A layer of stratified EPITHELIUM forming the endolymphatic border of the cochlear duct at the lateral wall of the cochlea. Stria vascularis contains primarily three cell types (marginal, intermediate, and basal), and capillaries. The marginal cells directly facing the ENDOLYMPH are important in producing ion gradients and endochoclear potential.
The lymph fluid found in the membranous labyrinth of the ear. (McGraw-Hill Dictionary of Scientific and Technical Terms, 4th ed)
The part of the inner ear (LABYRINTH) that is concerned with hearing. It forms the anterior part of the labyrinth, as a snail-like structure that is situated almost horizontally anterior to the VESTIBULAR LABYRINTH.
A spiral tube that is firmly suspended in the bony shell-shaped part of the cochlea. This ENDOLYMPH-filled cochlear duct begins at the vestibule and makes 2.5 turns around a core of spongy bone (the modiolus) thus dividing the PERILYMPH-filled spiral canal into two channels, the SCALA VESTIBULI and the SCALA TYMPANI.
The essential part of the hearing organ consists of two labyrinthine compartments: the bony labyrinthine and the membranous labyrinth. The bony labyrinth is a complex of three interconnecting cavities or spaces (COCHLEA; VESTIBULAR LABYRINTH; and SEMICIRCULAR CANALS) in the TEMPORAL BONE. Within the bony labyrinth lies the membranous labyrinth which is a complex of sacs and tubules (COCHLEAR DUCT; SACCULE AND UTRICLE; and SEMICIRCULAR DUCTS) forming a continuous space enclosed by EPITHELIUM and connective tissue. These spaces are filled with LABYRINTHINE FLUIDS of various compositions.
A general term for the complete loss of the ability to hear from both ears.
The electric response of the cochlear hair cells to acoustic stimulation.
Excessive pigmentation of the skin, usually as a result of increased epidermal or dermal melanin pigmentation, hypermelanosis. Hyperpigmentation can be localized or generalized. The condition may arise from exposure to light, chemicals or other substances, or from a primary metabolic imbalance.
A spiral thickening of the fibrous lining of the cochlear wall. Spiral ligament secures the membranous COCHLEAR DUCT to the bony spiral canal of the COCHLEA. Its spiral ligament fibrocytes function in conjunction with the STRIA VASCULARIS to mediate cochlear ion homeostasis.
The sensory ganglion of the COCHLEAR NERVE. The cells of the spiral ganglion send fibers peripherally to the cochlear hair cells and centrally to the COCHLEAR NUCLEI of the BRAIN STEM.
A general term for the complete or partial loss of the ability to hear from one or both ears.
The spiral EPITHELIUM containing sensory AUDITORY HAIR CELLS and supporting cells in the cochlea. Organ of Corti, situated on the BASILAR MEMBRANE and overlaid by a gelatinous TECTORIAL MEMBRANE, converts sound-induced mechanical waves to neural impulses to the brain.
Sensory cells in the organ of Corti, characterized by their apical stereocilia (hair-like projections). The inner and outer hair cells, as defined by their proximity to the core of spongy bone (the modiolus), change morphologically along the COCHLEA. Towards the cochlear apex, the length of hair cell bodies and their apical STEREOCILIA increase, allowing differential responses to various frequencies of sound.
Either of a pair of compound bones forming the lateral (left and right) surfaces and base of the skull which contains the organs of hearing. It is a large bone formed by the fusion of parts: the squamous (the flattened anterior-superior part), the tympanic (the curved anterior-inferior part), the mastoid (the irregular posterior portion), and the petrous (the part at the base of the skull).
Enlargement of the THYROID GLAND that may increase from about 20 grams to hundreds of grams in human adults. Goiter is observed in individuals with normal thyroid function (euthyroidism), thyroid deficiency (HYPOTHYROIDISM), or hormone overproduction (HYPERTHYROIDISM). Goiter may be congenital or acquired, sporadic or endemic (GOITER, ENDEMIC).
Membrane proteins whose primary function is to facilitate the transport of negatively charged molecules (anions) across a biological membrane.
Gradual bilateral hearing loss associated with aging that is due to progressive degeneration of cochlear structures and central auditory pathways. Hearing loss usually begins with the high frequencies then progresses to sounds of middle and low frequencies.
Fenestra of the cochlea, an opening in the basal wall between the MIDDLE EAR and the INNER EAR, leading to the cochlea. It is closed by a secondary tympanic membrane.
Neural nuclei situated in the septal region. They have afferent and cholinergic efferent connections with a variety of FOREBRAIN and BRAIN STEM areas including the HIPPOCAMPAL FORMATION, the LATERAL HYPOTHALAMUS, the tegmentum, and the AMYGDALA. Included are the dorsal, lateral, medial, and triangular septal nuclei, septofimbrial nucleus, nucleus of diagonal band, nucleus of anterior commissure, and the nucleus of stria terminalis.
An oval, bony chamber of the inner ear, part of the bony labyrinth. It is continuous with bony COCHLEA anteriorly, and SEMICIRCULAR CANALS posteriorly. The vestibule contains two communicating sacs (utricle and saccule) of the balancing apparatus. The oval window on its lateral wall is occupied by the base of the STAPES of the MIDDLE EAR.
Electrical waves in the CEREBRAL CORTEX generated by BRAIN STEM structures in response to auditory click stimuli. These are found to be abnormal in many patients with CEREBELLOPONTINE ANGLE lesions, MULTIPLE SCLEROSIS, or other DEMYELINATING DISEASES.
Antibiotic complex produced by Streptomyces kanamyceticus from Japanese soil. Comprises 3 components: kanamycin A, the major component, and kanamycins B and C, the minor components.
A voltage-gated potassium channel that is expressed primarily in the HEART.
Conditions that impair the transmission of auditory impulses and information from the level of the ear to the temporal cortices, including the sensorineural pathways.
Sensory cells of organ of Corti. In mammals, they are usually arranged in three or four rows, and away from the core of spongy bone (the modiolus), lateral to the INNER AUDITORY HAIR CELLS and other supporting structures. Their cell bodies and STEREOCILIA increase in length from the cochlear base toward the apex and laterally across the rows, allowing differential responses to various frequencies of sound.
Hearing loss resulting from damage to the COCHLEA and the sensorineural elements which lie internally beyond the oval and round windows. These elements include the AUDITORY NERVE and its connections in the BRAINSTEM.
The audibility limit of discriminating sound intensity and pitch.
Hearing loss due to exposure to explosive loud noise or chronic exposure to sound level greater than 85 dB. The hearing loss is often in the frequency range 4000-6000 hertz.
A common name used for the genus Cavia. The most common species is Cavia porcellus which is the domesticated guinea pig used for pets and biomedical research.
The electric response evoked in the CEREBRAL CORTEX by ACOUSTIC STIMULATION or stimulation of the AUDITORY PATHWAYS.
Preparation for electron microscopy of minute replicas of exposed surfaces of the cell which have been ruptured in the frozen state. The specimen is frozen, then cleaved under high vacuum at the same temperature. The exposed surface is shadowed with carbon and platinum and coated with carbon to obtain a carbon replica.
A subfamily of the Muridae consisting of several genera including Gerbillus, Rhombomys, Tatera, Meriones, and Psammomys.

Acute effects of combined administration of kanamycin and furosemide on the stria vascularis studied by distortion product otoacoustic emission and transmission electron microscopy. (1/78)

Acute effects of kanamycin and/or furosemide administration on the stria vascularis of the guinea pig cochlea were assessed by distortion product otoacoustic emission (DPOAE) and transmission electron microscopy. Kanamycin alone failed to affect the DPOAE levels and ultrastructural changes. Furosemide alone caused a rapid but reversible fall of the DPOAE levels. No remarkable pathological changes in the strial vascularis were observed after a complete recovery of the DPOAEs. On the other hand, furosemide injection following kanamycin with a 2 hour interval resulted in two patterns of significant changes in the DPOAEs, namely, a sudden drop in the DPOAE levels 2 to 3 hours after furosemide injection and a gradual fall in the DPOAE levels immediately after the incomplete recovery from the furosemide-induced decrease of the DPOAE levels. Ultrastructural changes in the stria vascularis included numerous vacuoles in the strial marginal cells and increased electron density of the intermediate and basal cells. These physiological and morphological changes in the stria vascularis may imply new ototoxic features induced by kanamycin potentiated by furosemide.  (+info)

Voltage-dependent outward K(+) current in intermediate cell of stria vascularis of gerbil cochlea. (2/78)

A voltage-dependent outward K(+) (K(V)) current in the intermediate cell (melanocyte) of the cochlear stria vascularis was studied using the whole cell patch-clamp technique. The K(V) current had an activation threshold voltage of approximately -80 mV, and 50% activation was observed at -42.6 mV. The time courses of activation and inactivation were well fitted by two exponential functions: the time constants at 0 mV were 7.9 and 58.8 ms for activation and 0.6 and 4.3 s for inactivation. The half-maximal activation time was 13. 8 ms at 0 mV. Inactivation of the current was incomplete even after a prolonged depolarization of 10 s. This current was independent of intracellular Ca(2+). Quinine, verapamil, Ba(2+), and tetraethylammonium inhibited the current in a dose-dependent manner, but 4-aminopyridine was ineffective at 50 mM. We conclude that the K(V) conductance in the intermediate cell may stabilize the membrane potential, which is thought to be closely related to the endocochlear potential, and may provide an additional route for K(+) secretion into the intercellular space.  (+info)

Lectin binding patterns in nonsensory regions of rat cochlea during postnatal development. (3/78)

The distribution of glycoconjugates was examined in the nonsensory regions of the rat cochlea during postnatal development using biotin-conjugated lectins. Temporal bones of rats at postnatal d 1 and at wk 2, 4 and 6 were fixed in 4% paraformaldehyde and 0.1% glutaraldehyde and processed for paraffin wax embedding. The dewaxed sections were incubated with 7 biotinylated lectins, followed by avidin-biotin-peroxidase complex. A different staining pattern was observed in the stria vascularis, spiral ligament and spiral limbus in the age groups examined. The staining intensity varied between lectins and the reaction product exhibited limited disparity. The staining intensity for WGA increased with age in all the 3 nonsensory regions. The staining patterns for the other lectins differed in the various nonsensory regions examined indicating tissue specificity. The limited variations in the lectin binding patterns after 2nd wk of postnatal life also indicate that the changes in the carbohydrate moieties are established during the fetal period of cochlear development and limited changes take place during postnatal maturation of the nonsensory regions.  (+info)

Mechanism generating endocochlear potential: role played by intermediate cells in stria vascularis. (4/78)

The endocochlear DC potential (EP) is generated by the stria vascularis, and essential for the normal function of hair cells. Intermediate cells are melanocytes in the stria vascularis. To examine the contribution of the membrane potential of intermediate cells (E(m)) to the EP, a comparison was made between the effects of K(+) channel blockers on the E(m) and those on the EP. The E(m) of dissociated guinea pig intermediate cells was measured in the zero-current clamp mode of the whole-cell patch clamp configuration. The E(m) changed by 55.1 mV per 10-fold changes in extracellular K(+) concentration. Ba(2+), Cs(+), and quinine depressed the E(m) in a dose-dependent manner, whereas tetraethylammonium at 30 mM and 4-aminopyridine at 10 mM had no effect. The reduction of the E(m) by Ba(2+) and Cs(+) was enhanced by lowering the extracellular K(+) concentration from 3.6 mM to 1.2 mM. To examine the effect of the K(+) channel blockers on the EP, the EP of guinea pigs was maintained by vascular perfusion, and K(+) channel blockers were administered to the artificial blood. Ba(2+), Cs(+) and quinine depressed the EP in a dose-dependent manner, whereas tetraethylammonium at 30 mM and 4-aminopyridine at 10 mM did not change the EP. A 10-fold increase in the K(+) concentration in the artificial blood caused a minor decrease in the EP of only 10.6 mV. The changes in the EP were similar to those seen in the E(m) obtained at the lower extracellular K(+) concentration of 1.2 mM. On the basis of these results, we propose that the EP is critically dependent on the voltage jump across the plasma membrane of intermediate cells, and that K(+) concentration in the intercellular space in the stria vascularis may be actively controlled at a concentration lower than the plasma level.  (+info)

Spiral ligament pathology: a major aspect of age-related cochlear degeneration in C57BL/6 mice. (5/78)

Data from systematic, light microscopic examination of cochlear histopathology in an age-graded series of C57BL/6 mice (1.5-15 months) were compared with threshold elevations (measured by auditory brain stem response) to elucidate the functionally important structural changes underlying age-related hearing loss in this inbred strain. In addition to quantifying the degree and extent of hair cell and neuronal loss, all structures of the cochlear duct were qualitatively evaluated and any degenerative changes were quantified. Hair cell and neuronal loss patterns suggested two degenerative processes. In the basal half of the cochlea, inner and outer hair cell loss proceeded from base to apex with increasing age, and loss of cochlear neurons was consistent with degeneration occurring secondary to inner hair cell loss. In the apical half of the cochlea with advancing age, there was selective loss of outer hair cells which increased from the middle to the extreme apex. A similar gradient of ganglion cell loss was noted, characterized by widespread somatic aggregation and demyelination. In addition to these changes in hair cells and their innervation, there was widespread degeneration of fibrocytes in the spiral ligament, especially among the type IV cell class. The cell loss in the ligament preceded the loss of hair cells and/or neurons in both space and time suggesting that fibrocyte pathology may be a primary cause of the hearing loss and ultimate sensory cell degeneration in this mouse strain.  (+info)

KCNJ10 (Kir4.1) potassium channel knockout abolishes endocochlear potential. (6/78)

Stria vascularis of the cochlea generates the endocochlear potential and secretes K(+). K(+) is the main charge carrier and the endocochlear potential the main driving force for the sensory transduction that leads to hearing. Stria vascularis consists of two barriers, marginal cells that secrete potassium and basal cells that are coupled via gap junctions to intermediate cells. Mice lacking the KCNJ10 (Kir4.1) K(+) channel in strial intermediate cells did not generate an endocochlear potential. Endolymph volume and K(+) concentration ([K(+)]) were reduced. These studies establish that the KCNJ10 K(+) channel provides the molecular mechanism for generation of the endocochlear potential in concert with other transport pathways that establish the [K(+)] difference across the channel. KCNJ10 is also a limiting pathway for K(+) secretion.  (+info)

Vascular defects and sensorineural deafness in a mouse model of Norrie disease. (7/78)

Norrie disease is an X-linked recessive syndrome of blindness, deafness, and mental retardation. A knock-out mouse model with an Ndp gene disruption was studied. We examined the hearing phenotype, including audiological, histological, and vascular evaluations. As is seen in humans, the mice had progressive hearing loss leading to profound deafness. The primary lesion was localized to the stria vascularis, which houses the main vasculature of the cochlea. Fluorescent dyes showed an abnormal vasculature in this region and eventual loss of two-thirds of the vessels. We propose that one of the principal functions of norrin in the ear is to regulate the interaction of the cochlea with its vasculature.  (+info)

The transmembrane serine protease (TMPRSS3) mutated in deafness DFNB8/10 activates the epithelial sodium channel (ENaC) in vitro. (8/78)

TMPRSS3 encodes a transmembrane serine protease that contains both LDLRA and SRCR domains and is mutated in non-syndromic autosomal recessive deafness (DFNB8/10). To study its function, we cloned the mouse ortholog which maps to Mmu17, which is structurally similar to the human gene and encodes a polypeptide with 88% identity to the human protein. RT-PCR and RNA in situ hybridization on rat and mouse cochlea revealed that Tmprss3 is expressed in the spiral ganglion, the cells supporting the organ of Corti and the stria vascularis. RT-PCR on mouse tissues showed expression in the thymus, stomach, testis and E19 embryos. Transient expression of wild-type or tagged TMPRSS3 protein showed a primary localization in the endoplasmic reticulum. The epithelial amiloride-sensitive sodium channel (ENaC), which is expressed in many sodium-reabsorbing tissues including the inner ear and is regulated by membrane-bound channel activating serine proteases (CAPs), is a potential substrate of TMPRSS3. In the Xenopus oocyte expression system, proteolytic processing of TMPRSS3 was associated with increased ENaC mediated currents. In contrast, 6 TMPRSS3 mutants (D103G, R109W, C194F, W251C, P404L, C407R) causing deafness and a mutant in the catalytic triad of TMPRSS3 (S401A), failed to undergo proteolytic cleavage and activate ENaC. These data indicate that important signaling pathways in the inner ear are controlled by proteolytic cleavage and suggest: (i) the existence of an auto-catalytic processing by which TMPRSS3 would become active, and (ii) that ENaC could be a substrate of TMPRSS3 in the inner ear.  (+info)

Stria vascularis is a highly vascularized (rich in blood vessels) structure located in the cochlea of the inner ear. It plays a crucial role in the process of hearing by maintaining the endocochlear potential, which is essential for the conversion of sound waves into electrical signals that can be interpreted by the brain. The stria vascularis is composed of three layers: the marginal cells, intermediate cells, and basal cells, which work together to maintain the ionic balance and generate the endocochlear potential. Damage to the stria vascularis can result in hearing loss.

Endolymph is a specific type of fluid that is found within the inner ear, more specifically in the membranous labyrinth of the inner ear. This fluid plays a crucial role in maintaining balance and hearing functions. It helps in the stimulation of hair cells present in the inner ear which then transmit signals to the brain, enabling us to hear and maintain our balance. Any disturbance or changes in the composition or flow of endolymph can lead to various vestibular disorders and hearing problems.

The cochlea is a part of the inner ear that is responsible for hearing. It is a spiral-shaped structure that looks like a snail shell and is filled with fluid. The cochlea contains hair cells, which are specialized sensory cells that convert sound vibrations into electrical signals that are sent to the brain.

The cochlea has three main parts: the vestibular canal, the tympanic canal, and the cochlear duct. Sound waves enter the inner ear and cause the fluid in the cochlea to move, which in turn causes the hair cells to bend. This bending motion stimulates the hair cells to generate electrical signals that are sent to the brain via the auditory nerve.

The brain then interprets these signals as sound, allowing us to hear and understand speech, music, and other sounds in our environment. Damage to the hair cells or other structures in the cochlea can lead to hearing loss or deafness.

The cochlear duct, also known as the scala media, is a membranous duct located within the cochlea of the inner ear. It is one of three fluid-filled compartments in the cochlea, along with the vestibular duct (scala vestibuli) and the tympanic duct (scala tympani).

The cochlear duct contains endolymph, a specialized fluid that carries electrical signals to the auditory nerve. The organ of Corti, which is responsible for converting sound vibrations into electrical signals, is located within the cochlear duct.

The cochlear duct runs along the length of the cochlea and is separated from the vestibular duct by Reissner's membrane and from the tympanic duct by the basilar membrane. These membranes help to create a highly sensitive and selective environment for sound perception, allowing us to hear and distinguish different frequencies and intensities of sound.

The inner ear is the innermost part of the ear that contains the sensory organs for hearing and balance. It consists of a complex system of fluid-filled tubes and sacs called the vestibular system, which is responsible for maintaining balance and spatial orientation, and the cochlea, a spiral-shaped organ that converts sound vibrations into electrical signals that are sent to the brain.

The inner ear is located deep within the temporal bone of the skull and is protected by a bony labyrinth. The vestibular system includes the semicircular canals, which detect rotational movements of the head, and the otolith organs (the saccule and utricle), which detect linear acceleration and gravity.

Damage to the inner ear can result in hearing loss, tinnitus (ringing in the ears), vertigo (a spinning sensation), and balance problems.

Deafness is a hearing loss that is so severe that it results in significant difficulty in understanding or comprehending speech, even when using hearing aids. It can be congenital (present at birth) or acquired later in life due to various causes such as disease, injury, infection, exposure to loud noises, or aging. Deafness can range from mild to profound and may affect one ear (unilateral) or both ears (bilateral). In some cases, deafness may be accompanied by tinnitus, which is the perception of ringing or other sounds in the ears.

Deaf individuals often use American Sign Language (ASL) or other forms of sign language to communicate. Some people with less severe hearing loss may benefit from hearing aids, cochlear implants, or other assistive listening devices. Deafness can have significant social, educational, and vocational implications, and early intervention and appropriate support services are critical for optimal development and outcomes.

Cochlear microphonic potentials (CMs) are electrical responses that originate from the hair cells in the cochlea, which is a part of the inner ear responsible for hearing. These potentials can be recorded using an electrode placed near the cochlea in response to sound stimulation.

The CMs are considered to be a passive response of the hair cells to the mechanical deflection caused by sound waves. They represent the receptor potential of the outer hair cells and are directly proportional to the sound pressure level. Unlike other electrical responses in the cochlea, such as the action potentials generated by the auditory nerve fibers, CMs do not require the presence of neurotransmitters or synaptic transmission.

Cochlear microphonic potentials have been used in research to study the biophysical properties of hair cells and their response to different types of sound stimuli. However, they are not typically used in clinical audiology due to their small amplitude and susceptibility to interference from other electrical signals in the body.

Hyperpigmentation is a medical term that refers to the darkening of skin areas due to an increase in melanin, the pigment that provides color to our skin. This condition can affect people of all races and ethnicities, but it's more noticeable in those with lighter skin tones.

Hyperpigmentation can be caused by various factors, including excessive sun exposure, hormonal changes (such as during pregnancy), inflammation, certain medications, and underlying medical conditions like Addison's disease or hemochromatosis. It can also result from skin injuries, such as cuts, burns, or acne, which leave dark spots known as post-inflammatory hyperpigmentation.

There are several types of hyperpigmentation, including:

1. Melasma: This is a common form of hyperpigmentation that typically appears as symmetrical, blotchy patches on the face, particularly the forehead, cheeks, and upper lip. It's often triggered by hormonal changes, such as those experienced during pregnancy or while taking birth control pills.
2. Solar lentigos (age spots or liver spots): These are small, darkened areas of skin that appear due to prolonged sun exposure over time. They typically occur on the face, hands, arms, and decolletage.
3. Post-inflammatory hyperpigmentation: This type of hyperpigmentation occurs when an injury or inflammation heals, leaving behind a darkened area of skin. It's more common in people with darker skin tones.

Treatment for hyperpigmentation depends on the underlying cause and may include topical creams, chemical peels, laser therapy, or microdermabrasion. Preventing further sun damage is crucial to managing hyperpigmentation, so wearing sunscreen with a high SPF and protective clothing is recommended.

The spiral ligament of the cochlea is a fibrous structure located in the inner ear, more specifically in the cochlea. It is part of the membranous labyrinth and helps to maintain the shape and tension of the cochlear duct, which is essential for hearing.

The spiral ligament is attached to the bony wall of the cochlea and runs along the entire length of the cochlear duct, spiraling around it in a snail-like fashion. It consists of an outer, highly vascularized fibrous layer (the fibrous cap) and an inner, more cellular layer (the avascular zone).

The spiral ligament plays a crucial role in sound transmission and perception by helping to maintain the mechanical properties of the cochlear duct. The tension on the basilar membrane, where the sensory hair cells are located, is regulated by the spiral ligament's stiffness and elasticity. This tension affects the vibration amplitude and frequency selectivity of the basilar membrane, which in turn influences how we perceive different sounds and pitches.

Damage to the spiral ligament can result in hearing loss or impairment due to disrupted sound transmission and perception.

The spiral ganglion is a structure located in the inner ear, specifically within the cochlea. It consists of nerve cell bodies that form the sensory component of the auditory nervous system. The spiral ganglion's neurons are bipolar and have peripheral processes that form synapses with hair cells in the organ of Corti, which is responsible for converting sound vibrations into electrical signals.

The central processes of these neurons then coalesce to form the cochlear nerve, which transmits these electrical signals to the brainstem and ultimately to the auditory cortex for processing and interpretation as sound. Damage to the spiral ganglion or its associated neural structures can lead to hearing loss or deafness.

Hearing loss is a partial or total inability to hear sounds in one or both ears. It can occur due to damage to the structures of the ear, including the outer ear, middle ear, inner ear, or nerve pathways that transmit sound to the brain. The degree of hearing loss can vary from mild (difficulty hearing soft sounds) to severe (inability to hear even loud sounds). Hearing loss can be temporary or permanent and may be caused by factors such as exposure to loud noises, genetics, aging, infections, trauma, or certain medical conditions. It is important to note that hearing loss can have significant impacts on a person's communication abilities, social interactions, and overall quality of life.

The Organ of Corti is the sensory organ of hearing within the cochlea of the inner ear. It is a structure in the inner spiral sulcus of the cochlear duct and is responsible for converting sound vibrations into electrical signals that are sent to the brain via the auditory nerve.

The Organ of Corti consists of hair cells, which are sensory receptors with hair-like projections called stereocilia on their apical surfaces. These stereocilia are embedded in a gelatinous matrix and are arranged in rows of different heights. When sound vibrations cause the fluid in the cochlea to move, the stereocilia bend, which opens ion channels and triggers nerve impulses that are sent to the brain.

Damage or loss of hair cells in the Organ of Corti can result in hearing loss, making it a critical structure for maintaining normal auditory function.

Auditory hair cells are specialized sensory receptor cells located in the inner ear, more specifically in the organ of Corti within the cochlea. They play a crucial role in hearing by converting sound vibrations into electrical signals that can be interpreted by the brain.

These hair cells have hair-like projections called stereocilia on their apical surface, which are embedded in a gelatinous matrix. When sound waves reach the inner ear, they cause the fluid within the cochlea to move, which in turn causes the stereocilia to bend. This bending motion opens ion channels at the tips of the stereocilia, allowing positively charged ions (such as potassium) to flow into the hair cells and trigger a receptor potential.

The receptor potential then leads to the release of neurotransmitters at the base of the hair cells, which activate afferent nerve fibers that synapse with these cells. The electrical signals generated by this process are transmitted to the brain via the auditory nerve, where they are interpreted as sound.

There are two types of auditory hair cells: inner hair cells and outer hair cells. Inner hair cells are the primary sensory receptors responsible for transmitting information about sound to the brain. They make direct contact with afferent nerve fibers and are more sensitive to mechanical stimulation than outer hair cells.

Outer hair cells, on the other hand, are involved in amplifying and fine-tuning the mechanical response of the inner ear to sound. They have a unique ability to contract and relax in response to electrical signals, which allows them to adjust the stiffness of their stereocilia and enhance the sensitivity of the cochlea to different frequencies.

Damage or loss of auditory hair cells can lead to hearing impairment or deafness, as these cells cannot regenerate spontaneously in mammals. Therefore, understanding the structure and function of hair cells is essential for developing therapies aimed at treating hearing disorders.

The temporal bone is a paired bone that is located on each side of the skull, forming part of the lateral and inferior walls of the cranial cavity. It is one of the most complex bones in the human body and has several important structures associated with it. The main functions of the temporal bone include protecting the middle and inner ear, providing attachment for various muscles of the head and neck, and forming part of the base of the skull.

The temporal bone is divided into several parts, including the squamous part, the petrous part, the tympanic part, and the styloid process. The squamous part forms the lateral portion of the temporal bone and articulates with the parietal bone. The petrous part is the most medial and superior portion of the temporal bone and contains the inner ear and the semicircular canals. The tympanic part forms the lower and anterior portions of the temporal bone and includes the external auditory meatus or ear canal. The styloid process is a long, slender projection that extends downward from the inferior aspect of the temporal bone and serves as an attachment site for various muscles and ligaments.

The temporal bone plays a crucial role in hearing and balance, as it contains the structures of the middle and inner ear, including the oval window, round window, cochlea, vestibule, and semicircular canals. The stapes bone, one of the three bones in the middle ear, is entirely encased within the petrous portion of the temporal bone. Additionally, the temporal bone contains important structures for facial expression and sensation, including the facial nerve, which exits the skull through the stylomastoid foramen, a small opening in the temporal bone.

Goiter is a medical term that refers to an enlarged thyroid gland. The thyroid gland is a small, butterfly-shaped gland located in the front of your neck below the larynx or voice box. It produces hormones that regulate your body's metabolism, growth, and development.

Goiter can vary in size and may be visible as a swelling at the base of the neck. It can be caused by several factors, including iodine deficiency, autoimmune disorders, thyroid cancer, pregnancy, or the use of certain medications. Depending on the underlying cause and the severity of the goiter, treatment options may include medication, surgery, or radioactive iodine therapy.

Anion transport proteins are specialized membrane transport proteins that facilitate the movement of negatively charged ions, known as anions, across biological membranes. These proteins play a crucial role in maintaining ionic balance and regulating various physiological processes within the body.

There are several types of anion transport proteins, including:

1. Cl-/HCO3- exchangers (also known as anion exchangers or band 3 proteins): These transporters facilitate the exchange of chloride (Cl-) and bicarbonate (HCO3-) ions across the membrane. They are widely expressed in various tissues, including the red blood cells, gastrointestinal tract, and kidneys, where they help regulate pH, fluid balance, and electrolyte homeostasis.
2. Sulfate permeases: These transporters facilitate the movement of sulfate ions (SO42-) across membranes. They are primarily found in the epithelial cells of the kidneys, intestines, and choroid plexus, where they play a role in sulfur metabolism and absorption.
3. Cl- channels: These proteins form ion channels that allow chloride ions to pass through the membrane. They are involved in various physiological processes, such as neuronal excitability, transepithelial fluid transport, and cell volume regulation.
4. Cation-chloride cotransporters: These transporters move both cations (positively charged ions) and chloride anions together across the membrane. They are involved in regulating neuronal excitability, cell volume, and ionic balance in various tissues.

Dysfunction of anion transport proteins has been implicated in several diseases, such as cystic fibrosis (due to mutations in the CFTR Cl- channel), distal renal tubular acidosis (due to defects in Cl-/HCO3- exchangers), and some forms of epilepsy (due to abnormalities in cation-chloride cotransporters).

Presbycusis is an age-related hearing loss, typically characterized by the progressive loss of sensitivity to high-frequency sounds. It's a result of natural aging of the auditory system and is often seen as a type of sensorineural hearing loss. The term comes from the Greek words "presbus" meaning old man and "akousis" meaning hearing.

This condition usually develops slowly over many years and can affect both ears equally. Presbycusis can make understanding speech, especially in noisy environments, quite challenging. It's a common condition, and its prevalence increases with age. While it's not reversible, various assistive devices like hearing aids can help manage the symptoms.

The round window ( membrana tympani rotunda) is a small, thin membrane-covered opening located in the inner ear between the middle ear and the cochlea. It serves as one of the two openings that lead into the cochlea, with the other being the oval window.

The round window's primary function is to help regulate and dampen the pressure changes within the cochlea that occur when sound waves reach the inner ear. This is accomplished through the movement of the fluid-filled spaces inside the cochlea (the scala vestibuli and scala tympani) caused by vibrations from the stapes bone, which connects to the oval window.

As the stapes bone moves in response to sound waves, it causes a corresponding motion in the perilymph fluid within the cochlea. This movement then creates pressure changes at the round window, causing it to bulge outward or move inward. The flexibility of the round window allows it to absorb and dissipate these pressure changes, which helps protect the delicate structures inside the inner ear from damage due to excessive pressure buildup.

It is important to note that any damage or dysfunction in the round window can negatively impact hearing ability and cause various hearing disorders.

The septal nuclei are a collection of gray matter structures located in the basal forebrain, specifically in the septum pellucidum. They consist of several interconnected subnuclei that play important roles in various functions such as reward and reinforcement, emotional processing, learning, and memory.

The septal nuclei are primarily composed of GABAergic neurons (neurons that release the neurotransmitter gamma-aminobutyric acid or GABA) and receive inputs from several brain regions, including the hippocampus, amygdala, hypothalamus, and prefrontal cortex. They also send projections to various areas, including the thalamus, hypothalamus, and other limbic structures.

Stimulation of the septal nuclei has been associated with feelings of pleasure and reward, while damage or lesions can lead to changes in emotional behavior and cognitive functions. The septal nuclei are also involved in neuroendocrine regulation, particularly in relation to the hypothalamic-pituitary-adrenal (HPA) axis and the release of stress hormones.

The vestibular system is a part of the inner ear that contributes to our sense of balance and spatial orientation. It is made up of two main components: the vestibule and the labyrinth.

The vestibule is a bony chamber in the inner ear that contains two important structures called the utricle and saccule. These structures contain hair cells and fluid-filled sacs that help detect changes in head position and movement, allowing us to maintain our balance and orientation in space.

The labyrinth, on the other hand, is a more complex structure that includes the vestibule as well as three semicircular canals. These canals are also filled with fluid and contain hair cells that detect rotational movements of the head. Together, the vestibule and labyrinth work together to provide us with information about our body's position and movement in space.

Overall, the vestibular system plays a crucial role in maintaining our balance, coordinating our movements, and helping us navigate through our environment.

Auditory brainstem evoked potentials (ABEPs or BAEPs) are medical tests that measure the electrical activity in the auditory pathway of the brain in response to sound stimulation. The test involves placing electrodes on the scalp and recording the tiny electrical signals generated by the nerve cells in the brainstem as they respond to clicks or tone bursts presented through earphones.

The resulting waveform is analyzed for latency (the time it takes for the signal to travel from the ear to the brain) and amplitude (the strength of the signal). Abnormalities in the waveform can indicate damage to the auditory nerve or brainstem, and are often used in the diagnosis of various neurological conditions such as multiple sclerosis, acoustic neuroma, and brainstem tumors.

The test is non-invasive, painless, and takes only a few minutes to perform. It provides valuable information about the functioning of the auditory pathway and can help guide treatment decisions for patients with hearing or balance disorders.

Kanamycin is an aminoglycoside antibiotic that is derived from the bacterium Streptomyces kanamyceticus. It works by binding to the 30S subunit of the bacterial ribosome, thereby inhibiting protein synthesis and leading to bacterial cell death. Kanamycin is primarily used to treat serious infections caused by Gram-negative bacteria, such as Pseudomonas aeruginosa, Escherichia coli, and Klebsiella pneumoniae. It is also used in veterinary medicine to prevent bacterial infections in animals.

Like other aminoglycosides, kanamycin can cause ototoxicity (hearing loss) and nephrotoxicity (kidney damage) with prolonged use or high doses. Therefore, it is important to monitor patients closely for signs of toxicity and adjust the dose accordingly. Kanamycin is not commonly used as a first-line antibiotic due to its potential side effects and the availability of safer alternatives. However, it remains an important option for treating multidrug-resistant bacterial infections.

The KCNQ1 potassium channel, also known as the Kv7.1 channel, is a voltage-gated potassium ion channel that plays a crucial role in the regulation of electrical excitability in cardiac myocytes and inner ear epithelial cells. In the heart, it helps to control the duration and frequency of action potentials, thereby contributing to the maintenance of normal cardiac rhythm. Mutations in the KCNQ1 gene can lead to various cardiac disorders, such as long QT syndrome type 1 and familial atrial fibrillation. In the inner ear, it helps regulate potassium homeostasis and is essential for hearing and balance functions. Dysfunction of this channel has been linked to deafness and balance disorders.

Hearing disorders, also known as hearing impairments or auditory impairments, refer to conditions that affect an individual's ability to hear sounds in one or both ears. These disorders can range from mild to profound and may result from genetic factors, aging, exposure to loud noises, infections, trauma, or certain medical conditions.

There are mainly two types of hearing disorders: conductive hearing loss and sensorineural hearing loss. Conductive hearing loss occurs when there is a problem with the outer or middle ear, preventing sound waves from reaching the inner ear. Causes include earwax buildup, fluid in the middle ear, a perforated eardrum, or damage to the ossicles (the bones in the middle ear).

Sensorineural hearing loss, on the other hand, is caused by damage to the inner ear (cochlea) or the nerve pathways from the inner ear to the brain. This type of hearing loss is often permanent and can be due to aging (presbycusis), exposure to loud noises, genetics, viral infections, certain medications, or head injuries.

Mixed hearing loss is a combination of both conductive and sensorineural components. In some cases, hearing disorders can also involve tinnitus (ringing or other sounds in the ears) or vestibular problems that affect balance and equilibrium.

Early identification and intervention for hearing disorders are crucial to prevent further deterioration and to help individuals develop appropriate communication skills and maintain a good quality of life.

Auditory outer hair cells are specialized sensory receptor cells located in the cochlea of the inner ear. They are part of the organ of Corti and play a crucial role in hearing by converting sound energy into electrical signals that can be interpreted by the brain.

Unlike the more numerous and simpler auditory inner hair cells, outer hair cells are equipped with unique actin-based molecular motors called "motile" or "piezoelectric" properties. These motors enable the outer hair cells to change their shape and length in response to electrical signals, which in turn amplifies the mechanical vibrations of the basilar membrane where they are located. This amplification increases the sensitivity and frequency selectivity of hearing, allowing us to detect and discriminate sounds over a wide range of intensities and frequencies.

Damage or loss of outer hair cells is a common cause of sensorineural hearing loss, which can result from exposure to loud noises, aging, genetics, ototoxic drugs, and other factors. Currently, there are no effective treatments to regenerate or replace damaged outer hair cells, making hearing loss an irreversible condition in most cases.

Sensorineural hearing loss (SNHL) is a type of hearing impairment that occurs due to damage to the inner ear (cochlea) or to the nerve pathways from the inner ear to the brain. It can be caused by various factors such as aging, exposure to loud noises, genetics, certain medical conditions (like diabetes and heart disease), and ototoxic medications.

SNHL affects the ability of the hair cells in the cochlea to convert sound waves into electrical signals that are sent to the brain via the auditory nerve. As a result, sounds may be perceived as muffled, faint, or distorted, making it difficult to understand speech, especially in noisy environments.

SNHL is typically permanent and cannot be corrected with medication or surgery, but hearing aids or cochlear implants can help improve communication and quality of life for those affected.

The auditory threshold is the minimum sound intensity or loudness level that a person can detect 50% of the time, for a given tone frequency. It is typically measured in decibels (dB) and represents the quietest sound that a person can hear. The auditory threshold can be affected by various factors such as age, exposure to noise, and certain medical conditions. Hearing tests, such as pure-tone audiometry, are used to measure an individual's auditory thresholds for different frequencies.

Noise-induced hearing loss (NIHL) is a type of sensorineural hearing loss that occurs due to exposure to harmful levels of noise. The damage can be caused by a one-time exposure to an extremely loud sound or by continuous exposure to lower level sounds over time. NIHL can affect people of all ages and can cause permanent damage to the hair cells in the cochlea, leading to hearing loss, tinnitus (ringing in the ears), and difficulty understanding speech in noisy environments. Prevention measures include avoiding excessive noise exposure, wearing hearing protection, and taking regular breaks from noisy activities.

I must clarify that the term "Guinea Pigs" is not typically used in medical definitions. However, in colloquial or informal language, it may refer to people who are used as the first to try out a new medical treatment or drug. This is known as being a "test subject" or "in a clinical trial."

In the field of scientific research, particularly in studies involving animals, guinea pigs are small rodents that are often used as experimental subjects due to their size, cost-effectiveness, and ease of handling. They are not actually pigs from Guinea, despite their name's origins being unclear. However, they do not exactly fit the description of being used in human medical experiments.

Auditory evoked potentials (AEP) are medical tests that measure the electrical activity in the brain in response to sound stimuli. These tests are often used to assess hearing function and neural processing in individuals, particularly those who cannot perform traditional behavioral hearing tests.

There are several types of AEP tests, including:

1. Brainstem Auditory Evoked Response (BAER) or Brainstem Auditory Evoked Potentials (BAEP): This test measures the electrical activity generated by the brainstem in response to a click or tone stimulus. It is often used to assess the integrity of the auditory nerve and brainstem pathways, and can help diagnose conditions such as auditory neuropathy and retrocochlear lesions.
2. Middle Latency Auditory Evoked Potentials (MLAEP): This test measures the electrical activity generated by the cortical auditory areas of the brain in response to a click or tone stimulus. It is often used to assess higher-level auditory processing, and can help diagnose conditions such as auditory processing disorders and central auditory dysfunction.
3. Long Latency Auditory Evoked Potentials (LLAEP): This test measures the electrical activity generated by the cortical auditory areas of the brain in response to a complex stimulus, such as speech. It is often used to assess language processing and cognitive function, and can help diagnose conditions such as learning disabilities and dementia.

Overall, AEP tests are valuable tools for assessing hearing and neural function in individuals who cannot perform traditional behavioral hearing tests or who have complex neurological conditions.

Freeze fracturing is not a medical term itself, but it is a technique used in the field of electron microscopy, which is a type of imaging commonly used in scientific research and medical fields to visualize structures at a very small scale, such as cells and cellular components.

In freeze fracturing, a sample is rapidly frozen to preserve its structure and then fractured or split along a plane of weakness, often along the membrane of a cell. The freshly exposed surface is then shadowed with a thin layer of metal, such as platinum or gold, to create a replica of the surface. This replica can then be examined using an electron microscope to reveal details about the structure and organization of the sample at the molecular level.

Freeze fracturing is particularly useful for studying membrane structures, such as lipid bilayers and protein complexes, because it allows researchers to visualize these structures in their native state, without the need for staining or other chemical treatments that can alter or damage the samples.

Gerbillinae is a subfamily of rodents that includes gerbils, jirds, and sand rats. These small mammals are primarily found in arid regions of Africa and Asia. They are characterized by their long hind legs, which they use for hopping, and their long, thin tails. Some species have adapted to desert environments by developing specialized kidneys that allow them to survive on minimal water intake.

The stria vascularis of the cochlear duct is a capillary loop in the upper portion of the spiral ligament (the outer wall of ... The stria vascularis is part of the lateral wall of the cochlear duct. It is a somewhat stratified epithelium containing ... The stria vascularis also contains pericytes, melanocytes, and endothelial cells. It also contains intraepithelial capillaries ... basal cells, which separate the stria vascularis from the underlying spiral ligament. They are connected to basal cells with ...
Included in these metabolically active organs is the cochlear stria vascularis. The stria vascularis and the hair cells, both ... these concentration gradients are not maintained and this can lead to cell death in both the stria vascularis and the hair ...
... the stria vascularis, and Reissner's membrane. The stria vascularis is a rich bed of capillaries and secretory cells; ...
The stria vascularis is located in the wall of the cochlear duct. The cochlear duct develops from the ventral otic vesicle ( ...
Diuretics are thought to alter the ionic gradient within the stria vascularis. Bumetanide confers a decreased risk of ... The underlying mechanism of ototoxicity may be impairment of ion transport in the stria vascularis. Predisposing factors ... as well as damage to the spiral ganglion neurons and cells of the stria vascularis. Long-term retention of cisplatin in the ...
... characterised by atrophy of stria vascularis in all turns of cochlea. Located in the lateral wall of the cochlea, the stria ... is predominantly expressed in stria vascularis, cochlea, spiral ligament, organ of Corti, and spiral ganglion cells. The stria ... Administration of Ebselen before and after the noise stimulus reduced stria vascularis swelling as well as cochlear outer hair ... vascularis contains sodium-potassium-ATPase pumps that are responsible for producing the endolymph resting potential. As ...
The spiral ligament is a fibrous cushion located between the stria vascularis and the bony otic capsule. The periosteum, ...
The main component of this unique extracellular fluid is potassium, which is secreted from the stria vascularis. The high ... fluid Dark cell Perilymph Stria vascularis Organ of Corti Ménière's disease Bosher SK, Warren RL (1968-11-05). "Observations on ...
"Deafness in Claudin 11-null mice reveals the critical contribution of basal cell tight junctions to stria vascularis function ...
List of distinct cell types in the adult human body Ciuman, R. R. (2009). "Stria vascularis and vestibular dark cells: ... Dark cells are morphologically and functionally similar to marginal cells of the stria vascularis as they both display ... indicate an earlier histological and immunohistological maturity in the dark-cell areas compared to the stria vascularis. The ...
The Kir4.1 channel is expressed in the Stria vascularis and is essential for formation of the endolymph, the fluid that ... "The endocochlear potential depends on two K+ diffusion potentials and an electrical barrier in the stria vascularis of the ...
The lateral wall of the cochlear duct is formed by the spiral ligament and the stria vascularis, which produces the endolymph. ...
Loop diuretics-induced ototoxicity is suggested to be associated with their action on stria vascularis located on the lateral ... As the inhibitory actions of loop diuretics will also target on NKCCs existing on membrane surfaces of stria vascularis ...
It is also found in hair, the pigmented tissue underlying the iris of the eye, and the stria vascularis of the inner ear. In ... Instead, the absence of melanocytes in the stria vascularis of the inner ear results in cochlear impairment, though why this is ...
... is specifically expressed in the stria vascularis of the inner ear which indicates why individuals with an AK2 deficiency ...
This includes the stria vascularis region of the inner ear, which is the upper portion of the fluid filled spiral ligament of ...
AK2 is specifically expressed in the stria vascularis of the inner ear which indicates why individuals with an AK2 deficiency ...
The suppression of pigment cells (melanocytes) in the iris and in the stria vascularis of the cochlea (inner ear) leads to blue ...
Stria vascularis Noise-induced hearing loss Presbycusis or age-related hearing loss Viral infections causing hearing loss ...
... stria vascularis MeSH A09.246.631.246.292.906 - tectorial membrane MeSH A09.246.631.246.577 - organ of corti MeSH A09.246. ...
They also differentiate into the stria vascularis of the cochlea, the nerves and glia of the intestines (myenteric plexus), ...
... in a process requiring ATP from the stria vascularis as an energy source. The depolarized hair cell releases neurotransmitters ...
... of both the aminoglycosides and cisplatin may be related to their ability to bind to melanin in the stria vascularis of the ...
  • The stria vascularis of the cochlear duct is a capillary loop in the upper portion of the spiral ligament (the outer wall of the cochlear duct). (wikipedia.org)
  • basal cells, which separate the stria vascularis from the underlying spiral ligament. (wikipedia.org)
  • Third, electrolytes (eg, K + ) that flow into perilymph are returned to the endolymph via the spiral ligament and stria vascularis (see the second image below). (medscape.com)
  • In the spiral ligament and stria vascularis reside the enzyme systems and cellular organelles necessary for the maintenance of the differences in electrolyte content between the perilymph and endolymph. (medscape.com)
  • Enzymes, specifically Na + /K + ATPase, use metabolic energy stores (ATP) generated by the mitochondria of the stria and spiral ligament to pump Na + and K + ions against their concentration gradients (see the image above). (medscape.com)
  • These enzymes are located within the marginal cells of the stria and the underlying spiral ligament. (medscape.com)
  • They serve to transport K + through the spiral ligament and stria vascularis, and they secrete it into the endolymph. (medscape.com)
  • The largest and significant increases occurred in the basilar membrane, spiral ganglion neurons and stria vascularis of the cochlea. (cdc.gov)
  • We show that Minar2 is expressed in the mouse inner ear, with the protein localizing mainly in the hair cells, spiral ganglia, the spiral limbus, and the stria vascularis. (nih.gov)
  • It really is generally recognized which the depolarizing K+ stream causing locks cell activation in the body organ of Corti Haloxon is normally recycled back again to the stria vascularis via Haloxon the epithelial coating from the cochlear duct as well as the spiral ligament fibrocytes, and/or through the perilymph, as depicted in Amount ?Amount1.1. (lavoixdesrroms.org)
  • The lateral wall of the cochlear duct is formed by the spiral ligament and the stria vascularis, which produces the endolymph. (medscape.com)
  • These massive doses can potentially introduce artifacts and overwhelm different trafficking routes such as tight junctions, stria vascularis, modiolus, basilar membrane, spiral ligament [16]. (insulin-receptor.info)
  • B) A schematic anatomical (higher fifty percent) and compartmental (lower fifty percent) style of the adult stria vascularis displaying the three mobile levels and depicting the positioning of potassium regulating stations. (lavoixdesrroms.org)
  • The stria vascularis produces endolymph for the scala media, one of the three fluid-filled compartments of the cochlea. (wikipedia.org)
  • The stria vascularis is thought to be the source of the endolymph and endolymphatic potential. (asastandards.org)
  • The basic principles of this local control are illustrated in the images below and are outlined as follows: First, an anatomic barrier exists between perilymph and endolymph, and it consists of Reissner membrane, the stria vascularis, and the reticular lamina formed by tight junctions between the apices of hair cells and the adjacent supporting cells (see the image above). (medscape.com)
  • The stria vascularis, along with related cells in the maculae and cristae ampullares, produces endolymph. (digitalhistology.org)
  • 1954). These ions are secreted in to the endolymph by specific cells inside the stria vascularis, situated in the lateral wall structure from the cochlear duct (Patuzzi, 2011). (lavoixdesrroms.org)
  • The cochlear duct (or scala mass media) is normally filled up with endolymph filled with a higher [K+] that's maintained with the stria vascularis. (lavoixdesrroms.org)
  • The stria vascularis is a type of epithelium that is uniquely able to produce endolymph in the cochlea. (medscape.com)
  • The stria vascularis is a nonsensory structure that is essential for auditory hair cell function by maintaining potassium concentration of the scala media. (jneurosci.org)
  • We used single-cell RNA-sequencing data from mouse cochlea and brain and mapped common-variant genomic results to spindle, root, and basal cells from the stria vascularis, a structure in the cochlea necessary for normal hearing. (scilifelab.se)
  • On one ear, cochlea and stria vascularis were surgically exposed for microscopic analysis. (uni-muenchen.de)
  • Specifically, high blood glucose levels can damage the vessels in the stria vascularis and the nerves that control the inner workings of your cochlea. (hearinglosshelp.com)
  • During mouse embryonic development, a subpopulation of neural crest cell-derived melanocytes migrates and incorporates into a subregion of the cochlear epithelium, forming the intermediate cell layer of the stria vascularis. (jneurosci.org)
  • In characterizing the molecular differentiation of developing peripheral auditory structures, we discovered that hepatocyte growth factor ( Hgf ) is expressed in the future stria vascularis of the cochlear epithelium. (jneurosci.org)
  • Its receptor tyrosine kinase, c-Met , is expressed in the cochlear epithelium and melanocyte-derived intermediate cells in the stria vascularis. (jneurosci.org)
  • The stria vascularis, an epithelium located on the outer wall of the cochlear duct, is unique in that it is the only vascularized epithelium in mammals. (digitalhistology.org)
  • epithelium, developing in to the intermediate cells from the stria vascularis. (lavoixdesrroms.org)
  • The stria vascularis is part of the lateral wall of the cochlear duct. (wikipedia.org)
  • Genetic dissection of HGF signaling via c-MET reveals that the incorporation of the melanocytes into the future stria vascularis of the cochlear duct requires c-MET signaling. (jneurosci.org)
  • SIGNIFICANCE STATEMENT We found the roles of hepatocyte growth factor (HGF) signaling in stria vascularis development for the first time and that lack of HGF signaling in the inner ear leads to profound hearing loss in the mouse. (jneurosci.org)
  • Acute noise-induced inner ear hearing loss is characterized by microcirculatory disturbance in the stria vascularis. (uni-muenchen.de)
  • a part of the inner ear called the stria vascularis, which controls blood flow to the ear and maintains the endocochlear potential, which is needed for hair cells to signal to the brain. (rnid.org.uk)
  • It is also found in the stria vascularis of the inner ear. (realhousecanada.com)
  • Both subunits have been demonstrated to be present in the stria vascularis of the inner ear in mice. (forexsignalx.com)
  • The stria vascularis also contains pericytes, melanocytes, and endothelial cells. (wikipedia.org)
  • Part of the mechanism by which the stria for maintains these ionic levels involves pigment cells B melanocytes. (vin.com)
  • Loop diuretics (e.g., furosemide, ethacrynic acid, bumetanide) affect the potassium gradient of the stria vascularis, as well as the electrical potential of the endocochlear structure. (medscape.com)
  • To compare the relative expression levels of NPR-A mRNA in the stria vascularis (StV), nonstrial tissue of the cochlear lateral. (nel.edu)
  • Investigators saw a role for the stria vascularis in hearing loss with genetic data for 147,997 hearing loss cases and 575,269 controls, coupled with follow-up functional analyses in mice. (genomeweb.com)
  • In the previously reported S1pr2(-/-) mice, stria vascularis abnormalities, organ of Corti degeneration, and profound hearing loss were observed. (omicsdi.org)
  • Later research showed that the role of aldosterone in restoring auditory function was through increasing stria vascularis sodium transport rather than through the suppression of autoimmune symptoms. (naturalnews.com)
  • Our findings indicate the importance of the stria vascularis in the mechanism of hearing impairment, providing future paths for developing targets for therapeutic intervention in hearing loss. (scilifelab.se)
  • Genome-wide association meta-analysis identifies 48 risk variants and highlights the role of the stria vascularis in hearing loss. (scilifelab.se)
  • A nearby specialized structure known as the stria vascularis transports the ions through its unique arrangement of electrogenic ion pumps, generating an electrochemical potential known as the endocochlear potential . (ieee.org)
  • The relation of this developmental process to stria vascularis function is currently unknown. (jneurosci.org)
  • On the outer wall of this compartment is a special vascular bed, the stria vascularis, that is responsible for maintaining the high K + and low Na + levels. (vin.com)

No images available that match "stria vascularis"