Fungal infections caused by TRICHOSPORON that may become systemic especially in an IMMUNOCOMPROMISED HOST. Clinical manifestations range from superficial cutaneous infections to systemic lesions in multiple organs.
Either of two diseases resulting from fungal infection of the hair shafts. Black piedra occurs mainly in and on the hairs of the scalp and is caused by Piedraia hortae; white piedra occurs in and on the hairs of the scalp, beard, moustache and genital areas and is caused by Trichosporon species.
Mycoses are a group of diseases caused by fungal pathogens that can infect various tissues and organs, potentially leading to localized or systemic symptoms, depending on the immune status of the host.
A large and heterogenous group of fungi whose common characteristic is the absence of a sexual state. Many of the pathogenic fungi in humans belong to this group.
The intergenic DNA segments that are between the ribosomal RNA genes (internal transcribed spacers) and between the tandemly repeated units of rDNA (external transcribed spacers and nontranscribed spacers).
A mitosporic Saccharomycetales fungal genus, various species of which have been isolated from pulmonary lesions. Teleomorphs include Dipodascus and Galactomyces.
Substances that destroy fungi by suppressing their ability to grow or reproduce. They differ from FUNGICIDES, INDUSTRIAL because they defend against fungi present in human or animal tissues.
Procedures for identifying types and strains of fungi.
Infection due to the fungus Geotrichum.
Deoxyribonucleic acid that makes up the genetic material of fungi.
The presence of fungi circulating in the blood. Opportunistic fungal sepsis is seen most often in immunosuppressed patients with severe neutropenia or in postoperative patients with intravenous catheters and usually follows prolonged antibiotic therapy.
A general term for single-celled rounded fungi that reproduce by budding. Brewers' and bakers' yeasts are SACCHAROMYCES CEREVISIAE; therapeutic dried yeast is YEAST, DRIED.
A mitosporic Tremellales fungal genus whose species usually have a capsule and do not form pseudomycellium. Teleomorphs include Filobasidiella and Fidobasidium.
A red yeast-like mitosporic fungal genus generally regarded as nonpathogenic. It is cultured from numerous sources in human patients.
Scalp dermatoses refer to various inflammatory skin conditions affecting the scalp, including seborrheic dermatitis, psoriasis, atopic dermatitis, and tinea capitis, often characterized by symptoms such as redness, scaling, itching, and hair loss.
A fungal infection of the nail, usually caused by DERMATOPHYTES; YEASTS; or nondermatophyte MOLDS.
An antiseptic and disinfectant aromatic alcohol.
Macrolide antifungal antibiotic produced by Streptomyces nodosus obtained from soil of the Orinoco river region of Venezuela.
Derivatives of adipic acid. Included under this heading are a broad variety of acid forms, salts, esters, and amides that contain a 1,6-carboxy terminated aliphatic structure.
I'm sorry for any confusion, but the term "Qatar" is a country in the Middle East and does not have a medical definition. If you have any medical questions or terms you would like defined, I would be happy to help!
The ability of fungi to resist or to become tolerant to several structurally and functionally distinct drugs simultaneously. This resistance phenotype may be attributed to multiple gene mutations.
Cyclic hexapeptides of proline-ornithine-threonine-proline-threonine-serine. The cyclization with a single non-peptide bond can lead them to be incorrectly called DEPSIPEPTIDES, but the echinocandins lack ester links. Antifungal activity is via inhibition of 1,3-beta-glucan synthase production of BETA-GLUCANS.
Compounds consisting of a short peptide chain conjugated with an acyl chain.
A genus of yeast-like mitosporic Saccharomycetales fungi characterized by producing yeast cells, mycelia, pseudomycelia, and blastophores. It is commonly part of the normal flora of the skin, mouth, intestinal tract, and vagina, but can cause a variety of infections, including CANDIDIASIS; ONYCHOMYCOSIS; vulvovaginal candidiasis (CANDIDIASIS, VULVOVAGINAL), and thrush (see CANDIDIASIS, ORAL). (From Dorland, 28th ed)
DNA sequences encoding RIBOSOMAL RNA and the segments of DNA separating the individual ribosomal RNA genes, referred to as RIBOSOMAL SPACER DNA.
A kingdom of eukaryotic, heterotrophic organisms that live parasitically as saprobes, including MUSHROOMS; YEASTS; smuts, molds, etc. They reproduce either sexually or asexually, and have life cycles that range from simple to complex. Filamentous fungi, commonly known as molds, refer to those that grow as multicellular colonies.
An infection caused by an organism which becomes pathogenic under certain conditions, e.g., during immunosuppression.
Triazole antifungal agent that is used to treat oropharyngeal CANDIDIASIS and cryptococcal MENINGITIS in AIDS.
Opportunistic fungal infection by a member of ALTERNARIA genus.
A common interstitial lung disease caused by hypersensitivity reactions of PULMONARY ALVEOLI after inhalation of and sensitization to environmental antigens of microbial, animal, or chemical sources. The disease is characterized by lymphocytic alveolitis and granulomatous pneumonitis.
Triazoles are a class of antifungal drugs that contain a triazole ring in their chemical structure and work by inhibiting the synthesis of ergosterol, an essential component of fungal cell membranes, thereby disrupting the integrity and function of the membrane.
Superficial infections of the skin or its appendages by any of various fungi.
Widely distributed enzymes that carry out oxidation-reduction reactions in which one atom of the oxygen molecule is incorporated into the organic substrate; the other oxygen atom is reduced and combined with hydrogen ions to form water. They are also known as monooxygenases or hydroxylases. These reactions require two substrates as reductants for each of the two oxygen atoms. There are different classes of monooxygenases depending on the type of hydrogen-providing cosubstrate (COENZYMES) required in the mixed-function oxidation.
The ability of fungi to resist or to become tolerant to chemotherapeutic agents, antifungal agents, or antibiotics. This resistance may be acquired through gene mutation.
Any of the DNA in between gene-coding DNA, including untranslated regions, 5' and 3' flanking regions, INTRONS, non-functional pseudogenes, and non-functional repetitive sequences. This DNA may or may not encode regulatory functions.
Cytochromes of the b group that have alpha-band absorption of 563-564 nm. They occur as subunits in MITOCHONDRIAL ELECTRON TRANSPORT COMPLEX III.
The study of the structure, growth, function, genetics, and reproduction of fungi, and MYCOSES.
The relationships of groups of organisms as reflected by their genetic makeup.
Death resulting from the presence of a disease in an individual, as shown by a single case report or a limited number of patients. This should be differentiated from DEATH, the physiological cessation of life and from MORTALITY, an epidemiological or statistical concept.
Any tests that demonstrate the relative efficacy of different chemotherapeutic agents against specific microorganisms (i.e., bacteria, fungi, viruses).
A multistage process that includes cloning, physical mapping, subcloning, determination of the DNA SEQUENCE, and information analysis.
A mitosporic fungal genus causing opportunistic infections, endocarditis, fungemia, a hypersensitivity pneumonitis (see TRICHOSPORONOSIS) and white PIEDRA.
A phylum of fungi that produce their sexual spores (basidiospores) on the outside of the basidium. It includes forms commonly known as mushrooms, boletes, puffballs, earthstars, stinkhorns, bird's-nest fungi, jelly fungi, bracket or shelf fungi, and rust and smut fungi.
Descriptions of specific amino acid, carbohydrate, or nucleotide sequences which have appeared in the published literature and/or are deposited in and maintained by databanks such as GENBANK, European Molecular Biology Laboratory (EMBL), National Biomedical Research Foundation (NBRF), or other sequence repositories.
The most abundant form of RNA. Together with proteins, it forms the ribosomes, playing a structural role and also a role in ribosomal binding of mRNA and tRNAs. Individual chains are conventionally designated by their sedimentation coefficients. In eukaryotes, four large chains exist, synthesized in the nucleolus and constituting about 50% of the ribosome. (Dorland, 28th ed)
Peptides whose amino and carboxy ends are linked together with a peptide bond forming a circular chain. Some of them are ANTI-INFECTIVE AGENTS. Some of them are biosynthesized non-ribosomally (PEPTIDE BIOSYNTHESIS, NON-RIBOSOMAL).
Benzene derivatives that include one or more hydroxyl groups attached to the ring structure.
Pulmonary diseases caused by fungal infections, usually through hematogenous spread.
I'm sorry for any confusion, but there seems to be a misunderstanding as "South America" is not a medical term and cannot have a medical definition. It is a geographical term referring to the southern portion of the American continent, consisting of twelve independent countries and three territories of other nations.
A triazole antifungal agent that inhibits cytochrome P-450-dependent enzymes required for ERGOSTEROL synthesis.
A human or animal whose immunologic mechanism is deficient because of an immunodeficiency disorder or other disease or as the result of the administration of immunosuppressive drugs or radiation.
Substances of fungal origin that have antigenic activity.
Placing of a hydroxyl group on a compound in a position where one did not exist before. (Stedman, 26th ed)
I'm sorry for any confusion, but the term "Argentina" is not a medical concept or condition that has a defined meaning within the medical field. Argentina is actually the second largest country in South America, and is known for its rich cultural history, diverse landscapes, and significant contributions to fields such as science, arts, and sports. If you have any questions related to healthcare, medicine, or biology, I would be happy to try to help answer those!
The restriction of a characteristic behavior, anatomical structure or physical system, such as immune response; metabolic response, or gene or gene variant to the members of one species. It refers to that property which differentiates one species from another but it is also used for phylogenetic levels higher or lower than the species.
Technique that utilizes low-stringency polymerase chain reaction (PCR) amplification with single primers of arbitrary sequence to generate strain-specific arrays of anonymous DNA fragments. RAPD technique may be used to determine taxonomic identity, assess kinship relationships, analyze mixed genome samples, and create specific probes.
Liquid by-product of excretion produced in the kidneys, temporarily stored in the bladder until discharge through the URETHRA.
A unicellular budding fungus which is the principal pathogenic species causing CANDIDIASIS (moniliasis).
Ribonucleic acid in fungi having regulatory and catalytic roles as well as involvement in protein synthesis.
In vitro method for producing large amounts of specific DNA or RNA fragments of defined length and sequence from small amounts of short oligonucleotide flanking sequences (primers). The essential steps include thermal denaturation of the double-stranded target molecules, annealing of the primers to their complementary sequences, and extension of the annealed primers by enzymatic synthesis with DNA polymerase. The reaction is efficient, specific, and extremely sensitive. Uses for the reaction include disease diagnosis, detection of difficult-to-isolate pathogens, mutation analysis, genetic testing, DNA sequencing, and analyzing evolutionary relationships.
Polysaccharides are complex carbohydrates consisting of long, often branched chains of repeating monosaccharide units joined together by glycosidic bonds, which serve as energy storage molecules (e.g., glycogen), structural components (e.g., cellulose), and molecular recognition sites in various biological systems.
Infection with a fungus of the genus CANDIDA. It is usually a superficial infection of the moist areas of the body and is generally caused by CANDIDA ALBICANS. (Dorland, 27th ed)
A nonmetallic element with atomic symbol C, atomic number 6, and atomic weight [12.0096; 12.0116]. It may occur as several different allotropes including DIAMOND; CHARCOAL; and GRAPHITE; and as SOOT from incompletely burned fuel.
The sequence of PURINES and PYRIMIDINES in nucleic acids and polynucleotides. It is also called nucleotide sequence.
## I'm sorry for any confusion, but "Japan" is not a medical term or concept. It is a country located in Asia, known as Nihon-koku or Nippon-koku in Japanese, and is renowned for its unique culture, advanced technology, and rich history. If you have any questions related to medical topics, I would be happy to help answer them!
The order of amino acids as they occur in a polypeptide chain. This is referred to as the primary structure of proteins. It is of fundamental importance in determining PROTEIN CONFORMATION.
Studies used to test etiologic hypotheses in which inferences about an exposure to putative causal factors are derived from data relating to characteristics of persons under study or to events or experiences in their past. The essential feature is that some of the persons under study have the disease or outcome of interest and their characteristics are compared with those of unaffected persons.
The rate dynamics in chemical or physical systems.
The outward appearance of the individual. It is the product of interactions between genes, and between the GENOTYPE and the environment.

Identification of medically relevant Trichosporon species based on sequences of internal transcribed spacer regions and construction of a database for Trichosporon identification. (1/172)

The nucleotide sequences of the internal transcribed spacer (ITS) 1 and 2 regions in the rRNA gene were determined by directly sequencing PCR-amplified fragments for all of the species (17 species and five varieties) in the genus Trichosporon. Comparative sequence analysis suggests that six medically relevant species, T. asahii, T. asteroides, T. cutaneum, T. inkin, T. mucoides, and T. ovoides, can be readily identified by their ITS sequences. In addition, the sequence analysis showed that conspecific strains have fewer than 1% nucleotide differences in the ITS 1 and 2 regions overall. Molecular phylogenetic trees are also presented.  (+info)

Variation in Microbial Identification System accuracy for yeast identification depending on commercial source of Sabouraud dextrose agar. (2/172)

The accuracy of the Microbial Identification System (MIS; MIDI, Inc. ) for identification of yeasts to the species level was compared by using 438 isolates grown on prepoured BBL Sabouraud dextrose agar (SDA) and prepoured Remel SDA. Correct identification was observed for 326 (74%) of the yeasts cultured on BBL SDA versus only 214 (49%) of yeasts grown on Remel SDA (P < 0.001). The commercial source of the SDA used in the MIS procedure significantly influences the system's accuracy.  (+info)

Phosphorylation of yeast ribosomal proteins by CKI and CKII in the presence of heparin. (3/172)

We have found that heparin has a different effect on Trichosporon cutaneum ribosomal protein phosphorylation by CKI and by CKII. In the presence of heparin, modification of 13 kDa, 19 kDa and 38 kDa proteins catalyzed by CKII was inhibited, while in the case of CKI, in addition to protein of 15 kDa, phosphorylation of 20 kDa and 35 kDa proteins was detected. It was also found that, in the presence of heparin, phosphorylation of P proteins (13 kDa and 38 kDa) by ribosome-bound protein kinases was inhibited. Moreover at the same conditions modification of 40 kDa protein was observed in all four yeast species tested.  (+info)

Effects of macrophage colony-stimulating factor (M-CSF) on anti-fungal activity of mononuclear phagocytes against Trichosporon asahii. (4/172)

Trichosporon asahii is an emerging opportunistic pathogen in immunocompromised patients. Little is known about the mechanisms of host defence against T. asahii. We investigated the fungicidal activity of human peripheral blood monocytes and murine peritoneal macrophages against T. asahii isolates, and the effects of M-CSF on the anti-fungal activity of mononuclear phagocytes. We also established a neutropenic mouse model of disseminated trichosporonosis with T. asahii. M-CSF enhanced the phagocytic fungicidal activity of mononuclear cells, and infected mice treated with human M-CSF at 10 x 106 U/kg showed a significant improvement in survival rate, with fewer fungal colony counts in the lung compared with control mice. Mice treated with human M-CSF showed higher concentrations of tumour necrosis factor-alpha (TNF-alpha) in the lung and plasma compared with control mice. The survival rate was significantly reduced in mice treated with anti-mouse TNF-alpha. Our results showed that M-CSF enhanced the fungicidal activity of mononuclear phagocytes partly by production of TNF-alpha, and suggest that the administration of M-CSF to patients with disseminated trichosporonosis may be a useful adjunct to conventional anti-microbial therapy and prophylaxis.  (+info)

Trichosporon beigelii: a life-threatening pathogen in immunocompromised hosts. (5/172)

Patients undergoing bone marrow transplantation are profoundly immunosuppressed as a result of their intensive myeloablative chemotherapy and are at high risk for opportunistic fungal infections mainly caused by Candida spp and Aspergillus spp. Trichosporon beigelii (T beigelii) has emerged as a life-threatening opportunistic pathogen in granulocytopenic and immunocompromised hosts and there is a marked increase in cases reported in the literature. Response to antifungal agents is poor, mortality is high and immunological recovery is the most important factor for a favorable outcome in patients with trichosporonosis. We present three cases of T. beigelii infection in patients undergoing allogeneic bone marrow transplantation in our center and we review cases described in the literature.  (+info)

Trichosporon veenhuisii sp. nov., an alkane-assimilating anamorphic basidiomycetous yeast. (6/172)

A morphological and physiological description of an alkane-assimilating anamorphic basidiomycetous yeast species, named Trichosporon veenhuisii, is presented. The ability to assimilate several aliphatic and aromatic compounds as sole source of carbon and energy is reported. The phylogenetic position within the genus, based on nuclear base sequencing of the D1/D2 region of the large subunit of rDNA, is discussed. The type strain is CBS 7136T.  (+info)

Experimental model of progressive disseminated trichosporonosis in mice with latent trichosporonemia. (7/172)

Trichosporon asahii and Trichosporon mucoides are the most common strains of fungi that cause disseminated trichosporonosis, a severe opportunistic infection in immunocompromised hosts. We have previously established a nested PCR assay using serum samples for detection of both strains. Here we describe a new experimental animal model for investigating the underlying mechanisms of disseminated trichosporonosis. T. asahii (OMU239, a clinical isolate from a patient with acute myelogenous leukemia) and 8-week-old ICR male mice were used in all experiments. A suspension of T. asahii (3 x 10(6) CFU/animal) was injected into the caudal vein of each mouse after immunosuppression with cyclophosphamide (200 mg/kg of body weight/day for 2 days) and prednisolone (30 mg/kg/day for 1 day). Mice were then divided into four subgroups (R0, R1, R2, and R3) based on the time of reimmunosuppression. The latter was performed using the same drugs 1 week (group R1), 2 weeks (group R2), and 3 weeks (group R3) after fungal infection. Reimmunosuppression was not performed in group R0. The 5-week-survival rates of mice after T. asahii infection were 0% for group R1, 50% for group R2, 80% for group R3, and 80% for group R0. There was a significant difference in the survival rates between group R1 and either group R0 or R3 (P < 0.05). Fungal clearance in peripheral blood and various organs of group R1 and R2 was delayed relative to that of group R0 but was similar to the control in group R3 in spite of reimmunosuppression. Our results suggest that the critical period for the development of disseminated trichosporonosis in our model is shorter than 3 weeks after T. asahii infection. We concluded that mice during this critical period were in a state of latent trichosporonemia. Comparison of the survival rates suggests that the nested PCR assay was more useful than blood culture and glucuronoxylomannan antigen assay in the detection of this latent trichosporonemia.  (+info)

Differential host susceptibility to pulmonary infections with bacteria and fungi in mice deficient in myeloperoxidase. (8/172)

Myeloperoxidase (MPO), which is located within neutrophils capable of producing hypochlorous acid, is active in vitro against bacteria and fungi. However, MPO-deficient persons are usually healthy. To define the in vivo contribution of MPO to early host defense against pulmonary infections, MPO-deficient and control mice were intranasally infected with various fungi and bacteria, and the number of residual microorganisms in lungs was compared 48 h later. MPO-deficient mice showed severely reduced cytotoxicity to Candida albicans, Candida tropicalis, Trichosporon asahii, and Pseudomonas aeruginosa. However, the mutant mice showed a slight but significantly delayed clearance of Aspergillus fumigatus and Klebsiella pneumoniae and had comparable levels of resistance to the wild type against Candida glabrata, Cryptococcus neoformans, Staphylococcus aureus, and Streptococcus pneumoniae. These results suggest that the MPO-dependent oxidative system is important for host defense against fungi and bacteria, although the effect varies by pathogen species.  (+info)

Trichosporonosis is a fungal infection caused by the organism Trichosporon spp., which are commonly found in the environment, particularly in soil and water. This infection primarily affects the skin and nails but can also cause invasive systemic disease, especially in immunocompromised individuals. The symptoms of trichosporonosis vary depending on the location and severity of the infection. Superficial infections may present as white plaques or pustules on the mucous membranes, while invasive infections can cause fever, chills, and organ dysfunction. Treatment typically involves antifungal medications, with the choice of drug depending on the severity and location of the infection.

Piedra is a medical term that refers to a condition where fungal organisms called filamentous fungi (molds) infect the hair shafts, leading to the formation of bead-like nodules along the hair. There are two types of piedra: black piedra and white piedra.

Black piedra is caused by the fungus Piedraia hortae and typically affects the scalp and beard areas in adults. The nodules formed in black piedra are hard, dark, and rough, and they can cause the hair to become brittle and break easily.

White piedra, on the other hand, is caused by the fungus Trichosporon spp. and usually affects the scalp, beard, mustache, and body hair in both children and adults. The nodules formed in white piedra are soft, white or cream-colored, and can be easily detached from the hair shafts.

Both types of piedra are treatable with antifungal medications, either topical or systemic, depending on the severity and location of the infection. Good personal hygiene and avoiding close contact with infected individuals can help prevent the spread of the condition.

Mycoses are a group of diseases caused by fungal infections. These infections can affect various parts of the body, including the skin, nails, hair, lungs, and internal organs. The severity of mycoses can range from superficial, mild infections to systemic, life-threatening conditions, depending on the type of fungus and the immune status of the infected individual. Some common types of mycoses include candidiasis, dermatophytosis, histoplasmosis, coccidioidomycosis, and aspergillosis. Treatment typically involves antifungal medications, which can be topical or systemic, depending on the location and severity of the infection.

Mitosporic fungi, also known as asexual fungi or anamorphic fungi, are a group of fungi that produce mitospores (also called conidia) during their asexual reproduction. Mitospores are produced from the tip of specialized hyphae called conidiophores and are used for dispersal and survival of the fungi in various environments. These fungi do not have a sexual reproductive stage or it has not been observed, making their taxonomic classification challenging. They are commonly found in soil, decaying organic matter, and water, and some of them can cause diseases in humans, animals, and plants. Examples of mitosporic fungi include Aspergillus, Penicillium, and Fusarium species.

The ribosomal spacer in DNA refers to the non-coding sequences of DNA that are located between the genes for ribosomal RNA (rRNA). These spacer regions are present in the DNA of organisms that have a nuclear genome, including humans and other animals, plants, and fungi.

In prokaryotic cells, such as bacteria, there are two ribosomal RNA genes, 16S and 23S, separated by a spacer region known as the intergenic spacer (IGS). In eukaryotic cells, there are multiple copies of ribosomal RNA genes arranged in clusters called nucleolar organizer regions (NORs), which are located on the short arms of several acrocentric chromosomes. Each cluster contains hundreds to thousands of copies of the 18S, 5.8S, and 28S rRNA genes, separated by non-transcribed spacer regions known as internal transcribed spacers (ITS) and external transcribed spacers (ETS).

The ribosomal spacer regions in DNA are often used as molecular markers for studying evolutionary relationships among organisms because they evolve more rapidly than the rRNA genes themselves. The sequences of these spacer regions can be compared among different species to infer their phylogenetic relationships and to estimate the time since they diverged from a common ancestor. Additionally, the length and composition of ribosomal spacers can vary between individuals within a species, making them useful for studying genetic diversity and population structure.

Geotrichum is a genus of saprophytic fungi that can be found in various environments, including soil, water, and organic matter. The most common species is Geotrichum candidum, which is often associated with dairy products and is used in the production of certain cheeses. However, G. candidum and other Geotrichum species can also be isolated from human respiratory samples and are occasionally identified as causes of respiratory tract infections or allergic reactions in immunocompromised individuals.

In a medical context, Geotrichum infection is called geotrichosis. It primarily affects the lungs and may present with symptoms such as cough, fever, chest pain, and shortness of breath. In severe cases, the infection can spread to other organs, including the brain, causing meningitis or brain abscesses. Geotrichum infections are typically treated with antifungal medications, such as amphotericin B, fluconazole, or itraconazole.

It is important to note that Geotrichum species are commonly found in the environment and on human skin without causing any harm. Invasive geotrichosis is relatively rare and primarily affects individuals with weakened immune systems due to conditions like HIV/AIDS, cancer, or organ transplantation.

Antifungal agents are a type of medication used to treat and prevent fungal infections. These agents work by targeting and disrupting the growth of fungi, which include yeasts, molds, and other types of fungi that can cause illness in humans.

There are several different classes of antifungal agents, including:

1. Azoles: These agents work by inhibiting the synthesis of ergosterol, a key component of fungal cell membranes. Examples of azole antifungals include fluconazole, itraconazole, and voriconazole.
2. Echinocandins: These agents target the fungal cell wall, disrupting its synthesis and leading to fungal cell death. Examples of echinocandins include caspofungin, micafungin, and anidulafungin.
3. Polyenes: These agents bind to ergosterol in the fungal cell membrane, creating pores that lead to fungal cell death. Examples of polyene antifungals include amphotericin B and nystatin.
4. Allylamines: These agents inhibit squalene epoxidase, a key enzyme in ergosterol synthesis. Examples of allylamine antifungals include terbinafine and naftifine.
5. Griseofulvin: This agent disrupts fungal cell division by binding to tubulin, a protein involved in fungal cell mitosis.

Antifungal agents can be administered topically, orally, or intravenously, depending on the severity and location of the infection. It is important to use antifungal agents only as directed by a healthcare professional, as misuse or overuse can lead to resistance and make treatment more difficult.

Mycological typing techniques are methods used to identify and classify fungi at the species or strain level, based on their unique biological characteristics. These techniques are often used in clinical laboratories to help diagnose fungal infections and determine the most effective treatment approaches.

There are several different mycological typing techniques that may be used, depending on the specific type of fungus being identified and the resources available in the laboratory. Some common methods include:

1. Phenotypic methods: These methods involve observing and measuring the physical characteristics of fungi, such as their growth patterns, colonial morphology, and microscopic features. Examples include macroscopic and microscopic examination, as well as biochemical tests to identify specific metabolic properties.

2. Genotypic methods: These methods involve analyzing the DNA or RNA of fungi to identify unique genetic sequences that can be used to distinguish between different species or strains. Examples include PCR-based methods, such as restriction fragment length polymorphism (RFLP) analysis and amplified fragment length polymorphism (AFLP) analysis, as well as sequencing-based methods, such as internal transcribed spacer (ITS) sequencing and multilocus sequence typing (MLST).

3. Proteotypic methods: These methods involve analyzing the proteins expressed by fungi to identify unique protein profiles that can be used to distinguish between different species or strains. Examples include matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS) and liquid chromatography-mass spectrometry (LC-MS).

Mycological typing techniques are important tools for understanding the epidemiology of fungal infections, tracking outbreaks, and developing effective treatment strategies. By accurately identifying the specific fungi causing an infection, healthcare providers can tailor their treatments to target the most vulnerable aspects of the pathogen, improving patient outcomes and reducing the risk of drug resistance.

Geotrichosis is a fungal infection caused by the organism Geotrichum capitatum or sometimes Geotrichum candidum. This condition often affects the respiratory system, causing lung infections, but can also cause skin and mucous membrane infections. It is more commonly seen in individuals with weakened immune systems, such as those with HIV/AIDS, cancer, or organ transplants. Symptoms may include cough, shortness of breath, chest pain, fever, and weight loss. In some cases, it can lead to serious complications if left untreated.

Fungal DNA refers to the genetic material present in fungi, which are a group of eukaryotic organisms that include microorganisms such as yeasts and molds, as well as larger organisms like mushrooms. The DNA of fungi, like that of all living organisms, is made up of nucleotides that are arranged in a double helix structure.

Fungal DNA contains the genetic information necessary for the growth, development, and reproduction of fungi. This includes the instructions for making proteins, which are essential for the structure and function of cells, as well as other important molecules such as enzymes and nucleic acids.

Studying fungal DNA can provide valuable insights into the biology and evolution of fungi, as well as their potential uses in medicine, agriculture, and industry. For example, researchers have used genetic engineering techniques to modify the DNA of fungi to produce drugs, biofuels, and other useful products. Additionally, understanding the genetic makeup of pathogenic fungi can help scientists develop new strategies for preventing and treating fungal infections.

Fungemia is the presence of fungi (fungal organisms) in the blood. It's a type of bloodstream infection, which can be serious and life-threatening, particularly for people with weakened immune systems. The fungi that cause fungemia often enter the bloodstream through medical devices like catheters or from a fungal infection somewhere else in the body.

Fungemia is often associated with conditions like candidemia (caused by Candida species) and aspergillemia (caused by Aspergillus species). Symptoms can vary widely but often include fever, chills, and other signs of infection. It's important to diagnose and treat fungemia promptly to prevent serious complications like sepsis.

Yeasts are single-celled microorganisms that belong to the fungus kingdom. They are characterized by their ability to reproduce asexually through budding or fission, and they obtain nutrients by fermenting sugars and other organic compounds. Some species of yeast can cause infections in humans, known as candidiasis or "yeast infections." These infections can occur in various parts of the body, including the skin, mouth, genitals, and internal organs. Common symptoms of a yeast infection may include itching, redness, irritation, and discharge. Yeast infections are typically treated with antifungal medications.

'Cryptococcus' is a genus of encapsulated, budding yeast that are found in the environment, particularly in soil and bird droppings. The most common species that causes infection in humans is Cryptococcus neoformans, followed by Cryptococcus gattii.

Infection with Cryptococcus can occur when a person inhales the microscopic yeast cells, which can then lead to lung infections (pneumonia) or disseminated disease, particularly in people with weakened immune systems. The most common form of disseminated cryptococcal infection is meningitis, an inflammation of the membranes surrounding the brain and spinal cord.

Cryptococcal infections can be serious and even life-threatening, especially in individuals with HIV/AIDS or other conditions that weaken the immune system. Treatment typically involves antifungal medications, such as amphotericin B and fluconazole.

Rhodotorula is a genus of unicellular, budding yeasts that are commonly found in the environment, particularly in damp and nutrient-rich places such as soil, water, and vegetation. They are characterized by their ability to produce carotenoid pigments, which give them a distinctive pinkish-red color.

While Rhodotorula species are not typically associated with human disease, they can occasionally cause infections in people with weakened immune systems or underlying medical conditions. These infections can occur in various parts of the body, including the respiratory tract, urinary tract, and skin.

Rhodotorula infections are usually treated with antifungal medications, such as fluconazole or amphotericin B. Preventing exposure to sources of Rhodotorula, such as contaminated medical equipment or water supplies, can also help reduce the risk of infection.

Scalp dermatoses refer to various skin conditions that affect the scalp. These can include inflammatory conditions such as seborrheic dermatitis (dandruff, cradle cap), psoriasis, atopic dermatitis (eczema), and lichen planus; infectious processes like bacterial folliculitis, tinea capitis (ringworm of the scalp), and viral infections; as well as autoimmune conditions such as alopecia areata. Symptoms can range from mild scaling and itching to severe redness, pain, and hair loss. The specific diagnosis and treatment of scalp dermatoses depend on the underlying cause.

Onychomycosis is a medical term that refers to a fungal infection in the nails (both fingernails and toenails). This condition occurs when fungi, usually dermatophytes, invade the nail bed and cause damage to the nail plate. It can lead to symptoms such as discoloration, thickening, crumbling, and separation of the nail from the nail bed. Onychomycosis can be challenging to treat and may require long-term antifungal therapy, either topical or oral, or even removal of the infected nail in severe cases.

Phenol, also known as carbolic acid, is an organic compound with the molecular formula C6H5OH. It is a white crystalline solid that is slightly soluble in water and has a melting point of 40-42°C. Phenol is a weak acid, but it is quite reactive and can be converted into a variety of other chemicals.

In a medical context, phenol is most commonly used as a disinfectant and antiseptic. It has a characteristic odor that is often described as "tarry" or " medicinal." Phenol is also used in some over-the-counter products, such as mouthwashes and throat lozenges, to help kill bacteria and freshen breath.

However, phenol is also a toxic substance that can cause serious harm if it is swallowed, inhaled, or absorbed through the skin. It can cause irritation and burns to the eyes, skin, and mucous membranes, and it can damage the liver and kidneys if ingested. Long-term exposure to phenol has been linked to an increased risk of cancer.

Because of its potential for harm, phenol is regulated as a hazardous substance in many countries, and it must be handled with care when used in medical or industrial settings.

Amphotericin B is an antifungal medication used to treat serious and often life-threatening fungal infections. It works by binding to the ergosterol in the fungal cell membrane, creating pores that lead to the loss of essential cell components and ultimately cell death.

The medical definition of Amphotericin B is:

A polyene antifungal agent derived from Streptomyces nodosus, with a broad spectrum of activity against various fungi, including Candida, Aspergillus, Cryptococcus, and Histoplasma capsulatum. Amphotericin B is used to treat systemic fungal infections, such as histoplasmosis, cryptococcosis, candidiasis, and aspergillosis, among others. It may be administered intravenously or topically, depending on the formulation and the site of infection.

Adverse effects associated with Amphotericin B include infusion-related reactions (such as fever, chills, and hypotension), nephrotoxicity, electrolyte imbalances, and anemia. These side effects are often dose-dependent and may be managed through careful monitoring and adjustment of the dosing regimen.

Adipates are a group of chemical compounds that are esters of adipic acid. Adipic acid is a dicarboxylic acid with the formula (CH₂)₄(COOH)₂. Adipates are commonly used as plasticizers in the manufacture of polyvinyl chloride (PVC) products, such as pipes, cables, and flooring. They can also be found in cosmetics, personal care products, and some food additives.

Adipates are generally considered to be safe for use in consumer products, but like all chemicals, they should be used with caution and in accordance with recommended guidelines. Some adipates have been shown to have potential health effects, such as endocrine disruption and reproductive toxicity, at high levels of exposure. Therefore, it is important to follow proper handling and disposal procedures to minimize exposure.

I'm sorry for any confusion, but "Qatar" is not a medical term. It is the name of a country located in the Middle East, on the Arabian Peninsula. If you have any questions about medical terminology or health-related topics, I would be happy to try and help answer them!

Multiple drug resistance in fungi refers to the ability of certain fungal strains or species to resist the effects of multiple antifungal agents. This occurs when these organisms develop mechanisms that prevent the drugs from interfering with their growth and survival. As a result, the drugs become less effective or even completely ineffective at treating fungal infections caused by these resistant strains or species.

Multiple drug resistance in fungi can arise due to various factors, including genetic mutations, overuse or misuse of antifungal agents, and the ability of fungi to exchange genetic material with other fungi. This makes treatment of fungal infections more challenging, as doctors may need to use higher doses of drugs or try alternative therapies that may have more side effects or be less effective.

Multiple drug resistance in fungi is a significant concern in healthcare settings, particularly for patients who are immunocompromised or have underlying medical conditions that make them more susceptible to fungal infections. It is essential to take measures to prevent the development and spread of multiple drug-resistant fungi, such as using antifungal agents appropriately, practicing good infection control practices, and conducting surveillance for resistant strains.

Echinocandins are a class of antifungal medications that inhibit the synthesis of 1,3-β-D-glucan, a key component of the fungal cell wall. This results in osmotic instability and ultimately leads to fungal cell death. Echinocandins are commonly used to treat invasive fungal infections caused by Candida species and Aspergillus species. The three drugs in this class that are approved for use in humans are caspofungin, micafungin, and anidulafungin.

Here's a brief overview of each drug:

1. Caspofungin (Cancidas, Cancidas-W): This is the first echinocandin to be approved for use in humans. It is indicated for the treatment of invasive candidiasis, including candidemia, acute disseminated candidiasis, and other forms of Candida infections. Caspofungin is also approved for the prevention of Candida infections in patients undergoing hematopoietic stem cell transplantation.
2. Micafungin (Mycamine): This echinocandin is approved for the treatment of candidemia, esophageal candidiasis, and other forms of Candida infections. It is also used for the prevention of Candida infections in patients undergoing hematopoietic stem cell transplantation.
3. Anidulafungin (Eraxis): This echinocandin is approved for the treatment of esophageal candidiasis and candidemia, as well as other forms of Candida infections. It is also used for the prevention of Candida infections in patients undergoing hematopoietic stem cell transplantation.

Echinocandins have a broad spectrum of activity against many fungal species, including those that are resistant to other classes of antifungal medications. They are generally well-tolerated and have a low incidence of drug interactions. However, they should be used with caution in patients with hepatic impairment, as their metabolism may be affected by liver dysfunction.

Lipopeptides are a type of molecule that consists of a lipid (fatty acid) tail attached to a small peptide (short chain of amino acids). They are produced naturally by various organisms, including bacteria, and play important roles in cell-to-cell communication, signaling, and as components of bacterial membranes. Some lipopeptides have also been found to have antimicrobial properties and are being studied for their potential use as therapeutic agents.

'Candida' is a type of fungus (a form of yeast) that is commonly found on the skin and inside the body, including in the mouth, throat, gut, and vagina, in small amounts. It is a part of the normal microbiota and usually does not cause any problems. However, an overgrowth of Candida can lead to infections known as candidiasis or thrush. Common sites for these infections include the skin, mouth, throat, and genital areas. Some factors that can contribute to Candida overgrowth are a weakened immune system, certain medications (such as antibiotics and corticosteroids), diabetes, pregnancy, poor oral hygiene, and wearing damp or tight-fitting clothing. Common symptoms of candidiasis include itching, redness, pain, and discharge. Treatment typically involves antifungal medication, either topical or oral, depending on the site and severity of the infection.

Ribosomal DNA (rDNA) refers to the specific regions of DNA in a cell that contain the genes for ribosomal RNA (rRNA). Ribosomes are complex structures composed of proteins and rRNA, which play a crucial role in protein synthesis by translating messenger RNA (mRNA) into proteins.

In humans, there are four types of rRNA molecules: 18S, 5.8S, 28S, and 5S. These rRNAs are encoded by multiple copies of rDNA genes that are organized in clusters on specific chromosomes. In humans, the majority of rDNA genes are located on the short arms of acrocentric chromosomes 13, 14, 15, 21, and 22.

Each cluster of rDNA genes contains both transcribed and non-transcribed spacer regions. The transcribed regions contain the genes for the four types of rRNA, while the non-transcribed spacers contain regulatory elements that control the transcription of the rRNA genes.

The number of rDNA copies varies between species and even within individuals of the same species. The copy number can also change during development and in response to environmental factors. Variations in rDNA copy number have been associated with various diseases, including cancer and neurological disorders.

Fungi, in the context of medical definitions, are a group of eukaryotic organisms that include microorganisms such as yeasts and molds, as well as the more familiar mushrooms. The study of fungi is known as mycology.

Fungi can exist as unicellular organisms or as multicellular filamentous structures called hyphae. They are heterotrophs, which means they obtain their nutrients by decomposing organic matter or by living as parasites on other organisms. Some fungi can cause various diseases in humans, animals, and plants, known as mycoses. These infections range from superficial, localized skin infections to systemic, life-threatening invasive diseases.

Examples of fungal infections include athlete's foot (tinea pedis), ringworm (dermatophytosis), candidiasis (yeast infection), histoplasmosis, coccidioidomycosis, and aspergillosis. Fungal infections can be challenging to treat due to the limited number of antifungal drugs available and the potential for drug resistance.

Opportunistic infections (OIs) are infections that occur more frequently or are more severe in individuals with weakened immune systems, often due to a underlying condition such as HIV/AIDS, cancer, or organ transplantation. These infections are caused by microorganisms that do not normally cause disease in people with healthy immune function, but can take advantage of an opportunity to infect and cause damage when the body's defense mechanisms are compromised. Examples of opportunistic infections include Pneumocystis pneumonia, tuberculosis, candidiasis (thrush), and cytomegalovirus infection. Preventive measures, such as antimicrobial medications and vaccinations, play a crucial role in reducing the risk of opportunistic infections in individuals with weakened immune systems.

Fluconazole is an antifungal medication used to treat and prevent various fungal infections, such as candidiasis (yeast infections), cryptococcal meningitis, and other fungal infections that affect the mouth, throat, blood, lungs, genital area, and other parts of the body. It works by inhibiting the growth of fungi that cause these infections. Fluconazole is available in various forms, including tablets, capsules, and intravenous (IV) solutions, and is typically prescribed to be taken once daily.

The medical definition of Fluconazole can be found in pharmacological or medical dictionaries, which describe it as a triazole antifungal agent that inhibits fungal cytochrome P450-dependent synthesis of ergosterol, a key component of the fungal cell membrane. This results in increased permeability and leakage of cellular contents, ultimately leading to fungal death. Fluconazole has a broad spectrum of activity against various fungi, including Candida, Cryptococcus, Aspergillus, and others.

It is important to note that while Fluconazole is an effective antifungal medication, it may have side effects and interactions with other medications. Therefore, it should only be used under the guidance of a healthcare professional.

'Alternariosis' is a medical term that refers to a fungal infection caused by the Alternaria species of fungi. This type of fungus is commonly found in the environment, particularly in soil, plants, and decaying organic matter. Infections caused by Alternaria are relatively uncommon in healthy individuals but can cause significant problems for people with weakened immune systems or underlying lung conditions.

Alternariosis can affect various parts of the body, including the skin, nails, respiratory system, and eyes. The symptoms of alternariosis depend on the location and severity of the infection. For instance, a respiratory infection may cause coughing, wheezing, shortness of breath, and chest pain, while a skin infection can result in redness, itching, and lesions.

Treatment for alternariosis typically involves antifungal medications, which can be administered orally, intravenously, or topically, depending on the location and severity of the infection. In severe cases, hospitalization may be necessary to monitor and manage the infection effectively. Preventing exposure to the fungus is crucial for individuals at risk of developing alternariosis, such as those with weakened immune systems or lung conditions.

Extrinsic allergic alveolitis is a type of lung inflammation that occurs in response to inhaling organic dusts or mold spores that contain allergens. It is also known as hypersensitivity pneumonitis. This condition typically affects people who have been repeatedly exposed to the allergen over a period of time, such as farmers, bird fanciers, and workers in certain industries.

The symptoms of extrinsic allergic alveolitis can vary but often include cough, shortness of breath, fever, and fatigue. These symptoms may develop gradually or suddenly, depending on the frequency and intensity of exposure to the allergen. In some cases, the condition may progress to cause permanent lung damage if it is not treated promptly.

Diagnosis of extrinsic allergic alveolitis typically involves a combination of medical history, physical examination, imaging studies such as chest X-rays or CT scans, and pulmonary function tests. In some cases, blood tests or bronchoscopy with lavage may also be used to help confirm the diagnosis.

Treatment for extrinsic allergic alveolitis typically involves avoiding further exposure to the allergen, as well as using medications such as corticosteroids to reduce inflammation and relieve symptoms. In severe cases, hospitalization and oxygen therapy may be necessary. With prompt and appropriate treatment, most people with extrinsic allergic alveolitis can recover fully and avoid long-term lung damage.

Triazoles are a class of antifungal medications that have broad-spectrum activity against various fungi, including yeasts, molds, and dermatophytes. They work by inhibiting the synthesis of ergosterol, an essential component of fungal cell membranes, leading to increased permeability and disruption of fungal growth. Triazoles are commonly used in both systemic and topical formulations for the treatment of various fungal infections, such as candidiasis, aspergillosis, cryptococcosis, and dermatophytoses. Some examples of triazole antifungals include fluconazole, itraconazole, voriconazole, and posaconazole.

Dermatomycoses are a group of fungal infections that affect the skin, hair, and nails. These infections are caused by various types of fungi, including dermatophytes, yeasts, and molds. Dermatophyte infections, also known as tinea, are the most common type of dermatomycoses and can affect different areas of the body, such as the scalp (tinea capitis), beard (tinea barbae), body (tinea corporis), feet (tinea pedis or athlete's foot), hands (tinea manuum), and nails (tinea unguium or onychomycosis). Yeast infections, such as those caused by Candida albicans, can lead to conditions like candidal intertrigo, vulvovaginitis, and balanitis. Mold infections are less common but can cause skin disorders like scalded skin syndrome and phaeohyphomycosis. Dermatomycoses are typically treated with topical or oral antifungal medications.

Mixed Function Oxygenases (MFOs) are a type of enzyme that catalyze the addition of one atom each from molecular oxygen (O2) to a substrate, while reducing the other oxygen atom to water. These enzymes play a crucial role in the metabolism of various endogenous and exogenous compounds, including drugs, carcinogens, and environmental pollutants.

MFOs are primarily located in the endoplasmic reticulum of cells and consist of two subunits: a flavoprotein component that contains FAD or FMN as a cofactor, and an iron-containing heme protein. The most well-known example of MFO is cytochrome P450, which is involved in the oxidation of xenobiotics and endogenous compounds such as steroids, fatty acids, and vitamins.

MFOs can catalyze a variety of reactions, including hydroxylation, epoxidation, dealkylation, and deamination, among others. These reactions often lead to the activation or detoxification of xenobiotics, making MFOs an important component of the body's defense system against foreign substances. However, in some cases, these reactions can also produce reactive intermediates that may cause toxicity or contribute to the development of diseases such as cancer.

Fungal drug resistance is a condition where fungi are no longer susceptible to the antifungal drugs that were previously used to treat infections they caused. This can occur due to genetic changes in the fungi that make them less sensitive to the drug's effects, or due to environmental factors that allow the fungi to survive and multiply despite the presence of the drug.

There are several mechanisms by which fungi can develop drug resistance, including:

1. Mutations in genes that encode drug targets: Fungi can acquire mutations in the genes that encode for the proteins or enzymes that the antifungal drugs target. These mutations can alter the structure or function of these targets, making them less susceptible to the drug's effects.
2. Overexpression of efflux pumps: Fungi can increase the expression of genes that encode for efflux pumps, which are proteins that help fungi expel drugs from their cells. This can reduce the intracellular concentration of the drug and make it less effective.
3. Changes in membrane composition: Fungi can alter the composition of their cell membranes to make them less permeable to antifungal drugs, making it more difficult for the drugs to enter the fungal cells and exert their effects.
4. Biofilm formation: Fungi can form biofilms, which are complex communities of microorganisms that adhere to surfaces and are protected by a matrix of extracellular material. Biofilms can make fungi more resistant to antifungal drugs by limiting drug penetration and creating an environment that promotes the development of resistance.

Fungal drug resistance is a significant clinical problem, particularly in patients with weakened immune systems, such as those with HIV/AIDS or cancer. It can lead to treatment failures, increased morbidity and mortality, and higher healthcare costs. To address this issue, there is a need for new antifungal drugs, as well as strategies to prevent and manage drug resistance.

Intergenic DNA refers to the stretches of DNA that are located between genes. These regions do not contain coding sequences for proteins or RNA and thus were once thought to be "junk" DNA with no function. However, recent research has shown that intergenic DNA can play important roles in the regulation of gene expression, chromosome structure and stability, and other cellular processes. Intergenic DNA may contain various types of regulatory elements such as enhancers, silencers, insulators, and promoters that control the transcription of nearby genes. Additionally, intergenic DNA can also include repetitive sequences, transposable elements, and other non-coding RNAs that have diverse functions in the cell.

Cytochromes b are a group of electron transport proteins that contain a heme c group, which is the prosthetic group responsible for their redox activity. They play a crucial role in the electron transport chain (ETC) located in the inner mitochondrial membrane of eukaryotic cells and in the plasma membrane of prokaryotic cells.

The cytochromes b are part of Complex III, also known as the cytochrome bc1 complex or ubiquinol-cytochrome c reductase, in the ETC. In this complex, they function as electron carriers between ubiquinone (Q) and cytochrome c, participating in the process of oxidative phosphorylation to generate ATP.

There are multiple isoforms of cytochromes b found in various organisms, with different numbers of subunits and structures. However, they all share a common function as essential components of the electron transport chain, facilitating the transfer of electrons during cellular respiration and energy production.

Mycology is the branch of biology that deals with the study of fungi, including their genetic and biochemical properties, their taxonomy and classification, their role in diseases and decomposition processes, and their potential uses in industry, agriculture, and medicine. It involves the examination and identification of various types of fungi, such as yeasts, molds, and mushrooms, and the investigation of their ecological relationships with other organisms and their environments. Mycologists may also study the medical and veterinary importance of fungi, including the diagnosis and treatment of fungal infections, as well as the development of antifungal drugs and vaccines.

Phylogeny is the evolutionary history and relationship among biological entities, such as species or genes, based on their shared characteristics. In other words, it refers to the branching pattern of evolution that shows how various organisms have descended from a common ancestor over time. Phylogenetic analysis involves constructing a tree-like diagram called a phylogenetic tree, which depicts the inferred evolutionary relationships among organisms or genes based on molecular sequence data or other types of characters. This information is crucial for understanding the diversity and distribution of life on Earth, as well as for studying the emergence and spread of diseases.

A fatal outcome is a term used in medical context to describe a situation where a disease, injury, or illness results in the death of an individual. It is the most severe and unfortunate possible outcome of any medical condition, and is often used as a measure of the severity and prognosis of various diseases and injuries. In clinical trials and research, fatal outcome may be used as an endpoint to evaluate the effectiveness and safety of different treatments or interventions.

Microbial sensitivity tests, also known as antibiotic susceptibility tests (ASTs) or bacterial susceptibility tests, are laboratory procedures used to determine the effectiveness of various antimicrobial agents against specific microorganisms isolated from a patient's infection. These tests help healthcare providers identify which antibiotics will be most effective in treating an infection and which ones should be avoided due to resistance. The results of these tests can guide appropriate antibiotic therapy, minimize the potential for antibiotic resistance, improve clinical outcomes, and reduce unnecessary side effects or toxicity from ineffective antimicrobials.

There are several methods for performing microbial sensitivity tests, including:

1. Disk diffusion method (Kirby-Bauer test): A standardized paper disk containing a predetermined amount of an antibiotic is placed on an agar plate that has been inoculated with the isolated microorganism. After incubation, the zone of inhibition around the disk is measured to determine the susceptibility or resistance of the organism to that particular antibiotic.
2. Broth dilution method: A series of tubes or wells containing decreasing concentrations of an antimicrobial agent are inoculated with a standardized microbial suspension. After incubation, the minimum inhibitory concentration (MIC) is determined by observing the lowest concentration of the antibiotic that prevents visible growth of the organism.
3. Automated systems: These use sophisticated technology to perform both disk diffusion and broth dilution methods automatically, providing rapid and accurate results for a wide range of microorganisms and antimicrobial agents.

The interpretation of microbial sensitivity test results should be done cautiously, considering factors such as the site of infection, pharmacokinetics and pharmacodynamics of the antibiotic, potential toxicity, and local resistance patterns. Regular monitoring of susceptibility patterns and ongoing antimicrobial stewardship programs are essential to ensure optimal use of these tests and to minimize the development of antibiotic resistance.

DNA Sequence Analysis is the systematic determination of the order of nucleotides in a DNA molecule. It is a critical component of modern molecular biology, genetics, and genetic engineering. The process involves determining the exact order of the four nucleotide bases - adenine (A), guanine (G), cytosine (C), and thymine (T) - in a DNA molecule or fragment. This information is used in various applications such as identifying gene mutations, studying evolutionary relationships, developing molecular markers for breeding, and diagnosing genetic diseases.

The process of DNA Sequence Analysis typically involves several steps, including DNA extraction, PCR amplification (if necessary), purification, sequencing reaction, and electrophoresis. The resulting data is then analyzed using specialized software to determine the exact sequence of nucleotides.

In recent years, high-throughput DNA sequencing technologies have revolutionized the field of genomics, enabling the rapid and cost-effective sequencing of entire genomes. This has led to an explosion of genomic data and new insights into the genetic basis of many diseases and traits.

Trichosporon is a genus of fungi that are commonly found in the environment, particularly in soil, water, and air. They are also part of the normal flora of the human skin and mucous membranes. Some species of Trichosporon can cause various types of infections, mainly in people with weakened immune systems. These infections can range from superficial (e.g., skin and nail) to systemic and invasive, affecting internal organs. The most common Trichosporon-related infection is white piedra, a superficial mycosis that affects the hair shafts.

In a medical context, Trichosporon refers specifically to these fungi with potential pathogenic properties. It's essential to distinguish between the general term "trichosporon" (referring to the genus) and "Trichosporon" as a medically relevant entity causing infections.

Basidiomycota is a phylum in the kingdom Fungi that consists of organisms commonly known as club fungi or club mushrooms. The name Basidiomycota is derived from the presence of a characteristic reproductive structure called a basidium, which is where spores are produced.

The basidiomycetes include many familiar forms such as mushrooms, toadstools, bracket fungi, and other types of polypores. They have a complex life cycle that involves both sexual and asexual reproduction. The sexual reproductive stage produces a characteristic fruiting body, which may be microscopic or highly visible, depending on the species.

Basidiomycota fungi play important ecological roles in decomposing organic matter, forming mutualistic relationships with plants, and acting as parasites on other organisms. Some species are economically important, such as edible mushrooms, while others can be harmful or even deadly to humans and animals.

Molecular sequence data refers to the specific arrangement of molecules, most commonly nucleotides in DNA or RNA, or amino acids in proteins, that make up a biological macromolecule. This data is generated through laboratory techniques such as sequencing, and provides information about the exact order of the constituent molecules. This data is crucial in various fields of biology, including genetics, evolution, and molecular biology, allowing for comparisons between different organisms, identification of genetic variations, and studies of gene function and regulation.

Ribosomal RNA (rRNA) is a type of RNA molecule that is a key component of ribosomes, which are the cellular structures where protein synthesis occurs in cells. In ribosomes, rRNA plays a crucial role in the process of translation, where genetic information from messenger RNA (mRNA) is translated into proteins.

Ribosomal RNA is synthesized in the nucleus and then transported to the cytoplasm, where it assembles with ribosomal proteins to form ribosomes. Within the ribosome, rRNA provides a structural framework for the assembly of the ribosome and also plays an active role in catalyzing the formation of peptide bonds between amino acids during protein synthesis.

There are several different types of rRNA molecules, including 5S, 5.8S, 18S, and 28S rRNA, which vary in size and function. These rRNA molecules are highly conserved across different species, indicating their essential role in protein synthesis and cellular function.

Cyclic peptides are a type of peptides in which the N-terminus and C-terminus of the peptide chain are linked to form a circular structure. This is in contrast to linear peptides, which have a straight peptide backbone with a free N-terminus and C-terminus. The cyclization of peptides can occur through various mechanisms, including the formation of an amide bond between the N-terminal amino group and the C-terminal carboxylic acid group (head-to-tail cyclization), or through the formation of a bond between side chain functional groups.

Cyclic peptides have unique structural and chemical properties that make them valuable in medical and therapeutic applications. For example, they are more resistant to degradation by enzymes compared to linear peptides, which can increase their stability and half-life in the body. Additionally, the cyclic structure allows for greater conformational rigidity, which can enhance their binding affinity and specificity to target molecules.

Cyclic peptides have been explored as potential therapeutics for a variety of diseases, including cancer, infectious diseases, and neurological disorders. They have also been used as tools in basic research to study protein-protein interactions and cell signaling pathways.

Phenols, also known as phenolic acids or phenol derivatives, are a class of chemical compounds consisting of a hydroxyl group (-OH) attached to an aromatic hydrocarbon ring. In the context of medicine and biology, phenols are often referred to as a type of antioxidant that can be found in various foods and plants.

Phenols have the ability to neutralize free radicals, which are unstable molecules that can cause damage to cells and contribute to the development of chronic diseases such as cancer, heart disease, and neurodegenerative disorders. Some common examples of phenolic compounds include gallic acid, caffeic acid, ferulic acid, and ellagic acid, among many others.

Phenols can also have various pharmacological activities, including anti-inflammatory, antimicrobial, and analgesic effects. However, some phenolic compounds can also be toxic or irritating to the body in high concentrations, so their use as therapeutic agents must be carefully monitored and controlled.

Fungal lung diseases, also known as fungal pneumonia or mycoses, refer to a group of respiratory disorders caused by the infection of fungi in the lungs. These fungi are commonly found in the environment, such as soil, decaying organic matter, and contaminated materials. People can develop lung diseases from fungi after inhaling spores or particles that contain fungi.

There are several types of fungal lung diseases, including:

1. Aspergillosis: This is caused by the Aspergillus fungus and can affect people with weakened immune systems. It can cause allergic reactions, lung infections, or invasive aspergillosis, which can spread to other organs.
2. Cryptococcosis: This is caused by the Cryptococcus fungus and is usually found in soil contaminated with bird droppings. It can cause pneumonia, meningitis, or skin lesions.
3. Histoplasmosis: This is caused by the Histoplasma capsulatum fungus and is commonly found in the Ohio and Mississippi River valleys. It can cause flu-like symptoms, lung infections, or disseminated histoplasmosis, which can spread to other organs.
4. Blastomycosis: This is caused by the Blastomyces dermatitidis fungus and is commonly found in the southeastern and south-central United States. It can cause pneumonia, skin lesions, or disseminated blastomycosis, which can spread to other organs.
5. Coccidioidomycosis: This is caused by the Coccidioides immitis fungus and is commonly found in the southwestern United States. It can cause flu-like symptoms, lung infections, or disseminated coccidioidomycosis, which can spread to other organs.

Fungal lung diseases can range from mild to severe, depending on the type of fungus and the person's immune system. Treatment may include antifungal medications, surgery, or supportive care. Prevention measures include avoiding exposure to contaminated soil or dust, wearing protective masks in high-risk areas, and promptly seeking medical attention if symptoms develop.

I'm sorry for any confusion, but "South America" is not a medical term. It is a geographical term that refers to the southern portion of the Americas, which is a continent in the Western Hemisphere. South America is generally defined as including the countries of Argentina, Bolivia, Brazil, Chile, Colombia, Ecuador, Guyana, Paraguay, Peru, Suriname, Uruguay, and Venezuela, as well as the overseas departments and territories of French Guiana (France), and the Falkland Islands (UK).

If you have any questions related to medical terminology or health-related topics, I would be happy to help answer them for you.

Itraconazole is an antifungal medication used to treat various fungal infections, including blastomycosis, histoplasmosis, aspergillosis, and candidiasis. It works by inhibiting the synthesis of ergosterol, a vital component of fungal cell membranes, thereby disrupting the integrity and function of these membranes. Itraconazole is available in oral and intravenous forms for systemic use and as a topical solution or cream for localized fungal infections.

Medical Definition:
Itraconazole (i-tra-KON-a-zole): A synthetic triazole antifungal agent used to treat various fungal infections, such as blastomycosis, histoplasmosis, aspergillosis, and candidiasis. It inhibits the synthesis of ergosterol, a critical component of fungal cell membranes, leading to disruption of their integrity and function. Itraconazole is available in oral (capsule and solution) and intravenous forms for systemic use and as a topical solution or cream for localized fungal infections.

An immunocompromised host refers to an individual who has a weakened or impaired immune system, making them more susceptible to infections and decreased ability to fight off pathogens. This condition can be congenital (present at birth) or acquired (developed during one's lifetime).

Acquired immunocompromised states may result from various factors such as medical treatments (e.g., chemotherapy, radiation therapy, immunosuppressive drugs), infections (e.g., HIV/AIDS), chronic diseases (e.g., diabetes, malnutrition, liver disease), or aging.

Immunocompromised hosts are at a higher risk for developing severe and life-threatening infections due to their reduced immune response. Therefore, they require special consideration when it comes to prevention, diagnosis, and treatment of infectious diseases.

Fungal antigens are substances found on or produced by fungi that can stimulate an immune response in a host organism. They can be proteins, polysaccharides, or other molecules that are recognized as foreign by the host's immune system. Fungal antigens can be used in diagnostic tests to identify fungal infections, and they can also be targets of immune responses during fungal infections. In some cases, fungal antigens may contribute to the pathogenesis of fungal diseases by inducing inflammatory or allergic reactions. Examples of fungal antigens include the cell wall components of Candida albicans and the extracellular polysaccharide galactomannan produced by Aspergillus fumigatus.

Hydroxylation is a biochemical process that involves the addition of a hydroxyl group (-OH) to a molecule, typically a steroid or xenobiotic compound. This process is primarily catalyzed by enzymes called hydroxylases, which are found in various tissues throughout the body.

In the context of medicine and biochemistry, hydroxylation can have several important functions:

1. Drug metabolism: Hydroxylation is a common way that the liver metabolizes drugs and other xenobiotic compounds. By adding a hydroxyl group to a drug molecule, it becomes more polar and water-soluble, which facilitates its excretion from the body.
2. Steroid hormone biosynthesis: Hydroxylation is an essential step in the biosynthesis of many steroid hormones, including cortisol, aldosterone, and the sex hormones estrogen and testosterone. These hormones are synthesized from cholesterol through a series of enzymatic reactions that involve hydroxylation at various steps.
3. Vitamin D activation: Hydroxylation is also necessary for the activation of vitamin D in the body. In order to become biologically active, vitamin D must undergo two successive hydroxylations, first in the liver and then in the kidneys.
4. Toxin degradation: Some toxic compounds can be rendered less harmful through hydroxylation. For example, phenol, a toxic compound found in cigarette smoke and some industrial chemicals, can be converted to a less toxic form through hydroxylation by enzymes in the liver.

Overall, hydroxylation is an important biochemical process that plays a critical role in various physiological functions, including drug metabolism, hormone biosynthesis, and toxin degradation.

I apologize for any confusion, but "Argentina" is a country in South America and not a medical term or concept. The term "argyria" may be what you're looking for, which is a rare condition resulting from the accumulation of silver compounds in the body, causing the skin to turn blue-gray. However, Argentina and argyria are two distinct terms with different meanings.

Species specificity is a term used in the field of biology, including medicine, to refer to the characteristic of a biological entity (such as a virus, bacterium, or other microorganism) that allows it to interact exclusively or preferentially with a particular species. This means that the biological entity has a strong affinity for, or is only able to infect, a specific host species.

For example, HIV is specifically adapted to infect human cells and does not typically infect other animal species. Similarly, some bacterial toxins are species-specific and can only affect certain types of animals or humans. This concept is important in understanding the transmission dynamics and host range of various pathogens, as well as in developing targeted therapies and vaccines.

Random Amplified Polymorphic DNA (RAPD) technique is a type of Polymerase Chain Reaction (PCR)-based method used in molecular biology for DNA fingerprinting and genetic diversity analysis. This technique utilizes random primers of arbitrary nucleotide sequences to amplify random segments of genomic DNA. The amplified products are then separated by electrophoresis, and the resulting banding patterns are analyzed.

In RAPD analysis, the randomly chosen primers bind to multiple sites in the genome, and the intervening regions between the primer binding sites are amplified. Since the primer binding sites can vary among individuals within a species or among different species, the resulting amplicons will also differ. These differences in amplicon size and pattern can be used to distinguish between individuals or populations at the DNA level.

RAPD is a relatively simple and cost-effective technique that does not require prior knowledge of the genome sequence. However, it has some limitations, such as low reproducibility and sensitivity to experimental conditions. Despite these limitations, RAPD remains a useful tool for genetic analysis in various fields, including forensics, plant breeding, and microbial identification.

Urine is a physiological excretory product that is primarily composed of water, urea, and various ions (such as sodium, potassium, chloride, and others) that are the byproducts of protein metabolism. It also contains small amounts of other substances like uric acid, creatinine, ammonia, and various organic compounds. Urine is produced by the kidneys through a process called urination or micturition, where it is filtered from the blood and then stored in the bladder until it is excreted from the body through the urethra. The color, volume, and composition of urine can provide important diagnostic information about various medical conditions.

'Candida albicans' is a species of yeast that is commonly found in the human body, particularly in warm and moist areas such as the mouth, gut, and genital region. It is a part of the normal microbiota and usually does not cause any harm. However, under certain conditions like a weakened immune system, prolonged use of antibiotics or steroids, poor oral hygiene, or diabetes, it can overgrow and cause infections known as candidiasis. These infections can affect various parts of the body including the skin, nails, mouth (thrush), and genital area (yeast infection).

The medical definition of 'Candida albicans' is:

A species of yeast belonging to the genus Candida, which is commonly found as a commensal organism in humans. It can cause opportunistic infections when there is a disruption in the normal microbiota or when the immune system is compromised. The overgrowth of C. albicans can lead to various forms of candidiasis, such as oral thrush, vaginal yeast infection, and invasive candidiasis.

Ribonucleic acid (RNA) is a type of nucleic acid that plays a crucial role in the process of gene expression. There are several types of RNA molecules, including messenger RNA (mRNA), ribosomal RNA (rRNA), and transfer RNA (tRNA). These RNA molecules help to transcribe DNA into mRNA, which is then translated into proteins by the ribosomes.

Fungi are a group of eukaryotic organisms that include microorganisms such as yeasts and molds, as well as larger organisms like mushrooms. Like other eukaryotes, fungi contain DNA and RNA as part of their genetic material. The RNA in fungi is similar to the RNA found in other organisms, including humans, and plays a role in gene expression and protein synthesis.

A specific medical definition of "RNA, fungal" does not exist, as RNA is a fundamental component of all living organisms, including fungi. However, RNA can be used as a target for antifungal drugs, as certain enzymes involved in RNA synthesis and processing are unique to fungi and can be inhibited by these drugs. For example, the antifungal drug flucytosine is converted into a toxic metabolite that inhibits fungal RNA and DNA synthesis.

Polymerase Chain Reaction (PCR) is a laboratory technique used to amplify specific regions of DNA. It enables the production of thousands to millions of copies of a particular DNA sequence in a rapid and efficient manner, making it an essential tool in various fields such as molecular biology, medical diagnostics, forensic science, and research.

The PCR process involves repeated cycles of heating and cooling to separate the DNA strands, allow primers (short sequences of single-stranded DNA) to attach to the target regions, and extend these primers using an enzyme called Taq polymerase, resulting in the exponential amplification of the desired DNA segment.

In a medical context, PCR is often used for detecting and quantifying specific pathogens (viruses, bacteria, fungi, or parasites) in clinical samples, identifying genetic mutations or polymorphisms associated with diseases, monitoring disease progression, and evaluating treatment effectiveness.

Polysaccharides are complex carbohydrates consisting of long chains of monosaccharide units (simple sugars) bonded together by glycosidic linkages. They can be classified based on the type of monosaccharides and the nature of the bonds that connect them.

Polysaccharides have various functions in living organisms. For example, starch and glycogen serve as energy storage molecules in plants and animals, respectively. Cellulose provides structural support in plants, while chitin is a key component of fungal cell walls and arthropod exoskeletons.

Some polysaccharides also have important roles in the human body, such as being part of the extracellular matrix (e.g., hyaluronic acid) or acting as blood group antigens (e.g., ABO blood group substances).

Candidiasis is a fungal infection caused by Candida species, most commonly Candida albicans. It can affect various parts of the body, including the skin, mucous membranes (such as the mouth and vagina), and internal organs (like the esophagus, lungs, or blood).

The symptoms of candidiasis depend on the location of the infection:

1. Oral thrush: White patches on the tongue, inner cheeks, gums, or roof of the mouth. These patches may be painful and can bleed slightly when scraped.
2. Vaginal yeast infection: Itching, burning, redness, and swelling of the vagina and vulva; thick, white, odorless discharge from the vagina.
3. Esophageal candidiasis: Difficulty swallowing, pain when swallowing, or feeling like food is "stuck" in the throat.
4. Invasive candidiasis: Fever, chills, and other signs of infection; multiple organ involvement may lead to various symptoms depending on the affected organs.

Risk factors for developing candidiasis include diabetes, HIV/AIDS, use of antibiotics or corticosteroids, pregnancy, poor oral hygiene, and wearing tight-fitting clothing that traps moisture. Treatment typically involves antifungal medications, such as fluconazole, nystatin, or clotrimazole, depending on the severity and location of the infection.

In the context of medical definitions, 'carbon' is not typically used as a standalone term. Carbon is an element with the symbol C and atomic number 6, which is naturally abundant in the human body and the environment. It is a crucial component of all living organisms, forming the basis of organic compounds, such as proteins, carbohydrates, lipids, and nucleic acids (DNA and RNA).

Carbon forms strong covalent bonds with various elements, allowing for the creation of complex molecules that are essential to life. In this sense, carbon is a fundamental building block of life on Earth. However, it does not have a specific medical definition as an isolated term.

A base sequence in the context of molecular biology refers to the specific order of nucleotides in a DNA or RNA molecule. In DNA, these nucleotides are adenine (A), guanine (G), cytosine (C), and thymine (T). In RNA, uracil (U) takes the place of thymine. The base sequence contains genetic information that is transcribed into RNA and ultimately translated into proteins. It is the exact order of these bases that determines the genetic code and thus the function of the DNA or RNA molecule.

I'm sorry for any confusion, but "Japan" is not a medical term. Japan is the name of a country, officially known as Nippon-koku or Nihon-koku in Japanese, and is located in East Asia. It is an island nation in the Pacific Ocean with a population of about 126 million people.

If you have any medical questions or terms that you would like me to define, please let me know!

An amino acid sequence is the specific order of amino acids in a protein or peptide molecule, formed by the linking of the amino group (-NH2) of one amino acid to the carboxyl group (-COOH) of another amino acid through a peptide bond. The sequence is determined by the genetic code and is unique to each type of protein or peptide. It plays a crucial role in determining the three-dimensional structure and function of proteins.

Retrospective studies, also known as retrospective research or looking back studies, are a type of observational study that examines data from the past to draw conclusions about possible causal relationships between risk factors and outcomes. In these studies, researchers analyze existing records, medical charts, or previously collected data to test a hypothesis or answer a specific research question.

Retrospective studies can be useful for generating hypotheses and identifying trends, but they have limitations compared to prospective studies, which follow participants forward in time from exposure to outcome. Retrospective studies are subject to biases such as recall bias, selection bias, and information bias, which can affect the validity of the results. Therefore, retrospective studies should be interpreted with caution and used primarily to generate hypotheses for further testing in prospective studies.

In the context of medicine and pharmacology, "kinetics" refers to the study of how a drug moves throughout the body, including its absorption, distribution, metabolism, and excretion (often abbreviated as ADME). This field is called "pharmacokinetics."

1. Absorption: This is the process of a drug moving from its site of administration into the bloodstream. Factors such as the route of administration (e.g., oral, intravenous, etc.), formulation, and individual physiological differences can affect absorption.

2. Distribution: Once a drug is in the bloodstream, it gets distributed throughout the body to various tissues and organs. This process is influenced by factors like blood flow, protein binding, and lipid solubility of the drug.

3. Metabolism: Drugs are often chemically modified in the body, typically in the liver, through processes known as metabolism. These changes can lead to the formation of active or inactive metabolites, which may then be further distributed, excreted, or undergo additional metabolic transformations.

4. Excretion: This is the process by which drugs and their metabolites are eliminated from the body, primarily through the kidneys (urine) and the liver (bile).

Understanding the kinetics of a drug is crucial for determining its optimal dosing regimen, potential interactions with other medications or foods, and any necessary adjustments for special populations like pediatric or geriatric patients, or those with impaired renal or hepatic function.

A phenotype is the physical or biochemical expression of an organism's genes, or the observable traits and characteristics resulting from the interaction of its genetic constitution (genotype) with environmental factors. These characteristics can include appearance, development, behavior, and resistance to disease, among others. Phenotypes can vary widely, even among individuals with identical genotypes, due to differences in environmental influences, gene expression, and genetic interactions.

Trichosporon aquatile Trichosporon asahii Trichosporon asteroides Trichosporon caseorum Trichosporon coremiiforme Trichosporon ... Trichosporon faecale Trichosporon inkin Trichosporon insectorum Trichosporon japonicum Trichosporon lactis Trichosporon ovoides ... Trichosporon is a genus of anamorphic fungi in the family Trichosporonaceae. All species of Trichosporon are yeasts with no ... considering it to be an earlier name for Trichosporon ovoides. Over 100 additional yeast species were referred to Trichosporon ...
Trichosporon species are fungi that commonly inhabit the soil. They colonize the skin and gastrointestinal tract of humans. ... 8] ), Trichosporon asteroides, Trichosporon cutaneum, Trichosporon mucoides, Trichosporon ovoides, Trichosporon pullulans, ... Trichosporon loubieri, and Trichosporon japonicum. [9] Multiple Trichosporon species, including T asahii and T mucoides, are ... Trichosporon species have various putative virulence factors. Enzyme products of Trichosporon include proteinases, lipases, and ...
Enzymes produced by an isolate from the,i, Trichosporon,/i, genus showed the property to hydrolyze different substrates: ... Thermostable Cellulases from the Yeast Trichosporon sp.. Hanane Touijer. ,1,2Najoua Benchemsi. ,3Mohamed Ettayebi. ,2Abdellatif ... Results of Figure 1 show that the yeast Trichosporon sp. has a CMCase activity, fiber cellulase, and FPase of 0.16 IU/mL, 0.09 ... Studies on Trichosporon laibachii yeast have shown that despite its CMCase activity, this strain is unable to hydrolyze ...
García, L., & Osorio, G. F. (2008). Trichosporon mucoides infection in an immunocompetent host. Colombia Medica, 39(2), 185-188 ... In tissue culture for fungus grew Trichosporon mucoides. A fluconazole therapy was initiated with 400 mg per week dosage, with ... Trichosporon mucoides infection in an immunocompetent host. https://doi.org/10.25100/cm.v39i2.575 ...
Trichosporon primers (amplify IGS). Individual species of Trichosporon are not well discriminated using either the ITS or D1D2 ... Sequence analysis of the ribosomal DNA intergenic spacer 1 regions of Trichosporon species. J Clin Microbiol 2002;40:1826-1830. ... For identification of Trichosporon species, the intergenic region of the ribosomal cistron is used (Sugita, 2002). ...
Trichosporon species are fungi that commonly inhabit the soil. They colonize the skin and gastrointestinal tract of humans. ... 8] ), Trichosporon asteroides, Trichosporon cutaneum, Trichosporon mucoides, Trichosporon ovoides, Trichosporon pullulans, ... Trichosporon loubieri, and Trichosporon japonicum. [9] Multiple Trichosporon species, including T asahii and T mucoides, are ... Trichosporon species have various putative virulence factors. Enzyme products of Trichosporon include proteinases, lipases, and ...
Trichosporon oleaginosus is the first yeast shown to be oleaginous while growing on aromatic substrates, and shows great ... Trichosporon oleaginosus can tolerate and metabolize model lignin monoaromatics and associated intermediates within funneling ... Trichosporon oleaginosus, has been extensively studied for its ability to metabolize non-conventional feedstocks. These include ... Trichosporon oleaginosus can metabolize aromatic substrates. Growth (closed circles or triangle, solid lines) and substrate ...
Trichosporon dohaense. Sorry, but you do not have permission to view this content. ...
What does trichosporon Beigelii cause?. What does trichosporon Beigelii cause?. Table of Contents ... How is Trichosporon treated?. First-line treatment of Trichosporon is with azoles, either topical (ketoconazole) for ... White Piedra is a superficial fungal infection of the hair caused by Trichosporon asahii. It is also known as trichomycosis ... How do you get rid of Trichosporon?. Combination therapy should be the cornerstone of treatment for trichosporonosis. The ...
Ringworm in pets may often be asymptomatic, resulting in a carrier condition which infects other pets. In some cases, the disease only appears when the animal develops an immunodeficiency condition. Circular bare patches on the skin suggest the diagnosis, but no lesion is truly specific to the fungus. Similar patches may result from allergies, sarcoptic mange, and other conditions. Three species of fungi cause 95% of dermatophytosis in pets:[citation needed] these are Microsporum canis, Microsporum gypseum, and Trichophyton mentagrophytes. Veterinarians have several tests to identify ringworm infection and identify the fungal species that cause it: Woods test: This is an ultraviolet light with a magnifying lens. Only 50% of M. canis will show up as an apple-green fluorescence on hair shafts, under the UV light. The other fungi do not show. The fluorescent material is not the fungus itself (which does not fluoresce), but rather an excretory product of the fungus which sticks to hairs. Infected ...
Trichosporon • T. asahii most common - 9 species • Commonly inhabit the soil. Colonize the skin/ gastrointestinal tract of ... Inhibited fungi include: • Trichosporon beigelii • Candida tropicalis • Cryptococcus neoformans • Yeast phase of Blastomyces • ...
Urinary tract infection by Trichosporon asahii - a case report from South India. Author: Dr. Aarthi Sundaresan, Dr. Ambica, R ... Trichosporon asahii belongs to class Basidiomycetes and is known to cause both superficial and deep seated infections of ...
Fungus Trichosporon, 3D illustration. Microscopic fungi Trichosporon, 3D illustration shows septate hyphae, pseudohyphae, ... Fungus Trichosporon, 3D illustration Microscopic fungi Trichosporon, 3D illustration shows septate hyphae, pseudohyphae, ...
3). Some Tremellomycetes affiliated to Trichosporon sp. and Cryptococcus sp. were detected in almost all samples with the ...
Recurrent Trichosporon asahii Glossitis: A Case Report By: Ban Tawfeek Shareef, Azian Harun, Yusof Roziawati, Ismail Shaiful ...
Anti-Trichosporon asahii antibody Environmental investigation Environmental provocation test Received 26 Sep 2022 / Accepted 1 ... Summer-type HP was suspected because of the presence of the serum-specific Trichosporon asahii antibodies; however, her symptoms ... A case of recurrence of hypersensitivity pneumonitis positive for anti-Trichosporon asahii antibodies in winter ...
2009). Trichosporon mycotoxinivorans, a novel respiratory pathogen in patients with cystic fibrosis. J. Clin. Microbiol. 47, ... Molnar, O., Schatzmayr, G., Fuchs, E., and Prillinger, H. (2004). Trichosporon mycotoxinivorans sp. nov., A new yeast species ... an in vitro model with whole pieces of pig gut to evaluate the OTA-degradation activity of lyophilized powders of Trichosporon ...
Trichosporon spp.. Fusarium spp.. Kateterassosiert sepsis ved total parenteral ernæring. Disseminert sykdom hos nøytropene ...
was never isolated from water samples, while Trichosporon sp. was cultured in two cases, alone and in association with ...
Trichosporon pullulans, isolated from oropharingeal secretion, was reported in leukaemia patients with lung infection (18), and ... Shigehara, K.; Takahashi, K.; Tsunematsu, K.; Koba, H.; Katoh, S.; Asakawa, M.; Suzuki, A. A case of Trichosporon pullulans ... and Trichosporon pullulans (one strain). The results show predominance of C. albicans in oropharyngeal candidiasis in AIDS ... krusei and other genera such as Trichosporon and Cryptococcus has been reported (6,9,21). However, infections caused by ...
Categories: Trichosporon Image Types: Photo, Illustrations, Video, Color, Black&White, PublicDomain, CopyrightRestricted 24 ...
13.9%); and yeasts dependent on Trichosporon spp. (47.1 %), Rhodotorula spp. (33.8%) and Candida spp. (14.7%). Of the 70 milk ...
Resistant species include yeasts like Trichosporon beigelii. *Pyrimidine analogs, such as 5-fluorouracil (5-FC), obstruct ...
Multiple species of Trichosporon produce biofilms highly resistant to triazoles and amphotericin B 2014 Laboratorio Especial de ... We concluded that levels of biofilm formation by Trichosporon spp. were similar or even greater than those described for the ... Here, we investigated the biofilm production and antifungal susceptibility to triazoles and amphotericin B of 54 Trichosporon ... Invasive infections caused by Trichosporon spp. have increased considerably in recent years, especially in neutropenic and ...
Utility of Miconazole Therapy for Trichosporon Fungemia in Patients with Acute Leukemia (Articles) ...
The enzyme from Aspergillus niger is an iron protein; that from the yeast Trichosporon cutaneum is a flavoprotein (FAD).. ...
Trichosporon domesticum, Trichosporon loubieri, Saccharomyces unisporus, Pichia kluyveri. ... Trichosporon) genera have also been identified in commercially available kimchi [22] (Table 3). An animal study showed that ... Trichosporon beigelii, Clavispora lusitaniae, Candida maltosa, Candida intermedia, Yarrowia lipolytica, Lodderomyces ...
The predominant fungi were species of Asverrillus, Cladosporium, Penicillium, Trichosporon, and Cryptococcus. No significant ...

No FAQ available that match "trichosporon"

No images available that match "trichosporon"