Trioses are monosaccharides, specifically simple sugars, that contain three carbon atoms, and can be glyceraldehydes or dihydroxyacetones, which are important intermediates in metabolic pathways such as glycolysis.
An enzyme that catalyzes reversibly the conversion of D-glyceraldehyde 3-phosphate to dihydroxyacetone phosphate. A deficiency in humans causes nonspherocytic hemolytic disease (ANEMIA, HEMOLYTIC, CONGENITAL NONSPHEROCYTIC). EC 5.3.1.1.
An important intermediate in lipid biosynthesis and in glycolysis.
An aldotriose which is an important intermediate in glycolysis and in tryptophan biosynthesis.
Enzymes that catalyze the epimerization of chiral centers within carbohydrates or their derivatives. EC 5.1.3.
Glyceraldehyde is a triose sugar, a simple monosaccharide (sugar) that contains three carbon atoms, with the molecular formula C3H6O3, and it exists in two structural forms, namely D-glyceraldehyde and L-glyceraldehyde, which are diastereomers of each other, and it is a key intermediate in several biochemical pathways, including glycolysis and gluconeogenesis.
An enzyme of the lyase class that catalyzes the cleavage of fructose 1,6-biphosphate to form dihydroxyacetone phosphate and glyceraldehyde 3-phosphate. The enzyme also acts on (3S,4R)-ketose 1-phosphates. The yeast and bacterial enzymes are zinc proteins. (Enzyme Nomenclature, 1992) E.C. 4.1.2.13.
A colorless liquid used as a solvent and an antiseptic. It is one of the ketone bodies produced during ketoacidosis.
An enzyme of the transferase class that catalyzes the reaction sedoheptulose 7-phosphate and D-glyceraldehyde 3-phosphate to yield D-erythrose 4-phosphate and D-fructose phosphate in the PENTOSE PHOSPHATE PATHWAY. (Dorland, 27th ed) EC 2.2.1.2.
Any salt or ester of glycerophosphoric acid.
An organic compound used often as a reagent in organic synthesis, as a flavoring agent, and in tanning. It has been demonstrated as an intermediate in the metabolism of acetone and its derivatives in isolated cell preparations, in various culture media, and in vivo in certain animals.
A metabolic process that converts GLUCOSE into two molecules of PYRUVIC ACID through a series of enzymatic reactions. Energy generated by this process is conserved in two molecules of ATP. Glycolysis is the universal catabolic pathway for glucose, free glucose, or glucose derived from complex CARBOHYDRATES, such as GLYCOGEN and STARCH.
A class of enzymes that catalyze geometric or structural changes within a molecule to form a single product. The reactions do not involve a net change in the concentrations of compounds other than the substrate and the product.(from Dorland, 28th ed) EC 5.
Fructosephosphates are organic compounds resulting from the combination of fructose with a phosphate group, playing crucial roles in various metabolic processes, particularly within carbohydrate metabolism.
Any of the compounds derived from a group of glycols or polyhydroxy alcohols by chlorine substitution for part of the hydroxyl groups. (McGraw-Hill Dictionary of Scientific and Technical Terms, 5th ed)
Biosynthesis of GLUCOSE from nonhexose or non-carbohydrate precursors, such as LACTATE; PYRUVATE; ALANINE; and GLYCEROL.
Pentosephosphates are monosaccharides, specifically pentoses, that have a phosphate group attached, playing crucial roles in carbohydrate metabolism, such as being intermediates in the pentose phosphate pathway and serving as precursors for nucleotide synthesis.
A trihydroxy sugar alcohol that is an intermediate in carbohydrate and lipid metabolism. It is used as a solvent, emollient, pharmaceutical agent, and sweetening agent.
Enzymes that catalyze the dehydrogenation of GLYCERALDEHYDE 3-PHOSPHATE. Several types of glyceraldehyde-3-phosphate-dehydrogenase exist including phosphorylating and non-phosphorylating varieties and ones that transfer hydrogen to NADP and ones that transfer hydrogen to NAD.
Derivatives of ACETIC ACID which contain an hydroxy group attached to the methyl carbon.
Hexosephosphates are sugar phosphate molecules, specifically those derived from hexoses (six-carbon sugars), such as glucose-6-phosphate and fructose-6-phosphate, which play crucial roles in various metabolic pathways including glycolysis, gluconeogenesis, and the pentose phosphate pathway.
A ketotriose compound. Its addition to blood preservation solutions results in better maintenance of 2,3-diphosphoglycerate levels during storage. It is readily phosphorylated to dihydroxyacetone phosphate by triokinase in erythrocytes. In combination with naphthoquinones it acts as a sunscreening agent.
Proteins encoded by the CHLOROPLAST GENOME or proteins encoded by the nuclear genome that are imported to and resident in the CHOROPLASTS.
Inorganic derivatives of phosphoric acid (H3PO4). Note that organic derivatives of phosphoric acids are listed under ORGANOPHOSPHATES.
An allosteric enzyme that regulates glycolysis by catalyzing the transfer of a phosphate group from ATP to fructose-6-phosphate to yield fructose-1,6-bisphosphate. D-tagatose- 6-phosphate and sedoheptulose-7-phosphate also are acceptors. UTP, CTP, and ITP also are donors. In human phosphofructokinase-1, three types of subunits have been identified. They are PHOSPHOFRUCTOKINASE-1, MUSCLE TYPE; PHOSPHOFRUCTOKINASE-1, LIVER TYPE; and PHOSPHOFRUCTOKINASE-1, TYPE C; found in platelets, brain, and other tissues.
Salts or esters of LACTIC ACID containing the general formula CH3CHOHCOOR.
An oxidative decarboxylation process that converts GLUCOSE-6-PHOSPHATE to D-ribose-5-phosphate via 6-phosphogluconate. The pentose product is used in the biosynthesis of NUCLEIC ACIDS. The generated energy is stored in the form of NADPH. This pathway is prominent in tissues which are active in the synthesis of FATTY ACIDS and STEROIDS.
A primary source of energy for living organisms. It is naturally occurring and is found in fruits and other parts of plants in its free state. It is used therapeutically in fluid and nutrient replacement.
A species of parasitic EUKARYOTES that attaches itself to the intestinal mucosa and feeds on mucous secretions. The organism is roughly pear-shaped and motility is somewhat erratic, with a slow oscillation about the long axis.
Organic compounds that contain phosphorus as an integral part of the molecule. Included under this heading is broad array of synthetic compounds that are used as PESTICIDES and DRUGS.
Pyruvates, in the context of medical and biochemistry definitions, are molecules that result from the final step of glycolysis, containing a carboxylic acid group and an aldehyde group, playing a crucial role in cellular metabolism, including being converted into Acetyl-CoA to enter the Krebs cycle or lactate under anaerobic conditions.
Phosphoenolpyruvate (PEP) is a high-energy organic compound, an intermediate in the glycolytic pathway, that plays a crucial role in the transfer of energy during metabolic processes, and serves as a substrate for various biosynthetic reactions.
A monosaccharide in sweet fruits and honey that is soluble in water, alcohol, or ether. It is used as a preservative and an intravenous infusion in parenteral feeding.
Glycerolphosphate Dehydrogenase is an enzyme (EC 1.1.1.8) that catalyzes the reversible conversion of dihydroxyacetone phosphate to glycerol 3-phosphate, using nicotinamide adenine dinucleotide (NAD+) as an electron acceptor in the process.
Stable carbon atoms that have the same atomic number as the element carbon, but differ in atomic weight. C-13 is a stable carbon isotope.
Enzymes that catalyze a reverse aldol condensation. A molecule containing a hydroxyl group and a carbonyl group is cleaved at a C-C bond to produce two smaller molecules (ALDEHYDES or KETONES). EC 4.1.2.
Diphosphoric acid esters of fructose. The fructose-1,6- diphosphate isomer is most prevalent. It is an important intermediate in the glycolysis process.
Hexosediphosphates are organic compounds consisting of a hexose sugar molecule, such as glucose, linked to two phosphate groups, playing crucial roles in energy metabolism and signaling pathways in living organisms.
'Glucosephosphates' are organic compounds resulting from the reaction of glucose with phosphoric acid, playing crucial roles in various metabolic processes, such as energy transfer and storage within cells.
An analytical technique for resolution of a chemical mixture into its component compounds. Compounds are separated on an adsorbent paper (stationary phase) by their varied degree of solubility/mobility in the eluting solvent (mobile phase).

The glycerol phosphate, dihydroxyacetone phosphate and monoacylglycerol pathways of glycerolipid synthesis in rat adipose-tissue homogenates. (1/88)

1. Fat-free homogenates from the epididymal fat-pads of rats were used to measure the rate of palmitate esterification with different substrates. The effectiveness of the acyl acceptors decreased in the order glycerol phosphate, dihydroxyacetone phosphate, 2-octadecenyl-glycerol and 2-hexadecylglycerol. 2. Glycerol phosphate and dihydroxyacetone phosphate inhibited their rates of esterification in a mutually competitive manner. 3. The esterification of glycerol phosphate was also inhibited in a partially competitive manner by 2-octadecenylglycerol and to a lesser extent by 2-hexadecylglycerol. However, glycerol phosphate did not inhibit the esterification of 2-octadecenylglycerol. 4. The esterification of dihydroxyacetone phosphate and 2-hexadecylglycerol was more sensitive to inhibition by clofenapate than was that of glycerol phosphate. Norfenfluramine was more effective in inhibiting the esterification of 2-hexadecylglycerol than that of glycerol phosphate or dihydroxyacetone phosphate. 5 It is concluded that rat adipose tissue can synthesize glycerolipids by three independent routes.  (+info)

The effects of diet on the esterification of glycerol phosphate, dihydroxyacetone phosphate and 2-hexadecylglycerol by homogenates of rat adipose tissue. (2/88)

1. Male rats were fed for 5 weeks after weaning on a diet containing (by weight) 59% of starch or on diets that contained 39% of starch and 20% of either sucrose, beef tallow or corn oil. 2. The rats fed on the beef tallow consumed more energy than did the rats fed on the starch and sucrose diets. The rats fed on the corn oil drank less water than did the other groups of rats. 3. There were no significant differences between the four groups in terms of body-weight gain, epididymal-fat-pad weight and in the size, number and triacylglycerol content of the adipocytes in the fat-pads. 4. There was a significant correlation (P less than 0.001) between the activities of glycerol phosphate acyltransferase and monoacylglycerol acyltransferase in individual rats. Both of these activities were highest in the group fed on the high-starch diet and both correlated with the consumption of glucose by individual rats in the four groups. 5. The percentage of glycerol phosphate converted into diacylglycerol and triacylglycerol was positively correlated with the mean diameters, surface area and triacylglycerol content of the adipocytes for individual rats and was greates in the sucrose-fed rats. 6. The specific activity of dihydroxyacetone phosphate acyltransferase was highest in the rats fed on beef tallow. This activity was positively correlated with the energy intake for all dietary groups over the 5-week feeding period. 7. The results are discussed in terms of the functions of the three routes of glycerolipid synthesis in adipose tissue.  (+info)

Alteration of substrate specificity by a naturally-occurring aldolase B mutation (Ala337-->Val) in fructose intolerance. (3/88)

A molecular analysis of human aldolase B genes in two newborn infants and a 4-year-old child with hereditary fructose intolerance, the offspring of a consanguineous union, has identified the novel mutation Ala337-->Val in homozygous form. This mutation was also detected independently in two other affected individuals who were compound heterozygotes for the prevalent aldolase B allele, Ala149-->Pro, indicating that the mutation causes aldolase B deficiency. To test for the effect of the mutation, catalytically active wild-type human aldolase B and the Val337 variant enzyme were expressed in Escherichia coli. The specific activities of the wild-type recombinant enzyme were 4.8 units/mg and 4.5 units/mg towards fructose 1,6-bisphosphate (FBP) and fructose 1-phosphate (F-1-P) as substrates with Michaelis constants of 4 microM and 2.4 mM respectively. The specific activities of purified tetrameric Val337 aldolase B, which affects an invariant residue in the C-terminal region, were 4.2 units/mg and 2.6 units/mg towards FBP and F-1-P as substrates respectively; the corresponding Michaelis constants were 22 microM and 24 mM. The FBP-to-F-1-P substrate activity ratios were 0.98 and 1.63 for wild-type and Val337 variant enzymes respectively. The Val337 mutant aldolase had an increased susceptibility to proteolytic cleavage in E. coli and rapidly lost activity on storage. Comparative CD determinations showed that the Val337 protein had a distinct thermal denaturation profile with markedly decreased enthalpy, indicating that the mutant protein is partly unfolded. The undegraded mutant had preferentially decreased affinity and activity towards its specific F-1-P substrate and maintained appreciable activity towards FBP. In contrast, fluorescence studies of the mutant showed an increased binding affinity for products of the aldolase reaction, indicating a role for the C-terminus in mediating product release. These findings in a rare but widespread naturally occurring mutant implicate the C-terminus in the activity of human aldolase B towards its specific substrates and demonstrate its role in maintaining the overall stability of the enzyme tetramer.  (+info)

A critical evaluation of mass isotopomer distribution analysis of gluconeogenesis in vivo. (4/88)

There are conflicting reports concerning the reliability of mass isotopomer distribution analysis (MIDA) for estimating the contribution of gluconeogenesis to total glucose production (f) during [(13)C]glycerol infusion. We have evaluated substrate-induced effects on rate of appearance (R(a)) of glycerol and glucose and f during [2-(13)C]glycerol infusion in vivo. Five groups of mice were fasted for 30 h and then infused with [2-(13)C]glycerol at variable rates and variable (13)C enrichments (group I: 20 micromol. kg(-1). min(-1), 99% (13)C; group II: 60 micromol. kg(-1). min(-1), 60% (13)C; group III: 60 micromol. kg(-1). min(-1), 99% (13)C; group IV: 120 micromol. kg(-1). min(-1), 40% (13)C; or group V: 120 micromol. kg(-1). min(-1), 99% (13)C). The total glycerol R(a) increased from approximately 104 to approximately 157 and to approximately 210 micromol. kg(-1). min(-1) as the infusion of [2-(13)C]glycerol increased from 20 to 60 and to 120 micromol. kg(- 1). min(-1), respectively. As the amount of 99% enriched [2-(13)C]glycerol increased from 20 to 60 and to 120 micromol. kg(-1). min(-1) (groups I, III, and V, respectively), plasma glycerol enrichment increased from approximately 21 to approximately 42 and to approximately 57% and the calculated f increased from approximately 27 to approximately 56 and to approximately 87%, respectively. Similar plasma glycerol enrichments were observed in groups I, II, and IV (i. e., approximately 21-24%), yet f increased from approximately 27 to approximately 57 and to approximately 86% in groups II and IV, respectively. Estimates of absolute gluconeogenesis increased from approximately 14 to approximately 33 and approximately 86 micromol. kg(-1). min(-1) as the infusion of [2-(13)C]glycerol increased from 20 to 60 and 120 micromol. kg(-1). min(-1). Plausible estimates of f were obtained only under conditions that increased total glycerol R(a) approximately 2-fold (P < 0.001) and increased glucose R(a) approximately 1.5-fold (P < 0.01) above basal. We conclude that in 30-h fasted mice, 1) estimates of f by MIDA with low infusion rates of [2-(13)C]glycerol yield erroneous results and 2) reasonable estimates of f are obtained at glycerol infusion rates that perturb glycerol and glucose metabolism.  (+info)

A rectifying ATP-regulated solute channel in the chloroplastic outer envelope from pea. (5/88)

Phosphorylated carbohydrates are the main photoassimilated export products from chloroplasts that support the energy household and metabolism of the plant cell. Channels formed by the chloroplastic outer envelope protein OEP21 selectively facilitate the translocation of triosephosphate, 3-phosphoglycerate and phosphate, central intermediates in the source-sink relationship between the chloroplast and the cytosol. The anion selectivity and asymmetric transport properties of OEP21 are modulated by the ratio between ATP and triosephosphates, 3-phosphoglycerate and phosphate in the intermembrane space. Conditions that lead to export of triosephosphate from chloroplasts, i.e. photosynthesis, result in outward-rectifying OEP21 channels, while a high ATP to triosephosphate ratio, e.g. dark metabolism, leads to inward-rectifying OEP21 channels with a less pronounced anion selectivity. We conclude that solute exchange between plastids and cytosol can already be regulated at the level of the organellar outer membrane.  (+info)

Suppression of the accumulation of triosephosphates and increased formation of methylglyoxal in human red blood cells during hyperglycaemia by thiamine in vitro. (6/88)

The accumulation of triosephosphates and the increased formation of the potent glycating agent methylglyoxal in intracellular hyperglycaemia are implicated in the development of diabetic complications. A strategy to counter this is to stimulate the anaerobic pentosephosphate pathway of glycolysis by maximizing transketolase activity by thiamine supplementation, with the consequent consumption of glyceraldehyde-3-phosphate and increased formation of ribose-5-phosphate. To assess the effect of thiamine supplementation on the accumulation of triosephosphates and methylglyoxal formation in cellular hyperglycaemia, we incubated human red blood cell suspensions (50% v/v) in short-term culture with 5 mM glucose and 50 mM glucose in Krebs-Ringer phosphate buffer at 37 degrees C as models of cellular metabolism under normoglycaemic and hyperglycaemic conditions. In hyperglycaemia, there is a characteristic increase in the concentration of the triosephosphate pool of glycolytic intermediates and a consequent increase in the concentration and metabolic flux of the formation of methylglyoxal. The addition of thiamine (50-500 microM) increased the activity of transketolase, decreased the concentration of the triosephosphate pool, decreased the concentration and metabolic flux of the formation of methylglyoxal, and increased the concentration of total sedoheptulose-7-phosphate and ribose-5-phosphate. Biochemical changes implicated in the development of diabetic complications were thereby prevented. This provides a biochemical basis for high dose thiamine therapy for the prevention of diabetic complications.  (+info)

Biochemical characterization and identification of catalytic residues in alpha-glucuronidase from Bacillus stearothermophilus T-6. (7/88)

Alpha-D-glucuronidases cleave the alpha-1,2-glycosidic bond of the 4-O-methyl-D-glucuronic acid side chain of xylan, as a part of an array of xylan hydrolyzing enzymes. The alpha-D-glucuronidase from Bacillus stearothermophilus T-6 was overexpressed in Escherichia coli using the T7 polymerase expression system. The purification procedure included two steps, heat treatment and gel filtration chromatography, and provided over 0.3 g of pure enzyme from 1 L of overnight culture. Based on gel filtration, the native protein is comprised of two identical subunits. Kinetic constants with aldotetraouronic acid as a substrate, at 55 degrees C, were a Km of 0.2 mM, and a specific activity of 42 U x mg(-1) (kcat = 54.9 s(-1)). The enzyme was most active at 65 degrees C, pH 5.5-6.0, in a 10-min assay, and retained 100% of its activity following incubation at 70 degrees C for 20 min. Based on differential scanning calorimetry, the protein denatured at 73.4 degrees C. Truncated forms of the enzyme, lacking either 126 amino acids from its N-terminus or 81 amino acids from its C-terminus, exhibited low residual activity, indicating that the catalytic site is located in the central region of the protein. To identify the potential catalytic residues, site-directed mutagenesis was applied on highly conserved acidic amino acids in the central region. The replacements Glu392-->Cys and Asp364-->Ala resulted in a decrease in activity of about five orders of magnitude, suggesting that these residues are the catalytic pair.  (+info)

Triosidines: novel Maillard reaction products and cross-links from the reaction of triose sugars with lysine and arginine residues. (8/88)

The role of the highly reactive triose sugars glyceraldehyde and glyceraldehyde-3-phosphate in protein cross-linking and other amino acid modifications during the Maillard reaction was investigated. From the incubation of glyceraldehyde with N (alpha)-acetyl-L-lysine and N (alpha)-acetyl-L-arginine, we isolated four new Maillard reaction pyridinium compounds named 'triosidines'. Two of them, 'lys-hydroxy-triosidine' [1-(5-amino-5-carboxypentyl)-3-[(5-amino-5-carboxypentylamino)methyl]-5-hydroxypy ridinium] and 'arg-hydroxy-triosidine' [2-(4-amino-4-carboxybutylamino)-8-(5-amino-5-carboxypentyl)-6-hydroxy-3,4-dihydr o-pyrido[2,3-d]pyrimidin-8-ium] are fluorescent, UV-active Lys-Lys and Lys-Arg cross-links respectively. Their structures were identified by NMR and MS. In addition, two UV-active lysine adducts, 'trihydroxy-triosidine' [1-(5-amino-5-carboxypentyl)-3,4-dihydroxy-5-(hydroxymethyl)pyridinium] and 'triosidine carbaldehyde' [1-(5-amino-5-carboxypentyl)-3-formylpyridinium] were tentatively identified by MS. All structures involve six sugar-derived carbons as part of the heterocyclic ring. Of the two novel cross-links, only arg-hydroxy-triosidine was formed by glyceraldehyde-3-phosphate, an intermediate metabolite of the glycolytic pathway. Lys-hydroxy-triosidine and arg-hydroxy-triosidine were detected in human and porcine corneas treated with glyceraldehyde. The HPLC-fluorescence identification was confirmed by MS. Triosidines were also formed from dihydroxyacetone, a widely used artificial sun-tanning agent. Triosidines are expected to be useful tools in tissue engineering, where the utilization of highly reactive sugars is needed to stabilize the loose matrix. In addition, they are expected to be present in selected biological conditions, such as on consumption of a high fructose diet, and syndromes associated with high glyceraldehyde excretion, such as Fanconi Syndrome, fructose-1,6-diphosphatase deficiency and tyrosinaemia.  (+info)

Trioses are simple sugars that contain three carbon atoms and a functional group called a ketone or aldehyde. They are the simplest type of sugar molecule, after monosaccharides such as glyceraldehyde and dihydroxyacetone.

Triose sugars can exist in two structural forms:

* Dihydroxyacetone (DHA), which is a ketotriose with the formula CH2OH-CO-CH2OH, and
* Glyceraldehyde (GA), which is an aldotriose with the formula HO-CHOH-CHO.

Trioses play important roles in various metabolic pathways, including glycolysis, gluconeogenesis, and the Calvin cycle of photosynthesis. In particular, DHA and GA are intermediates in the conversion of glucose to pyruvate during glycolysis, and they are also produced from pyruvate during gluconeogenesis.

Trioses can be synthesized chemically or biochemically through various methods, such as enzymatic reactions or microbial fermentation. They have potential applications in the food, pharmaceutical, and chemical industries, as they can serve as building blocks for more complex carbohydrates or as precursors for other organic compounds.

Triose-phosphate isomerase (TPI) is a crucial enzyme in the glycolytic pathway, which is a metabolic process that converts glucose into pyruvate, producing ATP and NADH as energy currency for the cell. TPI specifically catalyzes the reversible interconversion of the triose phosphates dihydroxyacetone phosphate (DHAP) and glyceraldehyde 3-phosphate (G3P). This interconversion is a vital step in maintaining the balance of metabolites in the glycolytic pathway.

The reaction catalyzed by TPI is as follows:

Dihydroxyacetone phosphate ↔ Glyceraldehyde 3-phosphate

Deficiency or mutations in the gene encoding triose-phosphate isomerase can lead to a severe autosomal recessive disorder known as Triose Phosphate Isomerase Deficiency (TID). This condition is characterized by chronic hemolytic anemia, neuromuscular symptoms, and shortened lifespan.

Dihydroxyacetone Phosphate (DHAP) is a 3-carbon organic compound that plays a crucial role in the metabolic pathway called glycolysis. It is an intermediate molecule formed during the conversion of glucose into pyruvate, which ultimately produces energy in the form of ATP.

In the glycolytic process, DHAP is produced from glyceraldehyde 3-phosphate (G3P) in a reaction catalyzed by the enzyme triose phosphate isomerase. Then, DHAP is converted back to G3P in a subsequent step, which prepares it for further processing in the glycolytic pathway. This reversible conversion of DHAP and G3P helps maintain the equilibrium of the glycolytic process.

Apart from its role in energy metabolism, DHAP is also involved in other biochemical processes, such as the synthesis of glucose during gluconeogenesis and the formation of lipids in the liver.

Glyceraldehyde 3-phosphate (G3P) is a crucial intermediate in both glycolysis and gluconeogenesis metabolic pathways. It is an triose sugar phosphate, which means it contains three carbon atoms and has a phosphate group attached to it.

In the glycolysis process, G3P is produced during the third step of the process from the molecule dihydroxyacetone phosphate (DHAP) via the enzyme triosephosphate isomerase. In the following steps, G3P is converted into 1,3-bisphosphoglycerate, which eventually leads to the production of ATP and NADH.

In gluconeogenesis, G3P is produced from the reverse reaction of the glycolytic enzyme glyceraldehyde-3-phosphate dehydrogenase, using the molecule dihydroxyacetone phosphate (DHAP) as a starting point. G3P is then converted into glucose-6-phosphate, which can be further metabolized or released from the cell.

It's important to note that Glyceraldehyde 3-Phosphate plays a key role in energy production and carbohydrate metabolism.

Carbohydrate epimerases are a group of enzymes that catalyze the interconversion of specific stereoisomers (epimers) of carbohydrates by the reversible oxidation and reduction of carbon atoms, usually at the fourth or fifth position. These enzymes play important roles in the biosynthesis and modification of various carbohydrate-containing molecules, such as glycoproteins, proteoglycans, and glycolipids, which are involved in numerous biological processes including cell recognition, signaling, and adhesion.

The reaction catalyzed by carbohydrate epimerases involves the transfer of a hydrogen atom and a proton between two adjacent carbon atoms, leading to the formation of new stereochemical configurations at these positions. This process can result in the conversion of one epimer into another, thereby expanding the structural diversity of carbohydrates and their derivatives.

Carbohydrate epimerases are classified based on the type of substrate they act upon and the specific stereochemical changes they induce. Some examples include UDP-glucose 4-epimerase, which interconverts UDP-glucose and UDP-galactose; UDP-N-acetylglucosamine 2-epimerase, which converts UDP-N-acetylglucosamine to UDP-N-acetylmannosamine; and GDP-fucose synthase, which catalyzes the conversion of GDP-mannose to GDP-fucose.

Understanding the function and regulation of carbohydrate epimerases is crucial for elucidating their roles in various biological processes and developing strategies for targeting them in therapeutic interventions.

Glyceraldehyde is a triose, a simple sugar consisting of three carbon atoms. It is a clear, colorless, sweet-tasting liquid that is used as a sweetener and preservative in the food industry. In the medical field, glyceraldehyde is used in research and diagnostics, particularly in the study of carbohydrate metabolism and enzyme function.

Glyceraldehyde is also an important intermediate in the glycolytic pathway, which is a series of reactions that convert glucose into pyruvate, producing ATP and NADH as energy-rich compounds. Glyceraldehyde 3-phosphate dehydrogenase (GAPDH) is an enzyme that catalyzes the conversion of glyceraldehyde 3-phosphate to 1,3-bisphosphoglycerate in this pathway.

In addition, glyceraldehyde has been studied for its potential role in the development of diabetic complications and other diseases associated with carbohydrate metabolism disorders.

Fructose-bisphosphate aldolase is a crucial enzyme in the glycolytic pathway, which is a metabolic process that breaks down glucose to produce energy. This enzyme catalyzes the conversion of fructose-1,6-bisphosphate into two triose sugars: dihydroxyacetone phosphate and glyceraldehyde-3-phosphate.

There are two main types of aldolase isoenzymes in humans, classified as aldolase A (or muscle type) and aldolase B (or liver type). Fructose-bisphosphate aldolase refers specifically to aldolase A, which is primarily found in the muscles, brain, and red blood cells. Aldolase B, on the other hand, is predominantly found in the liver, kidney, and small intestine.

Deficiency or dysfunction of fructose-bisphosphate aldolase can lead to metabolic disorders, such as hereditary fructose intolerance, which results from a deficiency in another enzyme called aldolase B. However, it is essential to note that the term "fructose-bisphosphate aldolase" typically refers to aldolase A and not aldolase B.

Acetone is a colorless, volatile, and flammable liquid organic compound with the chemical formula (CH3)2CO. It is the simplest and smallest ketone, and its molecules consist of a carbonyl group linked to two methyl groups. Acetone occurs naturally in the human body and is produced as a byproduct of normal metabolic processes, particularly during fat burning.

In clinical settings, acetone can be measured in breath or blood to assess metabolic status, such as in cases of diabetic ketoacidosis, where an excess production of acetone and other ketones occurs due to insulin deficiency and high levels of fatty acid breakdown. High concentrations of acetone can lead to a sweet, fruity odor on the breath, often described as "fruity acetone" or "acetone breath."

Transaldolase is not a medical term per se, but it is a term used in biochemistry and molecular biology. Transaldolase is an enzyme involved in the pentose phosphate pathway (PPP), which is a metabolic pathway that supplies reducing energy to cells by converting glucose-6-phosphate into ribulose-5-phosphate, a key intermediate in the synthesis of nucleotides.

The medical relevance of transaldolase lies in its role in maintaining cellular redox balance and providing precursors for nucleic acid synthesis. Defects in the PPP can lead to various metabolic disorders, including some forms of congenital cataracts, neurological dysfunction, and growth retardation. However, specific diseases or conditions directly attributed to transaldolase deficiency are not well-established.

Glycerophosphates are esters of glycerol and phosphoric acid. In the context of biochemistry and medicine, glycerophosphates often refer to glycerol 3-phosphate (also known as glyceraldehyde 3-phosphate or glycerone phosphate) and its derivatives.

Glycerol 3-phosphate plays a crucial role in cellular metabolism, particularly in the process of energy production and storage. It is an important intermediate in both glycolysis (the breakdown of glucose to produce energy) and gluconeogenesis (the synthesis of glucose from non-carbohydrate precursors).

In addition, glycerophosphates are also involved in the formation of phospholipids, a major component of cell membranes. The esterification of glycerol 3-phosphate with fatty acids leads to the synthesis of phosphatidic acid, which is a key intermediate in the biosynthesis of other phospholipids.

Abnormalities in glycerophosphate metabolism have been implicated in various diseases, including metabolic disorders and neurological conditions.

I'm sorry for any confusion, but "Pyruvaldehyde" is not a recognized term in medical or clinical sciences. It is, however, a chemical compound with the formula CH3COCHO, which is sometimes used in laboratory research. It might be referred to in the context of biochemistry or pathophysiology of certain diseases, but it's not a term commonly used in medical diagnosis or treatment. Always consult with a healthcare professional or trusted medical source for information related to health and medicine.

Glycolysis is a fundamental metabolic pathway that occurs in the cytoplasm of cells, consisting of a series of biochemical reactions. It's the process by which a six-carbon glucose molecule is broken down into two three-carbon pyruvate molecules. This process generates a net gain of two ATP molecules (the main energy currency in cells), two NADH molecules, and two water molecules.

Glycolysis can be divided into two stages: the preparatory phase (or 'energy investment' phase) and the payoff phase (or 'energy generation' phase). During the preparatory phase, glucose is phosphorylated twice to form glucose-6-phosphate and then converted to fructose-1,6-bisphosphate. These reactions consume two ATP molecules but set up the subsequent breakdown of fructose-1,6-bisphosphate into triose phosphates in the payoff phase. In this second stage, each triose phosphate is further oxidized and degraded to produce one pyruvate molecule, one NADH molecule, and one ATP molecule through substrate-level phosphorylation.

Glycolysis does not require oxygen to proceed; thus, it can occur under both aerobic (with oxygen) and anaerobic (without oxygen) conditions. In the absence of oxygen, the pyruvate produced during glycolysis is further metabolized through fermentation pathways such as lactic acid fermentation or alcohol fermentation to regenerate NAD+, which is necessary for glycolysis to continue.

In summary, glycolysis is a crucial process in cellular energy metabolism, allowing cells to convert glucose into ATP and other essential molecules while also serving as a starting point for various other biochemical pathways.

Isomerases are a class of enzymes that catalyze the interconversion of isomers of a single molecule. They do this by rearranging atoms within a molecule to form a new structural arrangement or isomer. Isomerases can act on various types of chemical bonds, including carbon-carbon and carbon-oxygen bonds.

There are several subclasses of isomerases, including:

1. Racemases and epimerases: These enzymes interconvert stereoisomers, which are molecules that have the same molecular formula but different spatial arrangements of their atoms in three-dimensional space.
2. Cis-trans isomerases: These enzymes interconvert cis and trans isomers, which differ in the arrangement of groups on opposite sides of a double bond.
3. Intramolecular oxidoreductases: These enzymes catalyze the transfer of electrons within a single molecule, resulting in the formation of different isomers.
4. Mutases: These enzymes catalyze the transfer of functional groups within a molecule, resulting in the formation of different isomers.
5. Tautomeres: These enzymes catalyze the interconversion of tautomers, which are isomeric forms of a molecule that differ in the location of a movable hydrogen atom and a double bond.

Isomerases play important roles in various biological processes, including metabolism, signaling, and regulation.

Fructose-1,6-bisphosphate (also known as fructose 1,6-diphosphate or Fru-1,6-BP) is the chemical compound that plays a crucial role in cellular respiration and glucose metabolism. It is not accurate to refer to "fructosephosphates" as a medical term, but fructose-1-phosphate and fructose-1,6-bisphosphate are important fructose phosphates with specific functions in the body.

Fructose-1-phosphate is an intermediate metabolite formed during the breakdown of fructose in the liver, while fructose-1,6-bisphosphate is a key regulator of glycolysis, the process by which glucose is broken down to produce energy in the form of ATP. Fructose-1,6-bisphosphate allosterically regulates the enzyme phosphofructokinase, which is the rate-limiting step in glycolysis, and its levels are tightly controlled to maintain proper glucose metabolism. Dysregulation of fructose metabolism has been implicated in various metabolic disorders, including insulin resistance, type 2 diabetes, and nonalcoholic fatty liver disease (NAFLD).

Chlorohydrins are a class of chemical compounds that contain both chlorine and hydroxyl (-OH) groups. They are typically formed by the reaction of an aldehyde or ketone with a hypochlorous acid or chlorine in a process called halogenation. Chlorohydrins can be toxic and have been associated with various health effects, including irritation of the eyes, skin, and respiratory tract, and potential damage to the liver and kidneys. They are used in some industrial applications, such as the production of certain chemicals and pharmaceuticals, but their use is subject to regulations due to their potential hazards.

Gluconeogenesis is a metabolic pathway that occurs in the liver, kidneys, and to a lesser extent in the small intestine. It involves the synthesis of glucose from non-carbohydrate precursors such as lactate, pyruvate, glycerol, and certain amino acids. This process becomes particularly important during periods of fasting or starvation when glucose levels in the body begin to drop, and there is limited carbohydrate intake to replenish them.

Gluconeogenesis helps maintain blood glucose homeostasis by providing an alternative source of glucose for use by various tissues, especially the brain, which relies heavily on glucose as its primary energy source. It is a complex process that involves several enzymatic steps, many of which are regulated to ensure an adequate supply of glucose while preventing excessive production, which could lead to hyperglycemia.

Pentose phosphates are monosaccharides that contain five carbon atoms and one phosphate group. They play a crucial role in various metabolic pathways, including the pentose phosphate pathway (PPP), which is a major source of NADPH and ribose-5-phosphate for the synthesis of nucleotides.

The pentose phosphate pathway involves two main phases: the oxidative phase and the non-oxidative phase. In the oxidative phase, glucose-6-phosphate is converted to ribulose-5-phosphate, producing NADPH and CO2 as byproducts. Ribulose-5-phosphate can then be further metabolized in the non-oxidative phase to produce other pentose phosphates or converted back to glucose-6-phosphate through a series of reactions.

Pentose phosphates are also important intermediates in the synthesis of nucleotides, coenzymes, and other metabolites. Abnormalities in pentose phosphate pathway enzymes can lead to various metabolic disorders, such as defects in erythrocyte function and increased susceptibility to oxidative stress.

Glycerol, also known as glycerine or glycerin, is a simple polyol (a sugar alcohol) with a sweet taste and a thick, syrupy consistency. It is a colorless, odorless, viscous liquid that is slightly soluble in water and freely miscible with ethanol and ether.

In the medical field, glycerol is often used as a medication or supplement. It can be used as a laxative to treat constipation, as a source of calories and energy for people who cannot eat by mouth, and as a way to prevent dehydration in people with certain medical conditions.

Glycerol is also used in the production of various medical products, such as medications, skin care products, and vaccines. It acts as a humectant, which means it helps to keep things moist, and it can also be used as a solvent or preservative.

In addition to its medical uses, glycerol is also widely used in the food industry as a sweetener, thickening agent, and moisture-retaining agent. It is generally recognized as safe (GRAS) by the U.S. Food and Drug Administration (FDA).

Glyceraldehyde-3-phosphate dehydrogenase (GAPDH) is an enzyme that plays a crucial role in the metabolic pathway of glycolysis. Its primary function is to convert glyceraldehyde-3-phosphate (a triose sugar phosphate) into D-glycerate 1,3-bisphosphate, while also converting nicotinamide adenine dinucleotide (NAD+) into its reduced form NADH. This reaction is essential for the production of energy in the form of adenosine triphosphate (ATP) during cellular respiration. GAPDH has also been implicated in various non-metabolic processes, including DNA replication, repair, and transcription regulation, due to its ability to interact with different proteins and nucleic acids.

Glycolates are a type of chemical compound that contain the group COOCH2, which is derived from glycolic acid. In a medical context, glycolates are often used in dental and medical materials as they can be biodegradable and biocompatible. For example, they may be used in controlled-release drug delivery systems or in bone cement. However, it's important to note that some glycolate compounds can also be toxic if ingested or otherwise introduced into the body in large amounts.

Hexose phosphates are organic compounds that consist of a hexose sugar molecule (a monosaccharide containing six carbon atoms, such as glucose or fructose) that has been phosphorylated, meaning that a phosphate group has been added to it. This process is typically facilitated by enzymes called kinases, which transfer a phosphate group from a donor molecule (usually ATP) to the sugar molecule.

Hexose phosphates play important roles in various metabolic pathways, including glycolysis, gluconeogenesis, and the pentose phosphate pathway. For example, glucose-6-phosphate is a key intermediate in both glycolysis and gluconeogenesis, while fructose-6-phosphate and fructose-1,6-bisphosphate are important intermediates in glycolysis. The pentose phosphate pathway, which is involved in the production of NADPH and ribose-5-phosphate, begins with the conversion of glucose-6-phosphate to 6-phosphogluconolactone by the enzyme glucose-6-phosphate dehydrogenase.

Overall, hexose phosphates are important metabolic intermediates that help regulate energy production and utilization in cells.

Dihydroxyacetone (DHA) is a simple sugar that is used as an ingredient in many self-tanning products. When applied to the skin, DHA reacts with amino acids in the dead layer of the skin to temporarily darken the skin color. This process is known as the Maillard reaction, which is a chemical reaction between an amino acid and a sugar. The effect of DHA is limited to the uppermost layer of the skin and it does not provide any protection against sunburn or UV radiation. The tanning effect produced by DHA usually lasts for about 5-7 days.

It's important to note that while DHA is considered safe for external use, it should not be inhaled or ingested, as it can cause irritation and other adverse effects. Additionally, some people may experience skin irritation or allergic reactions to products containing DHA, so it's always a good idea to do a patch test before using a new self-tanning product.

Chloroplasts are organelles found in the cells of plants, algae, and some protists. They are responsible for carrying out photosynthesis, which is the process by which these organisms convert light energy into chemical energy. Chloroplast proteins are the various proteins that are located within the chloroplasts and play a crucial role in the process of photosynthesis.

Chloroplasts contain several types of proteins, including:

1. Structural proteins: These proteins help to maintain the structure and integrity of the chloroplast.
2. Photosynthetic proteins: These are involved in capturing light energy and converting it into chemical energy during photosynthesis. They include proteins such as photosystem I, photosystem II, cytochrome b6f complex, and ATP synthase.
3. Regulatory proteins: These proteins help to regulate the various processes that occur within the chloroplast, including gene expression, protein synthesis, and energy metabolism.
4. Metabolic proteins: These proteins are involved in various metabolic pathways within the chloroplast, such as carbon fixation, amino acid synthesis, and lipid metabolism.
5. Protective proteins: These proteins help to protect the chloroplast from damage caused by reactive oxygen species (ROS) that are produced during photosynthesis.

Overall, chloroplast proteins play a critical role in maintaining the health and function of chloroplasts, and by extension, the overall health and survival of plants and other organisms that contain them.

Phosphoric acids are a group of mineral acids known chemically as orthophosphoric acid and its salts or esters. The chemical formula for orthophosphoric acid is H3PO4. It is a weak acid that partially dissociates in solution to release hydrogen ions (H+), making it acidic. Phosphoric acid has many uses in various industries, including food additives, fertilizers, and detergents.

In the context of medical definitions, phosphoric acids are not typically referred to directly. However, they can be relevant in certain medical contexts, such as:

* In dentistry, phosphoric acid is used as an etching agent to prepare tooth enamel for bonding with dental materials.
* In nutrition, phosphorus is an essential mineral that plays a crucial role in many bodily functions, including energy metabolism, bone and teeth formation, and nerve function. Phosphoric acid is one form of phosphorus found in some foods and beverages.
* In medical research, phosphoric acids can be used as buffers to maintain a stable pH in laboratory experiments or as reagents in various analytical techniques.

Phosphofructokinase-1 (PFK-1) is a rate-limiting enzyme in the glycolytic pathway, which is the metabolic pathway that converts glucose into pyruvate, producing ATP and NADH as energy currency for the cell. PFK-1 plays a crucial role in regulating the rate of glycolysis by catalyzing the phosphorylation of fructose-6-phosphate to fructose-1,6-bisphosphate, using ATP as the phosphate donor.

PFK-1 is allosterically regulated by various metabolites, such as AMP, ADP, and ATP, which act as positive or negative effectors of the enzyme's activity. For example, an increase in the intracellular concentration of AMP or ADP can activate PFK-1, promoting glycolysis and energy production, while an increase in ATP levels can inhibit the enzyme's activity, conserving glucose for use under conditions of low energy demand.

Deficiencies in PFK-1 can lead to a rare genetic disorder called Tarui's disease or glycogen storage disease type VII, which is characterized by exercise intolerance, muscle cramps, and myoglobinuria (the presence of myoglobin in the urine due to muscle damage).

Lactates, also known as lactic acid, are compounds that are produced by muscles during intense exercise or other conditions of low oxygen supply. They are formed from the breakdown of glucose in the absence of adequate oxygen to complete the full process of cellular respiration. This results in the production of lactate and a hydrogen ion, which can lead to a decrease in pH and muscle fatigue.

In a medical context, lactates may be measured in the blood as an indicator of tissue oxygenation and metabolic status. Elevated levels of lactate in the blood, known as lactic acidosis, can indicate poor tissue perfusion or hypoxia, and may be seen in conditions such as sepsis, cardiac arrest, and severe shock. It is important to note that lactates are not the primary cause of acidemia (low pH) in lactic acidosis, but rather a marker of the underlying process.

The Pentose Phosphate Pathway (also known as the Hexose Monophosphate Shunt or HMP Shunt) is a metabolic pathway that runs parallel to glycolysis. It serves two major functions:

1. Providing reducing equivalents in the form of NADPH for reductive biosynthesis and detoxification processes.
2. Generating ribose-5-phosphate, a pentose sugar used in the synthesis of nucleotides and nucleic acids (DNA and RNA).

This pathway begins with the oxidation of glucose-6-phosphate to form 6-phosphogluconolactone, catalyzed by the enzyme glucose-6-phosphate dehydrogenase. The resulting NADPH is used in various anabolic reactions and antioxidant defense systems.

The Pentose Phosphate Pathway also includes a series of reactions called the non-oxidative branch, which interconverts various sugars to meet cellular needs for different types of monosaccharides. These conversions are facilitated by several enzymes including transketolase and transaldolase.

Glucose is a simple monosaccharide (or single sugar) that serves as the primary source of energy for living organisms. It's a fundamental molecule in biology, often referred to as "dextrose" or "grape sugar." Glucose has the molecular formula C6H12O6 and is vital to the functioning of cells, especially those in the brain and nervous system.

In the body, glucose is derived from the digestion of carbohydrates in food, and it's transported around the body via the bloodstream to cells where it can be used for energy. Cells convert glucose into a usable form through a process called cellular respiration, which involves a series of metabolic reactions that generate adenosine triphosphate (ATP)—the main currency of energy in cells.

Glucose is also stored in the liver and muscles as glycogen, a polysaccharide (multiple sugar) that can be broken down back into glucose when needed for energy between meals or during physical activity. Maintaining appropriate blood glucose levels is crucial for overall health, and imbalances can lead to conditions such as diabetes mellitus.

"Giardia lamblia," also known as "Giardia duodenalis" or "Giardia intestinalis," is a species of microscopic parasitic protozoan that colonizes and reproduces in the small intestine of various vertebrates, including humans. It is the most common cause of human giardiasis, a diarrheal disease. The trophozoite (feeding form) of Giardia lamblia has a distinctive tear-drop shape and possesses flagella for locomotion. It attaches to the intestinal epithelium, disrupting the normal function of the small intestine and leading to various gastrointestinal symptoms such as diarrhea, stomach cramps, nausea, and dehydration. Giardia lamblia is typically transmitted through the fecal-oral route, often via contaminated food or water.

Organophosphorus compounds are a class of chemical substances that contain phosphorus bonded to organic compounds. They are used in various applications, including as plasticizers, flame retardants, pesticides (insecticides, herbicides, and nerve gases), and solvents. In medicine, they are also used in the treatment of certain conditions such as glaucoma. However, organophosphorus compounds can be toxic to humans and animals, particularly those that affect the nervous system by inhibiting acetylcholinesterase, an enzyme that breaks down the neurotransmitter acetylcholine. Exposure to these compounds can cause symptoms such as nausea, vomiting, muscle weakness, and in severe cases, respiratory failure and death.

Pyruvate is a negatively charged ion or group of atoms, called anion, with the chemical formula C3H3O3-. It is formed from the decomposition of glucose and other sugars in the process of cellular respiration. Pyruvate plays a crucial role in the metabolic pathways that generate energy for cells.

In the cytoplasm, pyruvate is produced through glycolysis, where one molecule of glucose is broken down into two molecules of pyruvate, releasing energy and producing ATP (adenosine triphosphate) and NADH (reduced nicotinamide adenine dinucleotide).

In the mitochondria, pyruvate can be further metabolized through the citric acid cycle (also known as the Krebs cycle) to produce more ATP. The process involves the conversion of pyruvate into acetyl-CoA, which then enters the citric acid cycle and undergoes a series of reactions that generate energy in the form of ATP, NADH, and FADH2 (reduced flavin adenine dinucleotide).

Overall, pyruvate is an important intermediate in cellular respiration and plays a central role in the production of energy for cells.

Phosphoenolpyruvate (PEP) is a key intermediate in the glycolysis pathway and other metabolic processes. It is a high-energy molecule that plays a crucial role in the transfer of energy during cellular respiration. Specifically, PEP is formed from the breakdown of fructose-1,6-bisphosphate and is then converted to pyruvate, releasing energy that is used to generate ATP, a major source of energy for cells.

Medically, abnormal levels of PEP may indicate issues with cellular metabolism or energy production, which can be associated with various medical conditions such as diabetes, mitochondrial disorders, and other metabolic diseases. However, direct measurement of PEP levels in clinical settings is not commonly performed due to technical challenges. Instead, clinicians typically assess overall metabolic function through a variety of other tests and measures.

Fructose is a simple monosaccharide, also known as "fruit sugar." It is a naturally occurring carbohydrate that is found in fruits, vegetables, and honey. Fructose has the chemical formula C6H12O6 and is a hexose, or six-carbon sugar.

Fructose is absorbed directly into the bloodstream during digestion and is metabolized primarily in the liver. It is sweeter than other sugars such as glucose and sucrose (table sugar), which makes it a popular sweetener in many processed foods and beverages. However, consuming large amounts of fructose can have negative health effects, including increasing the risk of obesity, diabetes, and heart disease.

Glycerol-3-phosphate dehydrogenase (GPD) is an enzyme that plays a crucial role in the metabolism of glucose and lipids. It catalyzes the conversion of dihydroxyacetone phosphate (DHAP) to glycerol-3-phosphate (G3P), which is a key intermediate in the synthesis of triglycerides, phospholipids, and other glycerophospholipids.

There are two main forms of GPD: a cytoplasmic form (GPD1) and a mitochondrial form (GPD2). The cytoplasmic form is involved in the production of NADH, which is used in various metabolic processes, while the mitochondrial form is involved in the production of ATP, the main energy currency of the cell.

Deficiencies or mutations in GPD can lead to a variety of metabolic disorders, including glycerol kinase deficiency and congenital muscular dystrophy. Elevated levels of GPD have been observed in certain types of cancer, suggesting that it may play a role in tumor growth and progression.

Carbon isotopes are variants of the chemical element carbon that have different numbers of neutrons in their atomic nuclei. The most common and stable isotope of carbon is carbon-12 (^{12}C), which contains six protons and six neutrons. However, carbon can also come in other forms, known as isotopes, which contain different numbers of neutrons.

Carbon-13 (^{13}C) is a stable isotope of carbon that contains seven neutrons in its nucleus. It makes up about 1.1% of all carbon found on Earth and is used in various scientific applications, such as in tracing the metabolic pathways of organisms or in studying the age of fossilized materials.

Carbon-14 (^{14}C), also known as radiocarbon, is a radioactive isotope of carbon that contains eight neutrons in its nucleus. It is produced naturally in the atmosphere through the interaction of cosmic rays with nitrogen gas. Carbon-14 has a half-life of about 5,730 years, which makes it useful for dating organic materials, such as archaeological artifacts or fossils, up to around 60,000 years old.

Carbon isotopes are important in many scientific fields, including geology, biology, and medicine, and are used in a variety of applications, from studying the Earth's climate history to diagnosing medical conditions.

Aldehyde-lyases are a class of enzymes that catalyze the breakdown or synthesis of molecules involving an aldehyde group through a reaction known as lyase cleavage. This type of reaction results in the removal of a molecule, typically water or carbon dioxide, from the substrate.

In the case of aldehyde-lyases, these enzymes specifically catalyze reactions that involve the conversion of an aldehyde into a carboxylic acid or vice versa. These enzymes are important in various metabolic pathways and play a crucial role in the biosynthesis and degradation of several biomolecules, including carbohydrates, amino acids, and lipids.

The systematic name for this class of enzymes is "ald(e)hyde-lyases." They are classified under EC number 4.3.1 in the Enzyme Commission (EC) system.

I'm sorry for any confusion, but "Fructosediphosphates" is not a recognized term in medicine or biochemistry. It's possible there may be a spelling mistake or misunderstanding in the term you're looking for.

If you meant "Fructose 1,6-bisphosphate," that is a key intermediate in carbohydrate metabolism. It's formed from fructose 6-phosphate in the process of glucose breakdown (glycolysis) and is then used in the generation of energy through the citric acid cycle.

If these terms are not what you were looking for, could you please provide more context or check the spelling? I'm here to help!

Hexose diphosphates refer to a class of organic compounds that consist of a hexose sugar molecule (a monosaccharide containing six carbon atoms) linked to two phosphate groups. The most common examples of hexose diphosphates are glucose 1,6-bisphosphate and fructose 1,6-bisphosphate, which play important roles in cellular metabolism.

Glucose 1,6-bisphosphate is involved in the regulation of glycolysis, a process by which glucose is broken down to produce energy in the form of ATP. It acts as an allosteric regulator of several enzymes involved in this pathway and helps to maintain the balance between different metabolic processes.

Fructose 1,6-bisphosphate, on the other hand, is a key intermediate in gluconeogenesis, a process by which cells synthesize glucose from non-carbohydrate precursors. It is also involved in the regulation of glycolysis and helps to control the flow of metabolites through these pathways.

Overall, hexose diphosphates are important regulators of cellular metabolism and play a critical role in maintaining energy homeostasis in living organisms.

Glucose phosphates are organic compounds that result from the reaction of glucose (a simple sugar) with phosphate groups. These compounds play a crucial role in various metabolic processes, particularly in energy metabolism within cells. The addition of phosphate groups to glucose makes it more reactive and enables it to undergo further reactions that lead to the formation of important molecules such as adenosine triphosphate (ATP), which is a primary source of energy for cellular functions.

One notable example of a glucose phosphate is glucose 1-phosphate, which is an intermediate in several metabolic pathways, including glycogenesis (the process of forming glycogen, a storage form of glucose) and glycolysis (the breakdown of glucose to release energy). Another example is glucose 6-phosphate, which is a key regulator of carbohydrate metabolism and serves as an important intermediate in the pentose phosphate pathway, a metabolic route that generates reducing equivalents (NADPH) and ribose sugars for nucleotide synthesis.

In summary, glucose phosphates are essential compounds in cellular metabolism, facilitating energy production, storage, and utilization.

Paper chromatography is a type of chromatography technique that involves the separation and analysis of mixtures based on their components' ability to migrate differently upon capillary action on a paper medium. This simple and cost-effective method utilizes a paper, typically made of cellulose, as the stationary phase. The sample mixture is applied as a small spot near one end of the paper, and then the other end is dipped into a developing solvent or a mixture of solvents (mobile phase) in a shallow container.

As the mobile phase moves up the paper by capillary action, components within the sample mixture separate based on their partition coefficients between the stationary and mobile phases. The partition coefficient describes how much a component prefers to be in either the stationary or mobile phase. Components with higher partition coefficients in the mobile phase will move faster and further than those with lower partition coefficients.

Once separation is complete, the paper is dried and can be visualized under ultraviolet light or by using chemical reagents specific for the components of interest. The distance each component travels from the origin (point of application) and its corresponding solvent front position are measured, allowing for the calculation of Rf values (retardation factors). Rf is a dimensionless quantity calculated as the ratio of the distance traveled by the component to the distance traveled by the solvent front.

Rf = (distance traveled by component) / (distance traveled by solvent front)

Paper chromatography has been widely used in various applications, such as:

1. Identification and purity analysis of chemical compounds in pharmaceuticals, forensics, and research laboratories.
2. Separation and detection of amino acids, sugars, and other biomolecules in biological samples.
3. Educational purposes to demonstrate the principles of chromatography and separation techniques.

Despite its limitations, such as lower resolution compared to high-performance liquid chromatography (HPLC) and less compatibility with volatile or nonpolar compounds, paper chromatography remains a valuable tool for quick, qualitative analysis in various fields.

A triose is a monosaccharide, or simple sugar, containing three carbon atoms. There are only three possible trioses (including ... Trioses are important in cellular respiration. During glycolysis, fructose-1,6-bisphosphate is broken down into glyceraldehyde- ... "Trioses - Three Carbon Sugars". Oxford University Press. Retrieved 2011-07-10. "Glycolysis in Detail". Ohio State University at ... v t e (Articles with short description, Short description matches Wikidata, Trioses, All stub articles, Biochemistry stubs). ...
Explore TRIOSEs job openings, read about the company culture, and see what employees love about working there. ... Working at TRIOSE. Founded in 1999, TRIOSE works hand-in-hand with hospitals and healthcare companies nationwide to reduce ...
At Trioses Memorial Hospital, we believe that a. healthy smile is a reflection of overall well-being. At Trioses Memorial ...
trio & ses sistemi & podyum & sahne kiralama. You are here:. *Home. *Photo Album. *trio & ses sistemi &… ...
Triose phosphate-isomerase deficiency. What is Triose phosphate-isomerase deficiency?. Triosephosphate isomerase (TPI) ...
Triose phosphate isomerase deficiency. Additional Information & Resources. Genetic Testing Information. *Genetic Testing ...
... thereby compensating for a deficiency in its ability to export triose-phosphate from the chloroplast. However, during growth ... The chloroplast envelope triose-phosphate/phosphate translocator (TPT) is responsible for carbohydrate export during ... The chloroplast envelope triose-phosphate/phosphate translocator (TPT) is responsible for carbohydrate export during ... A mutant of Arabidopsis lacking the triose-phosphate/phosphate translocator reveals metabolic regulation of starch breakdown in ...
The ionization of a buried glutamic acid is thermodynamically linked to the stability of **Leishmania mexicana** triose ...
Representative glucose who has around three, four, and half dozen carbons (triose, pentose, and you will hexose sugars, ...
... triose-phosphate isomerase; 70, fructose-bisphosphate aldolase; 71, fructose-1,6-bisphosphatase class 1; 72, transketolase; 73 ... triose-phosphate isomerase; 47, type I glyceraldehyde-3-phosphate dehydrogenase; 48, phosphoglycerate kinase; 49, ...
TRIOSE. Lonavala, India. Architects: Sanjay Puri Architects Pvt. Ltd.. photograph from architect. Triose Lonavala ...
Triose-phosphate DeHydrogenase 1 Comparative Info. Sequence Details Sequence The S. cerevisiae Reference Genome sequence is ...
The payoff phase, starting with GAPDH, uses the triose sugars derived from the preparatory phase and results in the net gain of ... In the preparatory phase, ATP is used to convert glucose into triose sugars. ...
e) assay (water free) for sum of LNnT, lactose, lacto-N-triose II, and para-lacto-N-hexaose--not less than 95.0% ...
Of these, trioses, pentoses and hexoses are most common in cells. All monocsaccharides occur in linear form and each carbon ... The middle carbon of the triose glyceraldehyde, for example, is asymmetric because it shares electrons in covalent bonds with - ...
Isomerization of triose phosphate. 2 days. Decarboxylation of orotidine 5-monophosphate. 8 × 107 years ...
glyceraldehyde-3-phosphate + dihydroxyacentonephosphate ----, Triose phosphate isomerase (catalyticaly perfect enzyme). ...
Overexpression of ScGTR1 resulted in the addition of a hexose to the triose SGAs from CGN18024_3, resulting in a commertetraose ... ScGTR1 and ScGTR2 from CGN18024_1 convert these triose SGAs from susceptible S. commersonii to tetraose SGAs, through the ... Atlantic and wildtype (WT) CGN18024_3 contain only triose SGAs. ... 3 produces triose SGAs and is susceptible to Colorado potato ...
For example, triose phosphate isomerase (TPI) is an enzyme in the glycolytic pathway that catalyzes the interconversion of ... Examples include triose phosphate isomerase, fumarase, and superoxide dismutase.. Most enzymes achieve catalytic perfection due ...
... which forms rather than condenses the triose phosphate compounds. Here, the enzyme is central to the glycolytic pathway. ... and condensation of the triose phosphates, glyceraldehyde phosphate, and dihydroxyacetone phosphate to form fructose 1,6- ...
keywords = "Functional screening, Protein expression, Synthetic biology, Chito-oligosaccharides, Lacto-N-triose II", ... N-triose II (LNT2) with yields of 2 and 8 % based on the donor substrate. In total, trans-glycosylation reactions were tested ... giving rise to the human milk oligosaccharide precursor lacto-N-triose II (LNT2) with yields of 2 and 8 % based on the donor ... giving rise to the human milk oligosaccharide precursor lacto-N-triose II (LNT2) with yields of 2 and 8 % based on the donor ...
Trio se následně rozhodne… více. * Legion. Jako teenager David Haller trpěl duševní poruchou. Byla mu diagnostikována ...
Oxidation of [1-14C]fructose was not impaired, indicating that triose metabolism was not hindered; this information, along with ...
Trio se následně rozhodne… více. * Lost. Několik lidí přežije havárii letadla. Ocitají se ztraceni na opuštěném ostrově. Čím ...
Silva, J. C. P., Mota, M., Martins, F. O., Nogueira, C., Goncalves, T., Carneiro, T., Pinto, J., Duarte, D., Barros, A. S., Jones, J. G. & Gil, A. M., Aug 2018, In: Journal Of Proteome Research. 17, 8, p. 2880-2891. Research output: Contribution to journal › Article › peer-review ...
Contin A, van der Heijden R, Lefeber AWM, Verpoorte R: The iridoid glucoside secologanin is derived from the novel triose ... Isopentenyl diphosphate (IPP) the precursor for all terpenoids is produced by the triose phosphate/pyruvate or "non-mevalonate ...
Example of such enzymes include triose-phosphate isomerase (or TIM), carbonic anhydrase, acetylcholinesterase, catalase, ...
O2-insensitive CO2 uptake results from limitation of triose phosphate utilization, Plant Physiol. 81 (1986) 1123-1129. * Sharpe ...
Elle est aussi fondatrice de "Comprendre l'endométriose", un chatbot informant sur cette maladie qui ...

No FAQ available that match "trioses"

No images available that match "trioses"