A species of gram-positive, coccoid bacteria isolated from abscesses in submaxillary glands and mucopurulent discharges of the upper respiratory tract of horses. This organism belongs to Group C streptococci with regards to antigen response and is known to cause strangles. The subspecies S. zooepidemicus is also considered a pathogen of horses.
Diseases of domestic and wild horses of the species Equus caballus.
A genus of gram-positive, coccoid bacteria whose organisms occur in pairs or chains. No endospores are produced. Many species exist as commensals or parasites on man or animals with some being highly pathogenic. A few species are saprophytes and occur in the natural environment.
Infections with bacteria of the genus STREPTOCOCCUS.
A species of RHODOCOCCUS found in soil, herbivore dung, and in the intestinal tract of cows, horses, sheep, and pigs. It causes bronchopneumonia in foals and can be responsible for infection in humans compromised by immunosuppressive drug therapy, lymphoma, or AIDS.
Large, hoofed mammals of the family EQUIDAE. Horses are active day and night with most of the day spent seeking and consuming food. Feeding peaks occur in the early morning and late afternoon, and there are several daily periods of rest.
Vaccines or candidate vaccines used to prevent STREPTOCOCCAL INFECTIONS.
A species of gram-positive, coccoid bacteria isolated from skin lesions, blood, inflammatory exudates, and the upper respiratory tract of humans. It is a group A hemolytic Streptococcus that can cause SCARLET FEVER and RHEUMATIC FEVER.
A polysaccharide-producing species of STREPTOCOCCUS isolated from human dental plaque.
A gram-positive organism found in the upper respiratory tract, inflammatory exudates, and various body fluids of normal and/or diseased humans and, rarely, domestic animals.
Proteins found in any species of bacterium.
A bacterium which causes mastitis in cattle and occasionally in man.
Treatment of food with physical methods such as heat, high pressure, radiation, or electric current to destroy organisms that cause disease or food spoilage.
Substances elaborated by bacteria that have antigenic activity.
Diseases of the domestic dog (Canis familiaris). This term does not include diseases of wild dogs, WOLVES; FOXES; and other Canidae for which the heading CARNIVORA is used.
Infections with bacteria of the order ACTINOMYCETALES.
Cell-surface components or appendages of bacteria that facilitate adhesion (BACTERIAL ADHESION) to other cells or to inanimate surfaces. Most fimbriae (FIMBRIAE, BACTERIAL) of gram-negative bacteria function as adhesins, but in many cases it is a minor subunit protein at the tip of the fimbriae that is the actual adhesin. In gram-positive bacteria, a protein or polysaccharide surface layer serves as the specific adhesin. What is sometimes called polymeric adhesin (BIOFILMS) is distinct from protein adhesin.
Proteins isolated from the outer membrane of Gram-negative bacteria.
Transport proteins that carry specific substances in the blood or across cell membranes.
A species of STREPTOCOCCUS isolated from pigs. It is a pathogen of swine but rarely occurs in humans.
Deoxyribonucleic acid that makes up the genetic material of bacteria.

SFS, a novel fibronectin-binding protein from Streptococcus equi, inhibits the binding between fibronectin and collagen. (1/110)

The obligate parasitic bacterium Streptococcus equi subsp. equi is the causative agent of strangles, a serious disease of the upper respiratory tract in horses. In this study we have, using shotgun phage display, cloned from S. equi subsp. equi and characterized a gene, called sfs, encoding a protein termed SFS, representing a new type of fibronectin (Fn)-binding protein. The sfs gene was found to be present in all 50 isolates of S. equi subsp. equi tested and in 41 of 48 S. equi subsp. zooepidemicus isolates tested. The sfs gene is down-regulated during growth in vitro compared to fnz, a previously characterized gene encoding an Fn-binding protein from S. equi subsp. zooepidemicus. Sequence comparisons revealed no similarities to previously characterized Fn-binding proteins, but high scores were obtained against collagen. Besides similarity due to the high content of glycine, serine, and proline residues present in both proteins, there was a nine-residue motif present both in collagen and in the Fn-binding domain of SFS. By searching the Oklahoma S. pyogenes database, we found that this motif is also present in a potential cell surface protein from S. pyogenes. Protein SFS was found to inhibit the binding between Fn and collagen in a concentration-dependent way.  (+info)

Localization and characterization of the ligand-binding domain of the fibrinogen-binding protein (FgBP) of Streptococcus equi subsp. equi. (2/110)

The group C streptococcus Streptococcus equi subsp. equi possesses a 498-residue major cell-wall-associated protein (FgBP) which binds horse fibrinogen (Fg), reacts with convalescent horse serum and protects against lethal S. equi challenge in a small animal model. In the present study, analysis of a panel of 17 purified N- and C-terminal FgBP truncates by ligand affinity blotting and SDS-PAGE revealed that the region required for maximum binding of Fg extended over the first half of the mature protein. The C-terminal two-thirds of this domain is predicted to be alpha-helical coiled-coil and the N-terminal one-third to possess non-coiled-coil single strands. Residues at the extreme N-terminus and within the coiled-coil region are both required for ligand binding. A high incidence of alpha-helical coiled-coil structure also seems to be responsible in part for the aberrant mobility of FgBP on SDS gels. The efficiency with which FgBP binds Fg from different animal species decreases in the order horse > mouse, pig > rat > sheep, dog, bovine, human. Binding to horse Fg is inversely related to temperature over the range 45-4 degrees C and is independent of Ca2+ ions. MS analysis provided corroborative evidence that FgBP is covalently linked to the cell wall peptidoglycan.  (+info)

Streptococcus equi with truncated M-proteins isolated from outwardly healthy horses. (3/110)

The M-protein genes of Streptococcus equi isolated from 17 outwardly healthy horses after 4 strangles outbreaks had ended, including a quarantined animal, were compared with those of S. equi isolates from 167 active cases of strangles across 4 countries. The healthy horses included 16 persistent S. equi carriers, at least one from each of the four outbreaks. These carriers, despite being outwardly healthy, had empyema of the guttural pouch(es), an enlargement of the equine Eustachian tube. A persistent carrier from two of these outbreaks, the quarantined animal and a healthy animal with normal guttural pouches, from which S. equi was isolated only once, were colonized by variant S. equi with truncated M-protein genes (24% of outwardly healthy animals with S. equi). The truncated M-protein genes had in-frame deletions in slightly different positions between the signal sequence and the central repeat region, equivalent to approximately 20% of the mature expressed protein. Immunoblotting with antibody to recombinant M-protein confirmed that the variants expressed a truncated form of the M-protein. In contrast to the outwardly healthy S. equi carriers, only 1/167 of S. equi isolates from strangles cases possessed a truncated M-protein gene (<1%; Fisher's exact test, P=0.0002). Compared with isolates from healthy horses with a truncated M-protein, much more of the N terminus of the truncated M-protein was retained in the variant S. equi from a strangles case. Variant S. equi from outwardly healthy animals were more susceptible to phagocytosis by neutrophils in vitro than typical isolates. This is the first report of detection of S. equi with a truncated M-protein. The distribution of the variants between strangles cases and carriers suggests that the 80% of the M-protein retained in the variants may contribute to colonization whilst the deleted portion of the gene may be needed for full virulence.  (+info)

Streptococcus infantarius sp. nov., Streptococcus infantarius subsp. infantarius subsp. nov. and Streptococcus infantarius subsp. coli subsp. nov., isolated from humans and food. (4/110)

Eighteen strains isolated from human specimens or from food products were characterized as atypical variants of mannitol-negative Streptococcus bovis. They were tested for extended biochemical criteria, ribotyping and DNA-DNA hybridization in order to define their taxonomic status. These strains were demonstrated to constitute a DNA relatedness group that includes strains of DNA group 4 of Farrow et al. (1984). Comparative analysis of 16S rRNA sequences demonstrated that these strains represent a new species which belongs to the Streptococcus bovis/Streptococcus equinus complex and which has been provisionally named S. infantarius by Bouvet et al. (1997). Biotyping and ribotyping allowed differentiation of these strains from the aesculin-positive strains of S. bovis belonging to the previously described biotypes I, II.1 and II.2. The results of the ribotyping and hybridization assays demonstrated the presence of two different DNA subgroups within the 18 strains. On the basis of these data, the names S. infantarius subsp. infantarius (aesculin-negative for five strains out of seven, including the type strain HDP 90056T = NCDO 599T) and S. infantarius subsp. coli (aesculin-positive, reference strain HDP 90248 = NCDO 2620) are proposed as the names for these two subspecies within the S. infantarius species.  (+info)

Identification of lipoprotein homologues of pneumococcal PsaA in the equine pathogens Streptococcus equi and Streptococcus zooepidemicus. (5/110)

Streptococcus equi and Streptococcus zooepidemicus are major etiological agents of upper and lower airway disease in horses. Despite the considerable animal suffering and economic burden associated with these diseases, the factors that contribute to the virulence of these equine pathogens have not been extensively investigated. Here we demonstrate the presence of a homologue of the Streptococcus pneumoniae PsaA protein in both of these equine pathogens. Inhibition of signal peptide processing by the antibiotic globomycin confirmed the lipoprotein nature of the mature proteins, and surface exposure was confirmed by their release from intact cells by mild trypsinolysis.  (+info)

Septic orchitis in an alpaca. (6/110)

An adult, intact male alpaca was presented with an acute onset of unilateral scrotal swelling. Following complete physical and ultrasonographic examination, the most likely differential diagnoses were orchitis, hematoma, and testicular torsion. The animal was castrated and histopathologic evaluation revealed unilateral orchitis. Streptococcus equi subsp. zooepidemicus was cultured.  (+info)

Comparison of the fibronectin-binding protein FNE from Streptococcus equi subspecies equi with FNZ from S. equi subspecies zooepidemicus reveals a major and conserved difference. (7/110)

The gene fnz from Streptococcus equi subspecies zooepidemicus encodes a cell surface protein that binds fibronectin (Fn). Fifty tested isolates of S. equi subspecies equi all contain DNA sequences with similarity to fnz. This work describes the cloning and sequencing of a gene, designated fne, with similarity to fnz from two S. equi subspecies equi isolates. The DNA sequences were found to be identical in the two strains, and sequence comparison of the fne and fnz genes revealed only minor differences. However, one base deletion was found in the middle of the fne gene and eight base pairs downstream of the altered reading frame there is a stop codon. An Fn-binding protein was purified from the growth medium of a subspecies equi culture. Determination of the NH(2)-terminal amino acid sequence and molecular mass, as judged by sodium dodecyl sulfate-polyacrylamide gel electrophoresis, revealed that the purified protein is the gene product of the 5'-terminal half of fne. Fn-binding activity has earlier only been found in the COOH-terminal half of FNZ. By the use of a purified recombinant protein containing the NH(2) half of FNZ, we provide here evidence that this half of the protein also harbors an Fn-binding domain.  (+info)

Streptococcal meningitis resulting from contact with an infected horse. (8/110)

We report a case of group C streptococcal meningitis in a woman with a history of close animal contact as well as head trauma as a result of a kick by a horse. Blood and cerebrospinal fluid cultures grew Streptococcus equi subsp. zooepidemicus, as did a throat culture taken from the colt that had kicked her 2 weeks prior to admission.  (+info)

Streptococcus equi is a gram-positive, beta-hemolytic bacterium that belongs to the Lancefield group C. It is a significant pathogen in horses, causing a respiratory disease known as "strangles." The bacterium can spread through direct contact with infected horses or contaminated objects and can lead to severe complications such as purpura hemorrhagica and bastard strangles.

While Streptococcus equi is not typically associated with human infections, there have been rare cases of zoonotic transmission from horses to humans, causing respiratory tract infections, endocarditis, and soft tissue infections. However, it is essential to note that this bacterium is primarily a pathogen of horses and not a common cause of infection in humans.

I understand you are asking for a medical definition of "Horse Diseases." However, it's important to note that there isn't a specific medical field dedicated to horse diseases as we typically categorize medical fields by human diseases and conditions. Veterinary medicine is the field responsible for studying, diagnosing, and treating diseases in animals, including horses.

Here's a general definition of 'Horse Diseases':

Horse diseases are health issues or medical conditions that affect equine species, particularly horses. These diseases can be caused by various factors such as bacterial, viral, fungal, or parasitic infections; genetic predispositions; environmental factors; and metabolic disorders. Examples of horse diseases include Strangles (Streptococcus equi), Equine Influenza, Equine Herpesvirus, West Nile Virus, Rabies, Potomac Horse Fever, Lyme Disease, and internal or external parasites like worms and ticks. Additionally, horses can suffer from musculoskeletal disorders such as arthritis, laminitis, and various injuries. Regular veterinary care, preventative measures, and proper management are crucial for maintaining horse health and preventing diseases.

Streptococcus is a genus of Gram-positive, spherical bacteria that typically form pairs or chains when clustered together. These bacteria are facultative anaerobes, meaning they can grow in the presence or absence of oxygen. They are non-motile and do not produce spores.

Streptococcus species are commonly found on the skin and mucous membranes of humans and animals. Some strains are part of the normal flora of the body, while others can cause a variety of infections, ranging from mild skin infections to severe and life-threatening diseases such as sepsis, meningitis, and toxic shock syndrome.

The pathogenicity of Streptococcus species depends on various virulence factors, including the production of enzymes and toxins that damage tissues and evade the host's immune response. One of the most well-known Streptococcus species is Streptococcus pyogenes, also known as group A streptococcus (GAS), which is responsible for a wide range of clinical manifestations, including pharyngitis (strep throat), impetigo, cellulitis, necrotizing fasciitis, and rheumatic fever.

It's important to note that the classification of Streptococcus species has evolved over time, with many former members now classified as different genera within the family Streptococcaceae. The current classification system is based on a combination of phenotypic characteristics (such as hemolysis patterns and sugar fermentation) and genotypic methods (such as 16S rRNA sequencing and multilocus sequence typing).

Streptococcal infections are a type of infection caused by group A Streptococcus bacteria (Streptococcus pyogenes). These bacteria can cause a variety of illnesses, ranging from mild skin infections to serious and potentially life-threatening conditions such as sepsis, pneumonia, and necrotizing fasciitis (flesh-eating disease).

Some common types of streptococcal infections include:

* Streptococcal pharyngitis (strep throat) - an infection of the throat and tonsils that can cause sore throat, fever, and swollen lymph nodes.
* Impetigo - a highly contagious skin infection that causes sores or blisters on the skin.
* Cellulitis - a bacterial infection of the deeper layers of the skin and underlying tissue that can cause redness, swelling, pain, and warmth in the affected area.
* Scarlet fever - a streptococcal infection that causes a bright red rash on the body, high fever, and sore throat.
* Necrotizing fasciitis - a rare but serious bacterial infection that can cause tissue death and destruction of the muscles and fascia (the tissue that covers the muscles).

Treatment for streptococcal infections typically involves antibiotics to kill the bacteria causing the infection. It is important to seek medical attention if you suspect a streptococcal infection, as prompt treatment can help prevent serious complications.

Rhodococcus equi is a gram-positive, aerobic, facultatively intracellular bacterium that is commonly found in the environment, particularly in soil and dust contaminated with animal feces. It is a significant pathogen in horses, causing pneumonia and other respiratory tract infections, especially in foals. However, it can also cause various infectious diseases in other animals, including humans, particularly in individuals who are immunocompromised or have underlying lung disease.

In humans, R. equi infection often manifests as pulmonary disease, characterized by cough, fever, and chest pain, although disseminated disease can occur in immunocompromised patients. The diagnosis of R. equi infection typically involves the isolation and identification of the organism from clinical specimens such as sputum or tissue samples, followed by antimicrobial susceptibility testing to guide therapy. Treatment usually involves a combination of antibiotics, including macrolides, rifamycins, and aminoglycosides, for an extended period.

I'm sorry for any confusion, but "horses" is not a medical term. It is the common name given to the species *Equus ferus caballus*, which are large domesticated mammals used for transportation, work, and recreation. If you have any questions about horses or a related topic that you would like a medical perspective on, please let me know and I'd be happy to help!

Streptococcal vaccines are immunizations designed to protect against infections caused by Streptococcus bacteria. These vaccines contain antigens, which are substances that trigger an immune response and help the body recognize and fight off specific types of Streptococcus bacteria. There are several different types of streptococcal vaccines available or in development, including:

1. Pneumococcal conjugate vaccine (PCV): This vaccine protects against Streptococcus pneumoniae, a type of bacteria that can cause pneumonia, meningitis, and other serious infections. PCV is recommended for all children under 2 years old, as well as older children and adults with certain medical conditions.
2. Pneumococcal polysaccharide vaccine (PPSV): This vaccine also protects against Streptococcus pneumoniae, but it is recommended for adults 65 and older, as well as younger people with certain medical conditions.
3. Streptococcus pyogenes vaccine: This vaccine is being developed to protect against Group A Streptococcus (GAS), which can cause a variety of infections, including strep throat, skin infections, and serious diseases like rheumatic fever and toxic shock syndrome. There are several different GAS vaccine candidates in various stages of development.
4. Streptococcus agalactiae vaccine: This vaccine is being developed to protect against Group B Streptococcus (GBS), which can cause serious infections in newborns, pregnant women, and older adults with certain medical conditions. There are several different GBS vaccine candidates in various stages of development.

Overall, streptococcal vaccines play an important role in preventing bacterial infections and reducing the burden of disease caused by Streptococcus bacteria.

Streptococcus pyogenes is a Gram-positive, beta-hemolytic streptococcus bacterium that causes various suppurative (pus-forming) and nonsuppurative infections in humans. It is also known as group A Streptococcus (GAS) due to its ability to produce the M protein, which confers type-specific antigenicity and allows for serological classification into more than 200 distinct Lancefield groups.

S. pyogenes is responsible for a wide range of clinical manifestations, including pharyngitis (strep throat), impetigo, cellulitis, erysipelas, scarlet fever, rheumatic fever, and acute poststreptococcal glomerulonephritis. In rare cases, it can lead to invasive diseases such as necrotizing fasciitis (flesh-eating disease) and streptococcal toxic shock syndrome (STSS).

The bacterium is typically transmitted through respiratory droplets or direct contact with infected skin lesions. Effective prevention strategies include good hygiene practices, such as frequent handwashing and avoiding sharing personal items, as well as prompt recognition and treatment of infections to prevent spread.

Streptococcus mutans is a gram-positive, facultatively anaerobic, beta-hemolytic species of bacteria that's part of the normal microbiota of the oral cavity in humans. It's one of the primary etiological agents associated with dental caries, or tooth decay, due to its ability to produce large amounts of acid as a byproduct of sugar metabolism, which can lead to demineralization of tooth enamel and dentin. The bacterium can also adhere to tooth surfaces and form biofilms, further contributing to the development of dental caries.

Streptococcus pneumoniae, also known as the pneumococcus, is a gram-positive, alpha-hemolytic bacterium frequently found in the upper respiratory tract of healthy individuals. It is a leading cause of community-acquired pneumonia and can also cause other infectious diseases such as otitis media (ear infection), sinusitis, meningitis, and bacteremia (bloodstream infection). The bacteria are encapsulated, and there are over 90 serotypes based on variations in the capsular polysaccharide. Some serotypes are more virulent or invasive than others, and the polysaccharide composition is crucial for vaccine development. S. pneumoniae infection can be treated with antibiotics, but the emergence of drug-resistant strains has become a significant global health concern.

Bacterial proteins are a type of protein that are produced by bacteria as part of their structural or functional components. These proteins can be involved in various cellular processes, such as metabolism, DNA replication, transcription, and translation. They can also play a role in bacterial pathogenesis, helping the bacteria to evade the host's immune system, acquire nutrients, and multiply within the host.

Bacterial proteins can be classified into different categories based on their function, such as:

1. Enzymes: Proteins that catalyze chemical reactions in the bacterial cell.
2. Structural proteins: Proteins that provide structural support and maintain the shape of the bacterial cell.
3. Signaling proteins: Proteins that help bacteria to communicate with each other and coordinate their behavior.
4. Transport proteins: Proteins that facilitate the movement of molecules across the bacterial cell membrane.
5. Toxins: Proteins that are produced by pathogenic bacteria to damage host cells and promote infection.
6. Surface proteins: Proteins that are located on the surface of the bacterial cell and interact with the environment or host cells.

Understanding the structure and function of bacterial proteins is important for developing new antibiotics, vaccines, and other therapeutic strategies to combat bacterial infections.

Streptococcus agalactiae, also known as Group B Streptococcus (GBS), is a type of bacteria that commonly colonizes the gastrointestinal and genitourinary tracts of humans. It is Gram-positive, facultatively anaerobic, and forms chains when viewed under the microscope.

While S. agalactiae can be carried asymptomatically by many adults, it can cause serious infections in newborns, pregnant women, elderly individuals, and people with weakened immune systems. In newborns, GBS can lead to sepsis, pneumonia, and meningitis, which can result in long-term health complications or even be fatal if left untreated.

Pregnant women are often screened for GBS colonization during the third trimester of pregnancy, and those who test positive may receive intrapartum antibiotics to reduce the risk of transmission to their newborns during delivery.

Pasteurization is a process that involves heating a liquid, such as milk or fruit juice, to a specific temperature for a certain amount of time in order to kill harmful bacteria and reduce the risk of foodborne illness. The process was named after Louis Pasteur, who developed it in the 19th century.

In pasteurization, the liquid is typically heated to a temperature between 63°C (145°F) and 75°C (167°F) for at least 15 seconds to 30 minutes, depending on the type of product being pasteurized. This heat treatment destroys pathogens such as Listeria monocytogenes, Salmonella, Escherichia coli, and Staphylococcus aureus, which can cause serious illness if consumed.

Pasteurization does not sterilize the product completely, but it significantly reduces the number of bacteria present, making it safer for consumption. It is important to note that pasteurized products still have a shelf life and should be stored properly to prevent contamination and spoilage.

Bacterial antigens are substances found on the surface or produced by bacteria that can stimulate an immune response in a host organism. These antigens can be proteins, polysaccharides, teichoic acids, lipopolysaccharides, or other molecules that are recognized as foreign by the host's immune system.

When a bacterial antigen is encountered by the host's immune system, it triggers a series of responses aimed at eliminating the bacteria and preventing infection. The host's immune system recognizes the antigen as foreign through the use of specialized receptors called pattern recognition receptors (PRRs), which are found on various immune cells such as macrophages, dendritic cells, and neutrophils.

Once a bacterial antigen is recognized by the host's immune system, it can stimulate both the innate and adaptive immune responses. The innate immune response involves the activation of inflammatory pathways, the recruitment of immune cells to the site of infection, and the production of antimicrobial peptides.

The adaptive immune response, on the other hand, involves the activation of T cells and B cells, which are specific to the bacterial antigen. These cells can recognize and remember the antigen, allowing for a more rapid and effective response upon subsequent exposures.

Bacterial antigens are important in the development of vaccines, as they can be used to stimulate an immune response without causing disease. By identifying specific bacterial antigens that are associated with virulence or pathogenicity, researchers can develop vaccines that target these antigens and provide protection against infection.

There is no medical definition for "dog diseases" as it is too broad a term. However, dogs can suffer from various health conditions and illnesses that are specific to their species or similar to those found in humans. Some common categories of dog diseases include:

1. Infectious Diseases: These are caused by viruses, bacteria, fungi, or parasites. Examples include distemper, parvovirus, kennel cough, Lyme disease, and heartworms.
2. Hereditary/Genetic Disorders: Some dogs may inherit certain genetic disorders from their parents. Examples include hip dysplasia, elbow dysplasia, progressive retinal atrophy (PRA), and degenerative myelopathy.
3. Age-Related Diseases: As dogs age, they become more susceptible to various health issues. Common age-related diseases in dogs include arthritis, dental disease, cancer, and cognitive dysfunction syndrome (CDS).
4. Nutritional Disorders: Malnutrition or improper feeding can lead to various health problems in dogs. Examples include obesity, malnutrition, and vitamin deficiencies.
5. Environmental Diseases: These are caused by exposure to environmental factors such as toxins, allergens, or extreme temperatures. Examples include heatstroke, frostbite, and toxicities from ingesting harmful substances.
6. Neurological Disorders: Dogs can suffer from various neurological conditions that affect their nervous system. Examples include epilepsy, intervertebral disc disease (IVDD), and vestibular disease.
7. Behavioral Disorders: Some dogs may develop behavioral issues due to various factors such as anxiety, fear, or aggression. Examples include separation anxiety, noise phobias, and resource guarding.

It's important to note that regular veterinary care, proper nutrition, exercise, and preventative measures can help reduce the risk of many dog diseases.

Actinomycetales are a group of gram-positive bacteria that can cause various types of infections in humans. The term "Actinomycetales infections" is used to describe a range of diseases caused by these organisms, which are characterized by the formation of characteristic granules or "actinomycetes" composed of bacterial cells and inflammatory tissue.

Some common examples of Actinomycetales infections include:

1. Actinomycosis: A chronic infection that typically affects the face, neck, and mouth, but can also occur in other parts of the body such as the lungs or abdomen. It is caused by various species of Actinomyces, which are normal inhabitants of the mouth and gastrointestinal tract.
2. Nocardiosis: A rare but serious infection that can affect the lungs, brain, or skin. It is caused by the bacterium Nocardia, which is found in soil and water.
3. Mycetoma: A chronic infection that affects the skin and underlying tissues, causing the formation of nodules and sinuses that discharge pus containing grains composed of fungal or bacterial elements. It is caused by various species of Actinomyces, Nocardia, and other related bacteria.
4. Streptomyces infections: While Streptomyces species are best known for their role in producing antibiotics, they can also cause infections in humans, particularly in immunocompromised individuals. These infections can affect various organs, including the lungs, skin, and soft tissues.

Treatment of Actinomycetales infections typically involves the use of antibiotics, often for prolonged periods of time. The specific antibiotic regimen will depend on the type of infection and the susceptibility of the causative organism to various antimicrobial agents. Surgical intervention may also be necessary in some cases to drain abscesses or remove infected tissue.

Bacterial adhesins are proteins or structures on the surface of bacterial cells that allow them to attach to other cells or surfaces. This ability to adhere to host tissues is an important first step in the process of bacterial infection and colonization. Adhesins can recognize and bind to specific receptors on host cells, such as proteins or sugars, enabling the bacteria to establish a close relationship with the host and evade immune responses.

There are several types of bacterial adhesins, including fimbriae, pili, and non-fimbrial adhesins. Fimbriae and pili are thin, hair-like structures that extend from the bacterial surface and can bind to a variety of host cell receptors. Non-fimbrial adhesins are proteins that are directly embedded in the bacterial cell wall and can also mediate attachment to host cells.

Bacterial adhesins play a crucial role in the pathogenesis of many bacterial infections, including urinary tract infections, respiratory tract infections, and gastrointestinal infections. Understanding the mechanisms of bacterial adhesion is important for developing new strategies to prevent and treat bacterial infections.

Bacterial outer membrane proteins (OMPs) are a type of protein found in the outer membrane of gram-negative bacteria. The outer membrane is a unique characteristic of gram-negative bacteria, and it serves as a barrier that helps protect the bacterium from hostile environments. OMPs play a crucial role in maintaining the structural integrity and selective permeability of the outer membrane. They are involved in various functions such as nutrient uptake, transport, adhesion, and virulence factor secretion.

OMPs are typically composed of beta-barrel structures that span the bacterial outer membrane. These proteins can be classified into several groups based on their size, function, and structure. Some of the well-known OMP families include porins, autotransporters, and two-partner secretion systems.

Porins are the most abundant type of OMPs and form water-filled channels that allow the passive diffusion of small molecules, ions, and nutrients across the outer membrane. Autotransporters are a diverse group of OMPs that play a role in bacterial pathogenesis by secreting virulence factors or acting as adhesins. Two-partner secretion systems involve the cooperation between two proteins to transport effector molecules across the outer membrane.

Understanding the structure and function of bacterial OMPs is essential for developing new antibiotics and therapies that target gram-negative bacteria, which are often resistant to conventional treatments.

Carrier proteins, also known as transport proteins, are a type of protein that facilitates the movement of molecules across cell membranes. They are responsible for the selective and active transport of ions, sugars, amino acids, and other molecules from one side of the membrane to the other, against their concentration gradient. This process requires energy, usually in the form of ATP (adenosine triphosphate).

Carrier proteins have a specific binding site for the molecule they transport, and undergo conformational changes upon binding, which allows them to move the molecule across the membrane. Once the molecule has been transported, the carrier protein returns to its original conformation, ready to bind and transport another molecule.

Carrier proteins play a crucial role in maintaining the balance of ions and other molecules inside and outside of cells, and are essential for many physiological processes, including nerve impulse transmission, muscle contraction, and nutrient uptake.

Streptococcus suis is a Gram-positive, beta-hemolytic streptococcus that is a significant pathogen in pig populations worldwide. It can cause a variety of clinical manifestations in pigs, including meningitis, arthritis, endocarditis, and septicemia. Transmission to humans can occur through contact with infected pigs or contaminated pork products, resulting in diseases such as meningitis, sepsis, endocarditis, and arthritis. There are 35 serotypes of S. suis, but only a few (including serotypes 1, 2, 4, 5, 9, 14, 16, 21, 24, and 31) are commonly associated with disease in pigs and humans.

Bacterial DNA refers to the genetic material found in bacteria. It is composed of a double-stranded helix containing four nucleotide bases - adenine (A), thymine (T), guanine (G), and cytosine (C) - that are linked together by phosphodiester bonds. The sequence of these bases in the DNA molecule carries the genetic information necessary for the growth, development, and reproduction of bacteria.

Bacterial DNA is circular in most bacterial species, although some have linear chromosomes. In addition to the main chromosome, many bacteria also contain small circular pieces of DNA called plasmids that can carry additional genes and provide resistance to antibiotics or other environmental stressors.

Unlike eukaryotic cells, which have their DNA enclosed within a nucleus, bacterial DNA is present in the cytoplasm of the cell, where it is in direct contact with the cell's metabolic machinery. This allows for rapid gene expression and regulation in response to changing environmental conditions.

No FAQ available that match "streptococcus equi"

No images available that match "streptococcus equi"