of human chorionic gonadotrophin (hCG) stimulation, pre-hCG and post-hCG serum testosterone values, serum DHT values, and serum LH and FSH values before and after LH releasing hormone (LHRH) stimulation. RESULTS: In 23 of 30 infants testosterone was within age related reference ranges; six were above this range. The median testosterone rise following variable dosage of hCG was 9.5 times the basal value. The increment was not related to the hCG dose, age, or basal concentration of testosterone. The median basal and stimulated testosterone:DHT ratios were 2.5 and 6.1, respectively. The median increment in DHT was 2.2-fold. Seventeen of 18 FSH and 11 of 19 LH measurements were within age related ranges in infants; in seven patients LH values were above the range. LHRH stimulation performed in 39 patients showed an exaggerated LH in all age groups. The FSH response was not exaggerated in children. CONCLUSION: Although a positive hCG test excludes biosynthetic defects of testosterone, an inadequate response does not exclude AIS. Basal LH and testosterone may not be raised during early infancy. An LHRH stimulation test might be useful for evaluating cases of suspected AIS presenting in mid-childhood.  (+info)

Direct androgenic regulation of calcitonin gene-related peptide expression in motoneurons of rats with mosaic androgen insensitivity. (2/139)

The spinal nucleus of the bulbocavernosus (SNB) and its target muscles, bulbocavernosus and levator ani (BC/LA), form a sexually dimorphic neuromuscular circuit whose development and maintenance are androgen-dependent. The mechanisms whereby androgen regulates gene expression in the SNB of adult rats are largely unknown, although a retrograde influence from the BC/LA muscles has been suggested to underlie the suppression of calcitonin gene-related peptide (CGRP) expression observed in SNB motoneurons after systemic androgen treatment. A mosaic paradigm was used to determine the site of action of androgen in the regulation of CGRP expression in SNB motoneurons. As a consequence of random X chromosome inactivation, androgenized female rats heterozygous for the tfm androgen receptor (AR) mutation (XwtXtfm-mosaics) express a mosaic of androgen-sensitive and androgen-insensitive motoneurons in the SNB, whereas the BC/LA target musculature appears to be uniformly sensitive to androgens. In adult mosaics, testosterone administration resulted in a reduction in the proportion of androgen-sensitive cells expressing CGRP, whereas no such reduction was observed in the androgen-insensitive population, indicating that neuronal AR plays an essential role in the neuromuscular regulation of CGRP expression in these motoneurons. This provides the first in vivo demonstration of AR regulation of gene expression unambiguously localized to a neuronal population.  (+info)

Point mutations in the steroid-binding domain of the androgen receptor gene of five Japanese patients with androgen insensitivity syndrome. (3/139)

We analyzed the androgen receptor (AR) gene in five Japanese patients diagnosed with androgen insensitivity syndrome (AIS). All AR genes from the five patients had single-nucleotide substitutions, which introduced a premature termination codon in three patients (Gln640, Arg752, and Gln640 and Trp751), and a single amino acid substitution in two patients (Arg831 to Gln, and Leu812 to Phe). All the mutations occurred in the steroid-binding domain, comprising exons D through G. The three patients with the premature termination codon(s) and the one patient with Arg831Gln were clinically diagnosed as having complete AIS, while the patient with Leu812Phe had a partial form of AIS. Pubic skin fibroblasts from four of the five patients did not show detectable androgen binding. These data on mutations that have not been reported previously, provide valuable information for the further characterization of structural and functional relationships in the steroid-binding domain of the AR protein.  (+info)

Coregulator small nuclear RING finger protein (SNURF) enhances Sp1- and steroid receptor-mediated transcription by different mechanisms. (4/139)

The small nuclear RING finger protein SNURF is not only a coactivator in steroid receptor-dependent transcription but also activates transcription from steroid-independent promoters. In this work, we show that SNURF, via the RING finger domain, enhances protein binding to Sp1 elements/GC boxes and interacts and cooperates with Sp1 in transcriptional activation. The activation of androgen receptor (AR) function requires regions other than the RING finger of SNURF, and SNURF does not influence binding of AR to cognate DNA elements. The zinc finger region (ZFR) together with the hinge region of AR are sufficient for contacting SNURF. The nuclear localization signal in the boundary between ZFR and the hinge region participates in the association of AR with SNURF, and a receptor mutant lacking the C-terminal part of the bipartite nuclear localization signal shows attenuated response to coexpressed SNURF. Some AR ZFR point mutations observed in patients with partial androgen insensitivity syndrome or male breast cancer impair the interaction of AR with SNURF and also render AR refractory to the transcription-activating effect of SNURF. Collectively, SNURF modulates the transcriptional activities of androgen receptor and Sp1 via different domains, and it may act as a functional link between steroid- and Sp1-regulated transcription.  (+info)

Pituitary-gonadal axis in male undermasculinisation. (5/139)

AIMS: To study the value of assessing serum concentrations of luteinising hormone (LH), follicle stimulating hormone (FSH), testosterone, and dihydrotestosterone (DHT) in patients with male undermasculinisation not caused by androgen insensitivity. METHODS: A retrospective study of a register of cases of male undermasculinisation (20 with abnormal testes, eight with 5alpha-reductase deficiency, three with testosterone biosynthetic defects, seven with Drash syndrome, and 210 undiagnosed). RESULTS: A human chorionic gonadotropin (hCG) stimulation test was performed in 66 of 185 children with male undermasculinisation. In 41 of 66 patients the dose of hCG was either 1000 U or 1500 U on three consecutive days. The rise in testosterone was related to basal serum testosterone and was not significantly different between the two groups. Testosterone:DHT ratio in patients with 5alpha-reductase deficiency was 12.5-72.8. During early infancy, baseline concentrations of LH and FSH were often within normal reference ranges. In patients with abnormal testes, median pre-LHRH (luteinising hormone releasing hormone) concentrations of LH and FSH were 2 and 6.4 U/l, respectively, and post-LHRH concentrations were 21 and 28 U/l. An exaggerated response to LHRH stimulation was observed during mid-childhood in children where the diagnosis was not clear and in all children with abnormal testes. CONCLUSIONS: The testosterone:DHT ratio following hCG stimulation is more reliable than the basal testosterone:DHT ratio in identifying 5alpha-reductase deficiency. During infancy, the LHRH stimulation test may be more reliable in identifying cases of male undermasculinisation due to abnormal testes than basal gonadotrophin concentrations.  (+info)

Tissue interaction in androgen response of embryonic mammary rudiment of mouse: identification of target tissue for testosterone. (6/139)

In the androgen response of the embryonic mammary rudiment of the mouse, both gland epithelium and surrounding mesenchyme are visibly involved. The question whether this is due to a direct action of testosterone on both tissues was investigated in experimental combination of mammary epithelium and mammary mesenchyme, derived either from normal or from androgen-insensitive (XTfm/Y) embryos. A typical androgen response occurred in combinations of androgen-insensitive epithelium with normal mesenchyme, whereas all combinations of normal epithelium with androgen-insensitive mesenchyme failed to respond. It is therefore concluded that only the mesenchyme of the mammary rudiment is the target tissue for testosterone, and that all changes in the gland epithelium, including its necrosis, are secondarily caused by testosterone-activated mesenchymal cells.  (+info)

Desert hedgehog (Dhh) gene is required in the mouse testis for formation of adult-type Leydig cells and normal development of peritubular cells and seminiferous tubules. (7/139)

Testes from adult and prepubertal mice lacking the Desert hedgehog (DHH:) gene were examined in order to describe further the role of Dhh in spermatogenesis because, in a previous report, DHH:-null male mice were shown to be sterile. Dhh is a signaling molecule expressed by Sertoli cells. Its receptor, patched (Ptc), has been previously localized to Leydig cells and is herein described as being localized also to peritubular cells. Two phenotypes of the mice were observed: masculinized (7.5% of DHH:-null males) and feminized (92.5%), both of which displayed abnormal peritubular tissue and severely restricted spermatogenesis. Testes from adult feminized animals lacked adult-type Leydig cells and displayed numerous undifferentiated fibroblastic cells in the interstitium that produced abundant collagen. The basal lamina, normally present between the myoid cells and Sertoli cells, was focally absent. We speculate that the abnormal basal lamina contributed to other characteristics, such as extracordal gonocytes, apolar Sertoli cells, and anastomotic seminiferous tubules. The two DHH:-null phenotypes described have common peritubular cell defects that may be indicative of the essential role of peritubular cells in development of tubular morphology, the differentiation of Leydig cells, and the ultimate support of spermatogenesis.  (+info)

Neuronal size in the spinal nucleus of the bulbocavernosus: direct modulation by androgen in rats with mosaic androgen insensitivity. (8/139)

The motoneurons of the spinal nucleus of the bulbocavernosus (SNB) and its target muscles, the bulbocavernosus and levator ani, form a sexually dimorphic circuit that is developmentally dependent on androgen exposure and exhibits numerous structural and functional changes in response to androgen exposure in adulthood. Castration of male adult rats causes shrinkage of SNB somata, and testosterone replacement reverses this effect, but the site at which androgen is acting to cause this change is undetermined. We exploited the X-chromosome residency of the androgen receptor (AR) gene to generate androgenized female rats that were heterozygous for the testicular feminization mutant (tfm) AR mutation and that, as a consequence of ontogenetic random X-inactivation, expressed a blend of androgen-sensitive wild-type cells and tfm-affected androgen-insensitive cells in the SNB. Chronic testosterone treatment of adult mosaics increased soma sizes only in androgen-competent wild-type SNB cells. The size of tfm-affected SNB somata in the same animals did not differ from the size of either the wild-type or tfm-affected SNB neurons in control mosaics that did not receive androgen treatment in adulthood. Because the muscle targets of the SNB are known to be uniformly androgen-sensitive in tfm mosaics, this mosaic analysis provides unambiguous evidence that androgenic effects on motoneuron soma size are mediated locally in the SNB. It is possible that the neuronal AR plays a permissive role in coordinating the actions of androgen.  (+info)