A species of CARDIOVIRUS which contains three strains: Theiler's murine encephalomyelitis virus, Vilyuisk human encephalomyelitis virus, and Rat encephalomyelitis virus.
A genus of the family PICORNAVIRIDAE causing encephalitis and myocarditis in rodents. ENCEPHALOMYOCARDITIS VIRUS is the type species.
Infections caused by viruses of the genus CARDIOVIRUS, family PICORNAVIRIDAE.

Theiler's viruses with mutations in loop I of VP1 lead to altered tropism and pathogenesis. (1/331)

Theiler's murine encephalomyelitis viruses are picornaviruses that can infect the central nervous system. The DA strain produces an acute polioencephalomyelitis followed by a chronic demyelinating disease in its natural host, the mouse. The ability of DA virus to induce a demyelinating disease renders this virus infection a model for human demyelinating diseases such as multiple sclerosis. Here we describe the generation and characterization of DA virus mutants that contain specific mutations in the viral capsid protein VP1 at sites believed to be important contact regions for the cellular receptor(s). A mutant virus with a threonine-to-aspartate (T81D) substitution in VP1 loop I adjacent to the putative virus receptor binding site exhibited a large-plaque phenotype but had a slower replication cycle in vitro. When this mutant virus was injected into susceptible mice, an altered tropism was seen during the acute stage of the disease and the chronic demyelinating disease was not produced. A virus with a threonine-to-valine substitution (T81V) did not cause any changes in the pattern or extent of disease seen in mice, whereas a virus with a tryptophan substitution at this position (T81W) produced a similar acute disease but was attenuated for the development of the chronic disease. A change in amino acids in a hydrophobic patch located in the wall of the pit, VP1 position 91, to a hydrophilic threonine (V91T) resulted in a profound attenuation of the acute and chronic disease without persistence of virus. This report illustrates the importance of the loop I of VP1 and a site in the wall of the pit in pathogenesis and that amino acid substitutions at these sites result in altered virus-host interactions.  (+info)

Distinct attenuation phenotypes caused by mutations in the translational starting window of Theiler's murine encephalomyelitis virus. (2/331)

Upon initiation of translation of picornavirus RNA, the ribosome is believed to bind the internal ribosome entry site of the template and then to form a productive complex with a downstream RNA segment, the starting window. The presence or absence of an AUG triplet within the starting window of the RNA of Theiler's murine encephalomyelitis virus (a picornavirus) is known to modulate its neurovirulence. In this study, mutants of this virus in which the starting windows, lying upstream of the viral polyprotein reading frame, had AUGs with different nonoptimal contexts were engineered. Upon intracerebral inoculation of mice, the mutants proved to be partially attenuated, as judged by a significant increase in the dose causing paralysis in 50% of the animals (PD50). Mutants with similar PD50s might differ from one another by eliciting either a severe, fatal tetraplegy or only mild, recoverable neurologic lesions. Some of the mutants triggered a chronic inflammatory reaction in the white matter of the spinal cord in the absence of detectable viral RNA or antigen. Thus, point mutations changing the context of an AUG within the starting window outside the polyprotein reading frame may differently affect the morbidity and mortality caused by a viral infection and may result in distinct attenuation phenotypes.  (+info)

Differentiation of M1 myeloid precursor cells into macrophages results in binding and infection by Theiler's murine encephalomyelitis virus and apoptosis. (3/331)

Infection of susceptible mouse strains with BeAn, a less virulent strain of Theiler's murine encephalomyelitis virus (TMEV), results in immune system-mediated demyelinating lesions in the central nervous system (CNS) similar to those in multiple sclerosis. Since macrophages appear to carry the major detectable antigen burden in vivo, and purification of sufficient cell numbers from the CNS for detailed analysis is difficult, macrophage-like cell lines provide an accessible system with which to study virus-macrophage interactions. The myeloid precursor cell line M1 differentiates in response to cytokines and expresses many characteristics of tissue macrophages. Incubation of TMEV with undifferentiated M1 cells produced neither infection nor apoptosis, whereas differentiated M1 (M1-D) cells developed a restricted virus infection and changes indicative of apoptosis. Virus binding and RNA replication as well as cellular production of alpha/beta interferons increased with differentiation. Although the amount of infectious virus was highly restricted, BeAn-infected M1-D cells synthesized and appropriately processed virus capsid proteins at levels comparable to those for permissive BHK-21 cells. Analysis of Bcl-2 protein family expression in undifferentiated and differentiated cells suggests that susceptibility of M1-D cells to apoptosis may be controlled, in part, by expression of the proapoptotic alpha isoform of Bax and Bak. These data suggest that macrophage differentiation plays a role in susceptibility to TMEV infection and apoptosis.  (+info)

Prevalent class I-restricted T-cell response to the Theiler's virus epitope Db:VP2121-130 in the absence of endogenous CD4 help, tumor necrosis factor alpha, gamma interferon, perforin, or costimulation through CD28. (4/331)

C57BL/6 mice mount a cytotoxic T-lymphocyte (CTL) response against the Daniel's strain of Theiler's murine encephalomyelitis virus (TMEV) 7 days after infection and do not develop persistent infection or the demyelinating syndrome similar to multiple sclerosis seen in susceptible mice. The TMEV capsid peptide VP2121-130 sensitizes H-2Db+ target cells for killing by central-nervous-system-infiltrating lymphocytes (CNS-ILs) isolated from C57BL/6 mice infected intracranially. Db:VP2121-130 peptide tetramers were used to stain CD8(+) CNS-ILs, revealing that 50 to 63% of these cells bear receptors specific for VP2121-130 presented in the context of Db. No T cells bearing this specificity were found in the cervical lymph nodes or spleens of TMEV-infected mice. H-2(b) mice lacking CD4, class II, gamma interferon, or CD28 expression are susceptible to persistent virus infection but surprisingly still generate high frequencies of CD8(+), Db:VP2121-130-specific T cells. However, CD4-negative mice generate a lower frequency of Db:VP2121-130-specific T cells than do class II negative or normal H-2(b) animals. Resistant tumor necrosis factor alpha receptor I knockout mice also generate a high frequency of CD8(+) CNS-ILs specific for Db:VP2121-130. Furthermore, normally susceptible FVB mice that express a Db transgene generate Db:VP2121-130-specific CD8(+) CNS-ILs at a frequency similar to that of C57BL/6 mice. These results demonstrate that VP2121-130 presented in the context of Db is an immunodominant epitope in TMEV infection and that the frequency of the VP2121-130-specific CTLs appears to be independent of several key inflammatory mediators and genetic background but is regulated in part by the expression of CD4.  (+info)

Two loci, Tmevp2 and Tmevp3, located on the telomeric region of chromosome 10, control the persistence of Theiler's virus in the central nervous system of mice. (5/331)

Theiler's virus persistently infects the white matter of the spinal cord in susceptible strains of mice. This infection is associated with inflammation and primary demyelination and is studied as a model of multiple sclerosis. The H-2D gene is the major gene controlling viral persistence. However, the SJL/J strain is more susceptible than predicted by its H-2(s) haplotype. An (SJL/J x B10. S)F1 x B10.S backcross was analyzed, and one quantitative trait locus (QTL) was located in the telomeric region of chromosome 10 close to the Ifng locus. Another one was tentatively mapped to the telomeric region of chromosome 18, close to the Mbp locus. We now report the study of 14 congenic lines that carry different segments of these two chromosomes. Although the presence of a QTL on chromosome 18 was not confirmed, two loci controlling viral persistence were identified on chromosome 10 and named Tmevp2 and Tmevp3. Furthermore, the Ifng gene was excluded from the regions containing Tmevp2 and Tmevp3. Analysis of the mode of inheritance of Tmevp2 and Tmevp3 identified an effect of sex, with males being more infected than females.  (+info)

Theiler's murine encephalomyelitis virus infection induces early expression of c-fos in astrocytes. (6/331)

We have determined whether Theiler's murine encephalomyelitis virus (TMEV), a picornavirus that produces demyelination in genetically susceptible strains of mice, induces c-fos in pure quiescent cultures of mouse brain astrocytes. As observed in Northern blots, the expression of this immediate early gene increases in a dose-dependent manner, with its expression peaking at a multiplicity of infection of 100. The expression of c-fos is transient, peaking after 30 min and disappearing 2 h after infection. The virus is quickly internalized at 37 degrees C upon binding to its specific receptor located at the cell surface and is actively replicated in the cytoplasm of the astrocytes, as demonstrated by FACS flow cytometry. Using the same technique, nuclear translation of c-fos mRNA is also shown. The specificity of viral induction is demonstrated by its neutralization with TMEV-specific antibodies and by the fact that only viral particles and not purified protein components VP1, VP2, and VP3 induced proto-oncogene expression. This rapid induction of c-fos in astrocytes could be the first stage in the infection of these central nervous system cell populations by TMEV. The biological relevance of these findings is assessed by the demonstration of c-fos activation after viral infection in vivo.  (+info)

Potential role of CD4+ T cell-mediated apoptosis of activated astrocytes in Theiler's virus-induced demyelination. (7/331)

Intracerebral inoculation of Theiler's murine encephalomyelitis virus (TMEV) into susceptible mouse strains results in a chronic, immune-mediated demyelinating disease similar to human multiple sclerosis. Here, we examined the role of astrocytes as an APC population in TMEV-induced demyelination and assessed the potential consequences of T cell activation following Ag presentation. IFN-gamma-pretreated astrocytes were able to process and present all the predominant T cell epitopes of TMEV to virus-specific T cell hybridomas, clones, as well as bulk T cells. Despite low levels of proliferation of T cells due to prostaglandins produced by astrocytes, such Ag presentation by activated astrocytes induced the production of IFN-gamma, a representative proinflammatory cytokine, in TMEV-specific Th cell clones derived from the CNS of virus-infected mice. Furthermore, these Th cell clones mediate lysis of the astrocytes in vitro in a Fas-dependent mechanism. TUNEL staining of CNS tissue demonstrates the presence of apoptotic GFAP+ cells in the white matter of TMEV-infected mice. These results strongly suggest that astrocytes could play an important role in the pathogenesis of TMEV-induced demyelination by activating T cells, subsequently leading to T cell-mediated apoptosis of astrocytes and thereby compromising the blood-brain barrier.  (+info)

Diverse fine specificity and receptor repertoire of T cells reactive to the major VP1 epitope (VP1230-250) of Theiler's virus: V beta restriction correlates with T cell recognition of the c-terminal residue. (8/331)

Theiler's murine encephalomyelitis virus induces chronic demyelinating disease in genetically susceptible mice. The histopathological and immunological manifestation of the disease closely resembles human multiple sclerosis, and, thus, this system serves as a relevant infectious model for multiple sclerosis. The pathogenesis of demyelination appears to be mediated by the inflammatory Th1 response to viral epitopes. In this study, T cell repertoire reactive to the major pathogenic VP1 epitope region (VP1233-250) was analyzed. Diverse minimal T cell epitopes were found within this region, and yet close to 50% of the VP1-reactive T cell hybridomas used V beta 16. The majority (8/11) of the V beta 16+ T cells required the C-terminal amino acid residue on the epitope, valine at position 245, and every T cell hybridoma recognizing this C-terminal residue expressed V beta 16. However, the complementarity-determining region 3 sequences of the V beta 16+ T cell hybridomas were markedly heterogeneous. In contrast, such a restriction was not found in the V alpha usage. Only restricted residues at this C-terminal position allowed for T cell activation, suggesting that V beta 16 may recognize this terminal residue. Further functional competition analysis for TCR and MHC class II-contacting residues indicate that many different residues can be involved in the class II and/or TCR binding depending on the T cell population, even if they recognize the identical minimal epitope region. Thus, recognition of the C-terminal residue of a minimal T cell epitope may associate with a particular V beta (but not V alpha) subfamily-specific sequence, resulting in a highly restricted V beta repertoire of the epitope-specific T cells.  (+info)

Theilovirus is not typically considered a separate virus in modern virology. Instead, it is now classified as a genotype (genotype 3) of the human parechovirus (HPeV), which belongs to the family Picornaviridae. HPeVs are small, non-enveloped, single-stranded RNA viruses that can cause various clinical manifestations, ranging from mild respiratory or gastrointestinal symptoms to severe neurological diseases in infants and young children.

Historically, Theilovirus was first identified as a separate virus in 1958 by H. Theil and K. Maassab, isolated from the feces of healthy children. It was initially classified as a member of the Enterovirus genus but was later reclassified as a distinct genus, Theilovirus, in 1999. However, subsequent genetic analysis revealed that Theilovirus is closely related to HPeVs, and it is now considered a genotype within the HPeV species.

In summary, Theilovirus is not a separate medical term or virus but rather a historical name for what is now classified as human parechovirus genotype 3 (HPeV3).

Cardiovirus is a genus of positive-stranded RNA viruses that belong to the family Picornaviridae. These viruses are known to cause mild illnesses in humans, such as fever and respiratory symptoms, and can also cause diseases in animals, including myocarditis (inflammation of the heart muscle) and encephalitis (inflammation of the brain).

Cardioviruses are characterized by their small size, non-enveloped structure, and icosahedral symmetry. They infect host cells by binding to specific receptors on the cell surface and releasing their RNA genome into the cytoplasm. The viral RNA then uses the host cell's machinery to translate its genetic information into proteins, which are necessary for the virus to replicate and assemble new virions.

There are two main species of cardioviruses that infect humans: human cardiovirus A (HCVA) and human cardiovirus B (HCVB). HCVA is also known as Saffold virus and is typically associated with mild respiratory illness, while HCVB has been linked to cases of meningitis and encephalitis. However, more research is needed to fully understand the clinical significance of these viruses in humans.

Cardiovirus infections refer to diseases caused by viruses belonging to the Cardiovirus genus of the Picornaviridae family. These viruses are small, single-stranded, positive-sense RNA viruses that infect a wide range of hosts, including humans, animals, and birds.

In humans, the most common cardiovirus is the human enterovirus 71 (HEV71), which primarily causes hand, foot, and mouth disease (HFMD). HFMD is a mild, self-limiting illness characterized by fever, sore throat, and rash on the hands, feet, and mouth. However, in some cases, HEV71 infection can lead to severe neurological complications such as encephalitis, meningitis, and acute flaccid paralysis.

Another important cardiovirus is the Theiler's murine encephalomyelitis virus (TMEV), which primarily infects mice and causes a biphasic disease characterized by an initial phase of flaccid paralysis followed by a second phase of chronic demyelination. TMEV has been used as a model to study the mechanisms of viral-induced demyelination and has provided valuable insights into the pathogenesis of multiple sclerosis.

Cardiovirus infections are typically diagnosed through the detection of viral RNA or antigens in clinical specimens such as stool, throat swabs, or cerebrospinal fluid. Treatment is generally supportive and aimed at managing symptoms, as there are no specific antiviral therapies available for cardiovirus infections. Prevention measures include good hygiene practices, such as handwashing and avoiding close contact with infected individuals.

Phytocannabinoids like ∆(9)-tetrahydrocannabinol (THC) and cannabidiol (CBD) show a beneficial effect on neuroinflammatory and neurodegenerative processes through cell membrane cannabinoid receptor (CBr)-dependent and -independent mechanisms. Natural and synthetic cannabinoids also target the nuclea …
Phylogenetic analysis of the species Theilovirus: emerging murine and human pathogens. J Virol. 2008 Dec. 82(23):11545-54. [ ...
The Saffold virus was previously a member of the Theilovirus species but was re-classified in 2019 as an isolate of the species ...
Theilovirus 3C Protease Cleaves the C-Terminal Domain of the Innate Immune RNA Sensor, Melanoma Differentiation-Associated Gene ...
Rat Theilovirus (RTV)" to "Mouse Encephalomyelitis Virus (TMEV/GDVII)/ Rat Theilovirus (RTV)". Oct 21, 2022. Animal health ...
THEILOVIRUS. THOGOTO-LIKE VIRUSES. THOGOTOVIRUS. TOBACCO MOSAIC VIRUS SATELLITE. TOBACCO MOSAIC SATELLITE VIRUS. ...
THEILOVIRUS. THOGOTO-LIKE VIRUSES. THOGOTOVIRUS. TOBACCO MOSAIC VIRUS SATELLITE. TOBACCO MOSAIC SATELLITE VIRUS. ...
THEILOVIRUS. THOGOTO-LIKE VIRUSES. THOGOTOVIRUS. TOBACCO MOSAIC VIRUS SATELLITE. TOBACCO MOSAIC SATELLITE VIRUS. ...
THEILOVIRUS. THOGOTO-LIKE VIRUSES. THOGOTOVIRUS. TOBACCO MOSAIC VIRUS SATELLITE. TOBACCO MOSAIC SATELLITE VIRUS. ...
THEILOVIRUS. THOGOTO-LIKE VIRUSES. THOGOTOVIRUS. TOBACCO MOSAIC VIRUS SATELLITE. TOBACCO MOSAIC SATELLITE VIRUS. ...
THEILOVIRUS. THOGOTO-LIKE VIRUSES. THOGOTOVIRUS. TOBACCO MOSAIC VIRUS SATELLITE. TOBACCO MOSAIC SATELLITE VIRUS. ...
THEILOVIRUS. THOGOTO-LIKE VIRUSES. THOGOTOVIRUS. TOBACCO MOSAIC VIRUS SATELLITE. TOBACCO MOSAIC SATELLITE VIRUS. ...
THEILOVIRUS. THOGOTO-LIKE VIRUSES. THOGOTOVIRUS. TOBACCO MOSAIC VIRUS SATELLITE. TOBACCO MOSAIC SATELLITE VIRUS. ...
THEILOVIRUS. THOGOTO-LIKE VIRUSES. THOGOTOVIRUS. TOBACCO MOSAIC VIRUS SATELLITE. TOBACCO MOSAIC SATELLITE VIRUS. ...
THEILOVIRUS. THOGOTO-LIKE VIRUSES. THOGOTOVIRUS. TOBACCO MOSAIC VIRUS SATELLITE. TOBACCO MOSAIC SATELLITE VIRUS. ...
THEILOVIRUS. THOGOTO-LIKE VIRUSES. THOGOTOVIRUS. TOBACCO MOSAIC VIRUS SATELLITE. TOBACCO MOSAIC SATELLITE VIRUS. ...
THEILOVIRUS. THOGOTO-LIKE VIRUSES. THOGOTOVIRUS. TOBACCO MOSAIC VIRUS SATELLITE. TOBACCO MOSAIC SATELLITE VIRUS. ...
Theilovirus (2). *TNSR (2). *Transmissible Gastroenteritis Virus (9). *Trichophyton mentagrophytes (10). *Vaccinia Virus (11) ...
Jiang, M., Wang, J., Fu, J., Du, L., Jeong, H., West, T., Xiang, L., Peng, Q., Hou, Z., Cai, H., Seredenina, T., Arbez, N., Zhu, S., Sommers, K., Qian, J., Zhang, J., Mori, S., Yang, X. W., Tamashiro, K. L. K., Aja, S., & 10 othersMoran, T. H., Luthi-Carter, R., Martin, B., Maudsley, S., Mattson, M. P., Cichewicz, R. H., Ross, C. A., Holtzman, D. M., Krainc, D. & Duan, W., Jan 2012, In: Nature medicine. 18, 1, p. 153-158 6 p.. Research output: Contribution to journal › Article › peer-review ...
Pricing and profiles for the Advantage Program. Get fast, accurate results from the leaders in animal health monitoring.
Real-time PCR profiles and rack testing, including Opti-XXPress / EDx Mouse Standard Profiles and Opti-XXpress / EDx Rat Standard Profiles.
Theilovirus Medicine & Life Sciences 100% * T-Lymphocyte Epitopes Medicine & Life Sciences 79% ...
The same cleavage pattern was observed during Theilovirus infection. The cleavage of MDA5 by Theilovirus protease impaired ATP ... Theilovirus 3C Protease Cleaves the C-Terminal Domain of the Innate Immune RNA Sensor, Melanoma Differentiation-Associated Gene ... In this study, we describe a targeted cleavage events of MDA5 by the 3C protease from Theilovirus. Upon ectopic expression of ... When enzymatically inactive Theilovirus 3C protease was expressed, MDA5 cleavage was completely abrogated. Mass spectrometric ...
Theilovirus 3C protease cleaves innate immune sensor, MDA5 to inhibit double-stranded RNA recognition(第51回 日本免疫学会) ... Theilovirus 3C Protease Cleaves the C-Terminal Domain of the Innate Immune RNA Sensor, Melanoma Differentiation-Associated Gene ...
Theilovirus, Time Factors, Viral Load ...
BACKGROUND: The periventricular subventricular zone (SVZ) contains stem cells and is an area of active neurogenesis and migration. Since inflammation can reduce neurogenesis, we tested whether Theilers murine encephalomyelitis virus (TMEV) induces inflammation and reduces neurogenesis in the SVZ. METHODS: We performed immmunohistochemistry for the hematopoietic cell marker CD45 throughout the central nervous system and then examined neuroblasts in the SVZ. RESULTS: CD45+ activation (inflammation) occurred early in the forebrain and preceded cerebellar and spinal cord inflammation. Inflammation in the brain was regionally stochastic except for the SVZ and surrounding periventricular regions where it was remarkably pronounced and consistent. In preclinical mice, SVZ neuroblasts emigrated into inflamed periventricular regions. The number of proliferating phoshpohistone3+ cells and Doublecortin+ (Dcx) SVZ neuroblasts was overall unaffected during the periods of greatest inflammation. However the number of
Rat theilovirus (Theilers-like virus of rats) Reovirus Rabbit picobirnavirus Sendai virus Seoul virus Simian virus 5 Theilers ... Hantavirus Mastadenovirus Lagovirus Rotavirus Coronavirus Betaherpesvirus Parvovirus Parvovirus Rotavirus Theilovirus ...
Rat Encephalomyelitis Virus use Theilovirus Rat Flea, Oriental use Xenopsylla Rat Fleas, Oriental use Xenopsylla ...

No FAQ available that match "theilovirus"

No images available that match "theilovirus"