Vasopressin stimulation of acetate incorporation into lipids in a dimethylbenz(a)anthracene-induced rat mammary tumor cell line. (1/4860)

In a preliminary report we described the effects of rat prolactin on the incorporation of [14C]acetate into lipids by a cell line from a dimethylbenz(a)anthracene-induced rat mammary tumor. The characteristics of the response to prolactin were very similar to those described for the normal rat mammary gland; namely, insulin was required for full expression of the response, maximal activity was not seen until 36 hr after the addition of the hormones, and growth hormone was able to elicit the same response. However, we were unable to detect binding of 125I-labeled prolactin to these cells, and furthermore, other more purified prolactin preparations were inactive. Upon further investigation we discovered that the activity resided in a low-molecular-weight fraction of the rat prolactin B-1 preparation and was probably either vasopressin or oxytocin or both. These data suggest the possibility that vasopressin may play a role in rodent mammary tumorigenesis.  (+info)

Analysis of gabapentin in serum and plasma by solid-phase extraction and gas chromatography-mass spectrometry for therapeutic drug monitoring. (2/4860)

A simple method for the determination of gabapentin (Neurontin) is described. The method uses solid-phase extraction by disk column and derivatization followed by gas chromatographic-mass spectrometric analysis. The single-step derivatization with MTBSTFA produces a t-BDMS derivative of both the carboxylic and amine moieties of the molecule. Each step of the procedure was optimized to assure reliable performance of the method. The assay limit of detection was 0.1 microg/mL with a linear range from 1.0 to 35 microg/mL. Within-run (n = 3) and between-run (n = 40) coefficients of variation were less than 8.2 and 15.9%, respectively. The method has proven reliable in routine production for more than a year, producing clean chromatography with unique ion fragments, consistent ion mass ratios, and no interferences. Statistical analysis of the gabapentin concentrations measured in 1020 random specimens over a 2-month period showed a mean concentration of 6.07 microg/mL with a standard deviation of 5.28.  (+info)

Gabapentin suppresses ectopic nerve discharges and reverses allodynia in neuropathic rats. (3/4860)

Repetitive ectopic discharges from injured afferent nerves play an important role in initiation and maintenance of neuropathic pain. Gabapentin is effective for treatment of neuropathic pain but the sites and mechanisms of its antinociceptive actions remain uncertain. In the present study, we tested a hypothesis that therapeutic doses of gabapentin suppress ectopic afferent discharge activity generated from injured peripheral nerves. Mechanical allodynia, induced by partial ligation of the sciatic nerve in rats, was determined by application of von Frey filaments to the hindpaw. Single-unit afferent nerve activity was recorded proximal to the ligated sciatic nerve site. Intravenous gabapentin, in a range of 30 to 90 mg/kg, significantly attenuated allodynia in nerve-injured rats. Furthermore, gabapentin, in the same therapeutic dose range, dose-dependently inhibited the ectopic discharge activity of 15 injured sciatic afferent nerve fibers through an action on impulse generation. However, the conduction velocity and responses of 12 normal afferent fibers to mechanical stimulation were not affected by gabapentin. Therefore, this study provides electrophysiological evidence that gabapentin is capable of suppressing the ectopic discharge activity from injured peripheral nerves. This action may contribute, at least in part, to the antiallodynic effect of gabapentin on neuropathic pain.  (+info)

Pharmacology of LY315920/S-5920, [[3-(aminooxoacetyl)-2-ethyl-1- (phenylmethyl)-1H-indol-4-yl]oxy] acetate, a potent and selective secretory phospholipase A2 inhibitor: A new class of anti-inflammatory drugs, SPI. (4/4860)

LY315920 is a potent, selective inhibitor of recombinant human, group IIA, nonpancreatic secretory PLA2 (sPLA2). In a chromogenic isolated enzyme assay, LY315920 inhibited sPLA2 activity with an IC50 of 9 +/- 1 nM or 7.3 x 10(-6) mole fraction, which approached the stiochiometric limit of this assay. The true potency of LY315920 was defined using a deoxycholate/phosphatidylcholine assay with a mole fraction of 1.5 x 10(-6). LY315920 was 40-fold less active against human, group IB, pancreatic sPLA2 and was inactive against cytosolic PLA2 and the constitutive and inducible forms of cyclooxygenase. Human sPLA2-induced release of thromboxane A2 (TXA2) from isolated guinea pig lung bronchoalveolar lavage cells was inhibited by LY315920 with an IC50 of 0.79 microM. The release of TXA2 from these cells by N-formyl-methionyl-leucyl-phenylalanine or arachidonic acid was not inhibited. The i.v. administration of LY315920, 5 min before harvesting the bronchoalveolar lavage cells, resulted in the inhibition of sPLA2-induced production of TXA2 with an ED50 of 16.1 mg/kg. Challenge of guinea pig lung pleural strips with sPLA2 produced contractile responses that were suppressed in a concentration-dependent manner by LY315920 with an apparent KB of 83 +/- 14 nM. Contractile responses induced by arachidonic acid were not altered. Intravenous or oral administration of LY315920 to transgenic mice expressing the human sPLA2 protein inhibited serum sPLA2 activity in a dose-related manner over a 4-h time course. LY315920 is a potent and selective sPLA2 inhibitor and represents a new class of anti-inflammatory agent designated SPI. This agent is currently undergoing clinical evaluation and should help to define the role of sPLA2 in various inflammatory disease states.  (+info)

Anti-ulcer effects of 4'-(2-carboxyetyl) phenyl trans-4-aminomethyl cyclohexanecarboxylate hydrochloride (cetraxate) on various experimental gastric ulcers in rats. (5/4860)

Anti-ulcer effects of cetraxate, a new compound possessing anti-plasmin, anti-casein and anti-trypsin actions were investigated by using experimental gastric ulcer models in rats. Cetraxate, 300 mg/kg p.o. showed significant inhibitory effects of 65.3%, 70.0%, 30.2%, and 67.1% against aucte types of ulcers producing by aspirin, phenylbutazone, indomethacin, and pyloric ligature (Shay's ulcer), respectively. These effects were greater than those obtained by gefarnate and aluminum sucrose sulfate may be mainly attributed to the protecting action of this drug on gastric mucosa. Ctraxate further revealed remarkable inhibitory effects on chronic types of ulcers produced by acetic acid, clamping, and clamping-cortisone. In acetic acid ulcer in particular, cetraxate was found to have a dose-dependent inhibitory effect at doses over 50 mg/kg. Of test drugs including L-glutamine and methylmethionine sulfonium chloride, cetraxate showed the most remarkable inhibitory effect on beta-glucuronidase activity in ulcer tissue of these three types of ulcers. These findings suggest that cetraxate may prevent the connective tissue in the ulcer location from decomposition due to lysosomal enzymes such as beta-glucuronidase, thereby accelerating the recovery from ulcer.  (+info)

Isocitrate lyase of Ashbya gossypii--transcriptional regulation and peroxisomal localization. (6/4860)

The isocitrate lyase-encoding gene AgICL1 from the filamentous hemiascomycete Ashbya gossypii was isolated by heterologous complementation of a Saccharomyces cerevisiae icl1d mutant. The open reading frame of 1680 bp encoded a protein of 560 amino acids with a calculated molecular weight of 62584. Disruption of the AgICL1 gene led to complete loss of AgIcl1p activity and inability to grow on oleic acid as sole carbon source. Compartmentation of AgIcl1p in peroxisomes was demonstrated both by Percoll density gradient centrifugation and by immunogold labeling of ultrathin sections using specific antibodies. This fitted with the peroxisomal targeting signal AKL predicted from the C-terminal DNA sequence. Northern blot analysis with mycelium grown on different carbon sources as well as AgICL1 promoter replacement with the constitutive AgTEF promoter revealed a regulation at the transcriptional level. AgICL1 was subject to glucose repression, derepressed by glycerol, partially induced by the C2 compounds ethanol and acetate, and fully induced by soybean oil.  (+info)

Mechanism of citrate metabolism in Lactococcus lactis: resistance against lactate toxicity at low pH. (7/4860)

Measurement of the flux through the citrate fermentation pathway in resting cells of Lactococcus lactis CRL264 grown in a pH-controlled fermentor at different pH values showed that the pathway was constitutively expressed, but its activity was significantly enhanced at low pH. The flux through the citrate-degrading pathway correlated with the magnitude of the membrane potential and pH gradient that were generated when citrate was added to the cells. The citrate degradation rate and proton motive force were significantly higher when glucose was metabolized at the same time, a phenomenon that could be mimicked by the addition of lactate, the end product of glucose metabolism. The results clearly demonstrate that citrate metabolism in L. lactis is a secondary proton motive force-generating pathway. Although the proton motive force generated by citrate in cells grown at low pH was of the same magnitude as that generated by glucose fermentation, citrate metabolism did not affect the growth rate of L. lactis in rich media. However, inhibition of growth by lactate was relieved when citrate also was present in the growth medium. Citrate did not relieve the inhibition by other weak acids, suggesting a specific role of the citrate transporter CitP in the relief of inhibition. The mechanism of citrate metabolism presented here provides an explanation for the resistance to lactate toxicity. It is suggested that the citrate metabolic pathway is induced under the acidic conditions of the late exponential growth phase to make the cells (more) resistant to the inhibitory effects of the fermentation product, lactate, that accumulates under these conditions.  (+info)

Nitrate-dependent regulation of acetate biosynthesis and nitrate respiration by Clostridium thermoaceticum. (8/4860)

Nitrate has been shown to shunt the electron flow in Clostridium thermoaceticum from CO2 to nitrate, but it did not influence the levels of enzymes involved in the Wood-Ljungdahl pathway (J. M. Frostl, C. Seifritz, and H. L. Drake, J. Bacteriol. 178:4597-4603, 1996). Here we show that under some growth conditions, nitrate does in fact repress proteins involved in the Wood-Ljungdahl pathway. The CO oxidation activity in crude extracts of nitrate (30 mM)-supplemented cultures was fivefold less than that of nitrate-free cultures, while the H2 oxidation activity was six- to sevenfold lower. The decrease in CO oxidation activity paralleled a decrease in CO dehydrogenase (CODH) protein level, as confirmed by Western blot analysis. Protein levels of CODH in nitrate-supplemented cultures were 50% lower than those in nitrate-free cultures. Western blots analyses showed that nitrate also decreased the levels of the corrinoid iron-sulfur protein (60%) and methyltransferase (70%). Surprisingly, the decrease in activity and protein levels upon nitrate supplementation was observed only when cultures were continuously sparged. Northern blot analysis indicates that the regulation of the proteins involved in the Wood-Ljungdahl pathway by nitrate is at the transcriptional level. At least a 10-fold decrease in levels of cytochrome b was observed with nitrate supplementation whether the cultures were sparged or stoppered. We also detected nitrate-inducible nitrate reductase activity (2 to 39 nmol min-1 mg-1) in crude extracts of C. thermoaceticum. Our results indicate that nitrate coordinately represses genes encoding enzymes and electron transport proteins in the Wood-Ljungdahl pathway and activates transcription of nitrate respiratory proteins. CO2 also appears to induce expression of the Wood-Ljungdahl pathway genes and repress nitrate reductase activity.  (+info)