The product of meiotic division of zygotes in parasitic protozoa comprising haploid cells. These infective cells invade the host and undergo asexual reproduction producing MEROZOITES (or other forms) and ultimately gametocytes.
A protozoan parasite of rodents transmitted by the mosquito Anopheles dureni.
A species of PLASMODIUM causing malaria in rodents.
A genus of mosquitoes (CULICIDAE) that are known vectors of MALARIA.
Proteins found in any species of protozoan.
A genus of protozoa that comprise the malaria parasites of mammals. Four species infect humans (although occasional infections with primate malarias may occur). These are PLASMODIUM FALCIPARUM; PLASMODIUM MALARIAE; PLASMODIUM OVALE, and PLASMODIUM VIVAX. Species causing infection in vertebrates other than man include: PLASMODIUM BERGHEI; PLASMODIUM CHABAUDI; P. vinckei, and PLASMODIUM YOELII in rodents; P. brasilianum, PLASMODIUM CYNOMOLGI; and PLASMODIUM KNOWLESI in monkeys; and PLASMODIUM GALLINACEUM in chickens.
A protozoan disease caused in humans by four species of the PLASMODIUM genus: PLASMODIUM FALCIPARUM; PLASMODIUM VIVAX; PLASMODIUM OVALE; and PLASMODIUM MALARIAE; and transmitted by the bite of an infected female mosquito of the genus ANOPHELES. Malaria is endemic in parts of Asia, Africa, Central and South America, Oceania, and certain Caribbean islands. It is characterized by extreme exhaustion associated with paroxysms of high FEVER; SWEATING; shaking CHILLS; and ANEMIA. Malaria in ANIMALS is caused by other species of plasmodia.
A phylum of unicellular parasitic EUKARYOTES characterized by the presence of complex apical organelles generally consisting of a conoid that aids in penetrating host cells, rhoptries that possibly secrete a proteolytic enzyme, and subpellicular microtubules that may be related to motility.
Vaccines made from antigens arising from any of the four strains of Plasmodium which cause malaria in humans, or from P. berghei which causes malaria in rodents.
A genus of protozoan parasites of the subclass COCCIDIA. Various species are parasitic in the epithelial cells of the liver and intestines of man and other animals.
Any part or derivative of any protozoan that elicits immunity; malaria (Plasmodium) and trypanosome antigens are presently the most frequently encountered.
Glands that secrete SALIVA in the MOUTH. There are three pairs of salivary glands (PAROTID GLAND; SUBLINGUAL GLAND; SUBMANDIBULAR GLAND).
Zygote-containing cysts of sporozoan protozoa. Further development in an oocyst produces small individual infective organisms called SPOROZOITES. Then, depending on the genus, the entire oocyst is called a sporocyst or the oocyst contains multiple sporocysts encapsulating the sporozoites.
A species of coccidian protozoa that mainly infects domestic poultry.
A species of protozoa that is the causal agent of falciparum malaria (MALARIA, FALCIPARUM). It is most prevalent in the tropics and subtropics.
Immunoglobulins produced in a response to PROTOZOAN ANTIGENS.
A species of parasitic protozoa that infects humans and most domestic mammals. Its oocysts measure five microns in diameter. These organisms exhibit alternating cycles of sexual and asexual reproduction.
A family of the order DIPTERA that comprises the mosquitoes. The larval stages are aquatic, and the adults can be recognized by the characteristic WINGS, ANIMAL venation, the scales along the wing veins, and the long proboscis. Many species are of particular medical importance.
A protozoan parasite that is the etiologic agent of East Coast fever (THEILERIASIS). Transmission is by ticks of the Physicephalus and Hyalomma genera.
The relationship between an invertebrate and another organism (the host), one of which lives at the expense of the other. Traditionally excluded from definition of parasites are pathogenic BACTERIA; FUNGI; VIRUSES; and PLANTS; though they may live parasitically.
A protozoan parasite that causes vivax malaria (MALARIA, VIVAX). This species is found almost everywhere malaria is endemic and is the only one that has a range extending into the temperate regions.
A protozoan parasite that causes avian malaria (MALARIA, AVIAN), primarily in chickens, and is transmitted by the Aedes mosquito.
Infection of cattle, sheep, or goats with protozoa of the genus THEILERIA. This infection results in an acute or chronic febrile condition.
Insects that transmit infective organisms from one host to another or from an inanimate reservoir to an animate host.
Protozoan infection found in animals and man. It is caused by several different genera of COCCIDIA.
The continuous sequence of changes undergone by living organisms during the post-embryonic developmental process, such as metamorphosis in insects and amphibians. This includes the developmental stages of apicomplexans such as the malarial parasite, PLASMODIUM FALCIPARUM.
Bites and stings inflicted by insects.
The main structural component of the LIVER. They are specialized EPITHELIAL CELLS that are organized into interconnected plates called lobules.
Malaria caused by PLASMODIUM FALCIPARUM. This is the severest form of malaria and is associated with the highest levels of parasites in the blood. This disease is characterized by irregularly recurring febrile paroxysms that in extreme cases occur with acute cerebral, renal, or gastrointestinal manifestations.
Any of a group of infections of fowl caused by protozoa of the genera PLASMODIUM, Leucocytozoon, and Haemoproteus. The life cycles of these parasites and the disease produced bears strong resemblance to those observed in human malaria.
A subclass of protozoans commonly parasitic in the epithelial cells of the intestinal tract but also found in the liver and other organs. Its organisms are found in both vertebrates and higher invertebrates and comprise two orders: EIMERIIDA and EUCOCCIDIIDA.
Inbred BALB/c mice are a strain of laboratory mice that have been selectively bred to be genetically identical to each other, making them useful for scientific research and experiments due to their consistent genetic background and predictable responses to various stimuli or treatments.
Malaria caused by PLASMODIUM VIVAX. This form of malaria is less severe than MALARIA, FALCIPARUM, but there is a higher probability for relapses to occur. Febrile paroxysms often occur every other day.
Deliberate stimulation of the host's immune response. ACTIVE IMMUNIZATION involves administration of ANTIGENS or IMMUNOLOGIC ADJUVANTS. PASSIVE IMMUNIZATION involves administration of IMMUNE SERA or LYMPHOCYTES or their extracts (e.g., transfer factor, immune RNA) or transplantation of immunocompetent cell producing tissue (thymus or bone marrow).
Small synthetic peptides that mimic surface antigens of pathogens and are immunogenic, or vaccines manufactured with the aid of recombinant DNA techniques. The latter vaccines may also be whole viruses whose nucleic acids have been modified.
Suspensions of attenuated or killed protozoa administered for the prevention or treatment of infectious protozoan disease.
A family of the New World monkeys inhabiting the forests of South and Central America. There is a single genus and several species occurring in this family, including AOTUS TRIVIRGATUS (Northern night monkeys).
A large lobed glandular organ in the abdomen of vertebrates that is responsible for detoxification, metabolism, synthesis and storage of various substances.
Intestinal infection with organisms of the genus CRYPTOSPORIDIUM. It occurs in both animals and humans. Symptoms include severe DIARRHEA.
A genus of coccidian parasites of the family CRYPTOSPORIDIIDAE, found in the intestinal epithelium of many vertebrates including humans.
Live vaccines prepared from microorganisms which have undergone physical adaptation (e.g., by radiation or temperature conditioning) or serial passage in laboratory animal hosts or infected tissue/cell cultures, in order to produce avirulent mutant strains capable of inducing protective immunity.
The presence of parasites (especially malarial parasites) in the blood. (Dorland, 27th ed)
A protozoan parasite that occurs primarily in subtropical and temperate areas. It is the causal agent of quartan malaria. As the parasite grows it exhibits little ameboid activity.
A genus of protozoan parasites found in the intestines of birds, amphibians, reptiles, and mammals, including man. The oocysts produce two sporocysts, each with four sporozoites. Many species are parasitic in wild and domestic animals.
Carbohydrates covalently linked to a nonsugar moiety (lipids or proteins). The major glycoconjugates are glycoproteins, glycopeptides, peptidoglycans, glycolipids, and lipopolysaccharides. (From Biochemical Nomenclature and Related Documents, 2d ed; From Principles of Biochemistry, 2d ed)
A protozoan parasite from Southeast Asia that causes monkey malaria. It is naturally acquired by man in Malaysia and can also be transmitted experimentally to humans.
Uninuclear cells or a stage in the life cycle of sporozoan protozoa. Merozoites, released from ruptured multinucleate SCHIZONTS, enter the blood stream and infect the ERYTHROCYTES.
Antigens on surfaces of cells, including infectious or foreign cells or viruses. They are usually protein-containing groups on cell membranes or walls and may be isolated.
Invertebrates or non-human vertebrates which transmit infective organisms from one host to another.
A species of mosquito in the genus Anopheles and the principle vector of MALARIA in Africa.
A species of protozoa that is a cause of bovine babesiosis. Ticks of the genera Boophilus, Rhipicephalus, and IXODES are the chief vectors.
Liver diseases caused by infections with PARASITES, such as tapeworms (CESTODA) and flukes (TREMATODA).
A genus of protozoa parasitic to birds and mammals. T. gondii is one of the most common infectious pathogenic animal parasites of man.
Antibodies produced by a single clone of cells.
Deoxyribonucleic acid that makes up the genetic material of protozoa.
Red blood cells. Mature erythrocytes are non-nucleated, biconcave disks containing HEMOGLOBIN whose function is to transport OXYGEN.
Organs and other anatomical structures of non-human vertebrate and invertebrate animals.
Descriptions of specific amino acid, carbohydrate, or nucleotide sequences which have appeared in the published literature and/or are deposited in and maintained by databanks such as GENBANK, European Molecular Biology Laboratory (EMBL), National Biomedical Research Foundation (NBRF), or other sequence repositories.
Sites on an antigen that interact with specific antibodies.
Invertebrate organisms that live on or in another organism (the host), and benefit at the expense of the other. Traditionally excluded from definition of parasites are pathogenic BACTERIA; FUNGI; VIRUSES; and PLANTS; though they may live parasitically.

Design and activity of antimicrobial peptides against sporogonic-stage parasites causing murine malarias. (1/327)

Insects produce several types of peptides to combat a broad spectrum of invasive pathogenic microbes, including protozoans. However, despite this defense response, infections are often established. Our aim was to design novel peptides that produce high rates of mortality among protozoa of the genus Plasmodium, the malaria parasites. Using existing antimicrobial peptide sequences as templates, we designed and synthesized three short novel hybrids, designated Vida1 to Vida3. Each has a slightly different predicted secondary structure. The peptides were tested against sporogonic stages of the rodent malaria parasites Plasmodium berghei (in vitro and in vivo) and P. yoelii nigeriensis (in vitro). The level of activity varied for each peptide and according to the parasite stage targeted. Vida3 (which is predicted to have large numbers of beta sheets and coils but no alpha helices) showed the highest level of activity, killing the early sporogonic stages in culture and causing highly significant reductions in the prevalence and intensity of infection of P. berghei after oral administration or injection in Anopheles gambiae mosquitoes. The secondary structures of these peptides may play a crucial role in their ability to interact with and kill sporogonic forms of the malaria parasite.  (+info)

Infectivity-associated changes in the transcriptional repertoire of the malaria parasite sporozoite stage. (2/327)

Injection of Plasmodium salivary gland sporozoites into the vertebrate host by Anopheles mosquitoes initiates malaria infection. Sporozoites develop within oocysts in the mosquito midgut and then enter and mature in the salivary glands. Although morphologically similar, oocyst sporozoites and salivary gland sporozoites differ strikingly in their infectivity to the mammalian host, ability to elicit protective immune responses, and cell motility. Here, we show that differential gene expression coincides with these dramatic phenotypic differences. Using suppression subtractive cDNA hybridization we identified highly up-regulated mRNAs transcribed from 30 distinct genes in salivary gland sporozoites. Of those genes, 29 are not significantly expressed in the parasite's blood stages. The most frequently recovered transcript encodes a protein kinase. Developmental up-regulation of specific mRNAs in the infectious transmission stage of Plasmodium indicates that their translation products may have unique roles in hepatocyte infection and/or development of liver stages.  (+info)

Function of region I and II adhesive motifs of Plasmodium falciparum circumsporozoite protein in sporozoite motility and infectivity. (3/327)

The circumsporozoite protein of Plasmodium falciparum contains two conserved motifs (regions I and II) that have been proposed to interact with mosquito and vertebrate host molecules in the process of sporozoite invasion of salivary glands and hepatocytes, respectively. To study the function of this protein we have replaced the endogenous circumsporozoite protein gene of Plasmodium berghei with that of P. falciparum and with versions lacking either region I or region II. We show here that P. falciparum circumsporozoite protein functions in rodent parasite and that P. berghei sporozoites carrying the P. falciparum CS gene develop normally, are motile, invade mosquito salivary glands, and infect the vertebrate host. Region I-deficient sporozoites showed no impairment of motility or infectivity in either vector or vertebrate host. Disruption of region II abolished sporozoite motility and dramatically impaired their ability to invade mosquito salivary glands and infect the vertebrate host. These data shed new light on the role of the CS protein in sporozoite motility and infectivity.  (+info)

Babesia bovis merozoite surface antigen 2 proteins are expressed on the merozoite and sporozoite surface, and specific antibodies inhibit attachment and invasion of erythrocytes. (4/327)

The Babesia bovis merozoite surface antigen 2 (MSA-2) locus encodes four proteins, MSA-2a(1), -2a(2), -2b, and -2c. With the use of specific antibodies, each MSA-2 protein was shown to be expressed on the surface of live extracellular merozoites and coexpression on single merozoites was confirmed. Individual antisera against MSA-2a, MSA-2b, and MSA-2c significantly inhibited merozoite invasion of bovine erythrocytes. As tick-derived sporozoites also directly invade erythrocytes, expression of each MSA-2 protein on the sporozoite surface was examined and verified. Finally, statistically significant inhibition of sporozoite binding to the erythrocytes was demonstrated by using antisera specific for MSA-2a, MSA-2b, and MSA-2c. These results indicate an important role for MSA-2 proteins in the initial binding and invasion of host erythrocytes and support the hypothesis that sporozoites and merozoites use common surface molecules in erythrocyte invasion.  (+info)

Myosin A tail domain interacting protein (MTIP) localizes to the inner membrane complex of Plasmodium sporozoites. (5/327)

Apicomplexan host cell invasion and gliding motility depend on the parasite's actomyosin system located beneath the plasma membrane of invasive stages. Myosin A (MyoA), a class XIV unconventional myosin, is the motor protein. A model has been proposed to explain how the actomyosin motor operates but little is known about the components, topology and connectivity of the motor complex. Using the MyoA neck and tail domain as bait in a yeast two-hybrid screen we identified MTIP, a novel 24 kDa protein that interacts with MyoA. Deletion analysis shows that the 15 amino-acid C-terminal tail domain of MyoA, rather than the neck domain, specifically interacts with MTIP. In Plasmodium sporozoites MTIP localizes to the inner membrane complex (IMC), where it is found clustered with MyoA. The data support a model for apicomplexan motility and invasion in which the MyoA motor protein is associated via its tail domain with MTIP, immobilizing it at the outer IMC membrane. The head domain of the immobilized MyoA moves actin filaments that, directly or via a bridging protein, connect to the cytoplasmic domain of a transmembrane protein of the TRAP family. The actin/TRAP complex is then redistributed by the stationary MyoA from the anterior to the posterior end of the zoite, leading to its forward movement on a substrate or to penetration of a host cell.  (+info)

Malaria blood stage suppression of liver stage immunity by dendritic cells. (6/327)

Malaria starts with Plasmodium sporozoites infection of the host's liver, where development into blood stage parasites occurs. It is not clear why natural infections do not induce protection against the initial liver stage and generate low CD8+ T cell responses. Using a rodent malaria model, we show that Plasmodium blood stage infection suppresses CD8+ T cell immune responses that were induced against the initial liver stage. Blood stage Plasmodium affects dendritic cell (DC) functions, inhibiting maturation and the capacity to initiate immune responses and inverting the interleukin (IL)-12/IL-10 secretion pattern. The interaction of blood stage parasites with DCs induces the secretion of soluble factors that inhibit the activation of CD8+ T cells in vitro and the suppression of protective CD8+ T cell responses against the liver stage in vivo. We propose that blood stage infection induces DCs to suppress CD8+ T cell responses in natural malaria infections. This evasion mechanism leaves the host unprotected against reinfection by inhibiting the immune response against the initial liver stage of the disease.  (+info)

Baculovirus surface display of Theileria parva p67 antigen preserves the conformation of sporozoite-neutralizing epitopes. (7/327)

Theileria parva is an intracellular protozoan parasite that causes East Coast fever, a severe lymphoproliferative disease in cattle. Previous attempts to produce recombinant sporozoite surface antigen (p67) in bacterial or insect cells for vaccine purposes have not resulted in a correctly folded protein. Here, we report the expression of N- and C-terminal domains of p67 fused to the baculovirus envelope glycoprotein GP64 by cloning the appropriate p67 cDNA segments between the signal sequence and the major portion of GP64. To further advance the generation of such recombinants, existing surface display techniques were combined with bacmid technology. Chimeric proteins were present on the surface of budded viruses as judged by immunogold labelling and were exposed on the surface of insect cells, as concluded from immunofluorescence studies of infected, non-fixed insect cells. In non-denaturing dot blot experiments, a strong reaction was obtained between monoclonal TpM12 and baculovirus particles displaying the p67N-GP64 chimeric protein. This antibody, raised against native p67, also specifically recognized the surface of recombinant-infected cells. Apparently, a more native conformation was achieved than when p67 was expressed in E.coli or in conventional baculovirus expression systems. The baculovirus surface expression system, therefore, provides an improved way of expressing this T.parva sporozoite surface protein.  (+info)

Transformation of sporozoites into early exoerythrocytic malaria parasites does not require host cells. (8/327)

Malaria parasite species that infect mammals, including humans, must first take up residence in hepatic host cells as exoerythrocytic forms (EEF) before initiating infection of red blood cells that leads to malaria disease. Despite the importance of hepatic stages for immunity against malaria, little is known about their biology and antigenic composition. Here, we show that sporozoites, the parasites' transmission stage that resides in the mosquito vector salivary glands, can transform into early EEF without intracellular residence in host hepatocytes. The morphological sequence of transformation and the expression of proteins in the EEF appear indistinguishable from parasites that develop within host cells. Transformation depends on temperature elevation to 37 degrees C and serum. Our findings demonstrate that residence in a host hepatocyte or specific host cell-derived factors are not necessary to bring about the profound morphological and biochemical changes of the parasite that occur after its transmission from vector to mammalian host.  (+info)

Sporozoites are a stage in the life cycle of certain parasitic protozoans, including Plasmodium species that cause malaria. They are infective forms that result from the sporulation of oocysts, which are produced in the vector's midgut after the ingestion of gametocytes during a blood meal.

Once mature, sporozoites are released from the oocyst and migrate to the salivary glands of the vector, where they get injected into the host during subsequent feedings. In the host, sporozoites infect liver cells, multiply within them, and eventually rupture the cells, releasing merozoites that invade red blood cells and initiate the erythrocytic stage of the parasite's life cycle.

Sporozoites are typically highly motile and possess a unique gliding motility, which enables them to traverse various host tissues during their invasion process. This invasive ability is facilitated by an actin-myosin motor system and secretory organelles called micronemes and rhoptries, which release adhesive proteins that interact with host cell receptors.

In summary, sporozoites are a crucial stage in the life cycle of Plasmodium parasites, serving as the infective forms responsible for transmitting malaria between hosts via an insect vector.

"Plasmodium berghei" is a species of protozoan parasites belonging to the genus Plasmodium, which are the causative agents of malaria. This particular species primarily infects rodents and is not known to naturally infect humans. However, it is widely used in laboratory settings as a model organism to study malaria and develop potential interventions, such as drugs and vaccines, due to its similarities with human-infecting Plasmodium species.

The life cycle of P. berghei involves two hosts: an Anopheles mosquito vector and a rodent host. The parasite undergoes asexual reproduction in the red blood cells of the rodent host, leading to the symptoms of malaria, such as fever, anemia, and organ damage. When an infected mosquito bites another rodent, the parasites are transmitted through the saliva and infect the new host, continuing the life cycle.

While P. berghei is not a direct threat to human health, studying this species has contributed significantly to our understanding of malaria biology and the development of potential interventions against this devastating disease.

'Plasmodium yoelii' is a species of protozoan parasite belonging to the genus Plasmodium, which causes malaria in rodents. It is primarily used as a model organism in malaria research due to its similarity to the human malaria parasites, Plasmodium falciparum and Plasmodium vivax. The life cycle of P. yoelii involves two hosts: an Anopheles mosquito vector and a rodent host. The parasite undergoes asexual reproduction in the red blood cells of the rodent host, leading to the symptoms of malaria such as fever, anemia, and organ failure if left untreated. P. yoelii is not known to infect humans.

'Anopheles' is a genus of mosquitoes that are known for their role in transmitting malaria parasites to humans. These mosquitoes have a distinctive resting posture, with their abdomens raised and heads down, and they typically feed on human hosts at night. Only female Anopheles mosquitoes transmit the malaria parasite, as they require blood meals to lay eggs.

There are over 400 species of Anopheles mosquitoes worldwide, but only about 30-40 of these are considered significant vectors of human malaria. The distribution and behavior of these mosquitoes can vary widely depending on the specific species and geographic location.

Preventing and controlling the spread of malaria involves a variety of strategies, including the use of insecticide-treated bed nets, indoor residual spraying, antimalarial drugs, and vaccines. Public health efforts to reduce the burden of malaria have made significant progress in recent decades, but the disease remains a major global health challenge, particularly in sub-Saharan Africa.

I'm sorry for any confusion, but "Protozoan Proteins" is not a specific medical or scientific term. Protozoa are single-celled eukaryotic organisms, and proteins are large biological molecules consisting of one or more chains of amino acid residues. Therefore, "Protozoan Proteins" generally refers to the various types of proteins found in protozoa.

However, if you're looking for information about proteins specific to certain protozoan parasites with medical relevance (such as Plasmodium falciparum, which causes malaria), I would be happy to help! Please provide more context or specify the particular protozoan of interest.

"Plasmodium" is a genus of protozoan parasites that are the causative agents of malaria in humans and other animals. There are several species within this genus, including Plasmodium falciparum, P. vivax, P. ovale, P. malariae, and P. knowlesi, among others.

These parasites have a complex life cycle that involves two hosts: an Anopheles mosquito and a vertebrate host (such as humans). When a person is bitten by an infected mosquito, the parasites enter the bloodstream and infect red blood cells, where they multiply and cause the symptoms of malaria.

Plasmodium species are transmitted through the bites of infected female Anopheles mosquitoes, which become infected after taking a blood meal from an infected person. The parasites then develop in the mosquito's midgut, eventually making their way to the salivary glands, where they can be transmitted to another human through the mosquito's bite.

Malaria is a serious and sometimes fatal disease that affects millions of people worldwide, particularly in tropical and subtropical regions. It is characterized by fever, chills, headache, muscle and joint pain, and anemia, among other symptoms. Prompt diagnosis and treatment are essential to prevent severe illness and death from malaria.

Malaria is not a medical definition itself, but it is a disease caused by parasites that are transmitted to people through the bites of infected female Anopheles mosquitoes. Here's a simple definition:

Malaria: A mosquito-borne infectious disease caused by Plasmodium parasites, characterized by cycles of fever, chills, and anemia. It can be fatal if not promptly diagnosed and treated. The five Plasmodium species known to cause malaria in humans are P. falciparum, P. vivax, P. ovale, P. malariae, and P. knowlesi.

Apicomplexa is a phylum of single-celled, parasitic organisms that includes several medically important genera, such as Plasmodium (which causes malaria), Toxoplasma (which causes toxoplasmosis), and Cryptosporidium (which causes cryptosporidiosis). These organisms are characterized by the presence of a unique apical complex, which is a group of specialized structures at one end of the cell that are used during invasion and infection of host cells. They have a complex life cycle involving multiple stages, including sexual and asexual reproduction, often in different hosts. Many Apicomplexa are intracellular parasites, meaning they live and multiply inside the cells of their hosts.

Malaria vaccines are biological preparations that induce immunity against malaria parasites, thereby preventing or reducing the severity of malaria disease. They typically contain antigens (proteins or other molecules derived from the parasite) that stimulate an immune response in the recipient, enabling their body to recognize and neutralize the pathogen upon exposure.

The most advanced malaria vaccine candidate is RTS,S/AS01 (Mosquirix), which targets the Plasmodium falciparum parasite's circumsporozoite protein (CSP). This vaccine has shown partial protection in clinical trials, reducing the risk of severe malaria and hospitalization in young children by about 30% over four years. However, it does not provide complete immunity, and additional research is ongoing to develop more effective vaccines against malaria.

'Eimeria' is a genus of protozoan parasites that belong to the phylum Apicomplexa. These microscopic organisms are known to cause a disease called coccidiosis in various animals, including birds, ruminants, and pigs. The life cycle of Eimeria involves both sexual and asexual reproduction, and it typically takes place within the intestinal cells of the host animal.

The infection can lead to a range of symptoms, such as diarrhea, weight loss, dehydration, and even death in severe cases, particularly in young animals. Eimeria species are highly host-specific, meaning that each species tends to infect only one type of animal. For example, Eimeria tenella primarily infects chickens, while Eimeria bovis is known to infect cattle.

Prevention and control measures for coccidiosis include good sanitation practices, such as cleaning and disinfecting animal living areas, as well as the use of anticoccidial drugs in feed or water to prevent infection. Additionally, vaccines are available for some Eimeria species to help protect animals from infection and reduce the severity of clinical signs.

Antigens are substances (usually proteins) found on the surface of cells, or viruses, that can be recognized by the immune system and stimulate an immune response. In the context of protozoa, antigens refer to the specific proteins or other molecules found on the surface of these single-celled organisms that can trigger an immune response in a host organism.

Protozoa are a group of microscopic eukaryotic organisms that include a diverse range of species, some of which can cause diseases in humans and animals. When a protozoan infects a host, the host's immune system recognizes the protozoan antigens as foreign and mounts an immune response to eliminate the infection. This response involves the activation of various types of immune cells, such as T-cells and B-cells, which recognize and target the protozoan antigens.

Understanding the nature of protozoan antigens is important for developing vaccines and other immunotherapies to prevent or treat protozoan infections. For example, researchers have identified specific antigens on the surface of the malaria parasite that are recognized by the human immune system and have used this information to develop vaccine candidates. However, many protozoan infections remain difficult to prevent or treat, and further research is needed to identify new targets for vaccines and therapies.

Salivary glands are exocrine glands that produce saliva, which is secreted into the oral cavity to keep the mouth and throat moist, aid in digestion by initiating food breakdown, and help maintain dental health. There are three major pairs of salivary glands: the parotid glands located in the cheeks, the submandibular glands found beneath the jaw, and the sublingual glands situated under the tongue. Additionally, there are numerous minor salivary glands distributed throughout the oral cavity lining. These glands release their secretions through a system of ducts into the mouth.

An oocyst is a thick-walled, environmentally resistant spore-like structure produced by some protozoan parasites, such as Cryptosporidium and Cyclospora, during their life cycle. These oocysts can survive for long periods in the environment and can infect a host when ingested, leading to infection and disease. The term "oocyst" is specific to certain groups of protozoan parasites and should not be confused with other types of spores produced by fungi or bacteria.

'Eimeria tenella' is a species of intracellular parasitic protozoa belonging to the phylum Apicomplexa. It is one of the several Eimeria species that cause coccidiosis, a common and economically significant intestinal disease in poultry.

Eimeria tenella primarily infects the caeca (plural of cecum) of chickens, turkeys, and other birds. The life cycle of this parasite involves several stages, including sporulation, ingestion, excystation, merogony, gametogony, and oocyst shedding.

The oocysts are passed in the feces of infected birds and can survive in the environment for long periods. Once ingested by another bird, the oocysts release sporozoites, which invade the epithelial cells lining the caeca. Here, they undergo asexual reproduction (merogony), producing numerous merozoites that infect neighboring cells.

After several rounds of merogony, the parasite enters the sexual phase of its life cycle (gametogony). Male and female gametes fuse to form zygotes, which develop into oocysts and are shed in the feces, completing the life cycle.

Clinical signs of Eimeria tenella infection include diarrhea, bloody droppings, decreased appetite, weight loss, and decreased egg production. Severe infections can lead to death, particularly in young birds. Coccidiosis is typically treated with anticoccidial drugs, which are added to the feed or water of infected birds. Good management practices, such as proper sanitation and biosecurity, can help prevent the spread of Eimeria tenella and other coccidian species.

'Plasmodium falciparum' is a specific species of protozoan parasite that causes malaria in humans. It is transmitted through the bites of infected female Anopheles mosquitoes and has a complex life cycle involving both human and mosquito hosts.

In the human host, the parasites infect red blood cells, where they multiply and cause damage, leading to symptoms such as fever, chills, anemia, and in severe cases, organ failure and death. 'Plasmodium falciparum' malaria is often more severe and life-threatening than other forms of malaria caused by different Plasmodium species. It is a major public health concern, particularly in tropical and subtropical regions of the world where access to prevention, diagnosis, and treatment remains limited.

Antibodies, protozoan, refer to the immune system's response to an infection caused by a protozoan organism. Protozoa are single-celled microorganisms that can cause various diseases in humans, such as malaria, giardiasis, and toxoplasmosis.

When the body is infected with a protozoan, the immune system responds by producing specific proteins called antibodies. Antibodies are produced by a type of white blood cell called a B-cell, and they recognize and bind to specific antigens on the surface of the protozoan organism.

There are five main types of antibodies: IgA, IgD, IgE, IgG, and IgM. Each type of antibody has a different role in the immune response. For example, IgG is the most common type of antibody and provides long-term immunity to previously encountered pathogens. IgM is the first antibody produced in response to an infection and is important for activating the complement system, which helps to destroy the protozoan organism.

Overall, the production of antibodies against protozoan organisms is a critical part of the immune response and helps to protect the body from further infection.

Cryptosporidium parvum is a species of protozoan parasite that causes the diarrheal disease cryptosporidiosis in humans and animals. It is found worldwide and is transmitted through the fecal-oral route, often through contaminated water or food. The parasite infects the epithelial cells of the gastrointestinal tract, leading to symptoms such as watery diarrhea, stomach cramps, nausea, and fever. It is particularly dangerous for people with weakened immune systems, such as those with HIV/AIDS or receiving immunosuppressive therapy. The parasite is highly resistant to chlorine-based disinfectants, making it difficult to eradicate from water supplies.

'Culicidae' is the biological family that includes all species of mosquitoes. It consists of three subfamilies: Anophelinae, Culicinae, and Toxorhynchitinae. Mosquitoes are small, midge-like flies that are known for their ability to transmit various diseases to humans and other animals, such as malaria, yellow fever, dengue fever, and Zika virus. The medical importance of Culicidae comes from the fact that only female mosquitoes require blood meals to lay eggs, and during this process, they can transmit pathogens between hosts.

"Theileria parva" is a species of intracellular parasitic protozoa that causes East Coast fever in cattle. It is a member of the genus Theileria and family Theileriidae within the phylum Apicomplexa. This parasite infects and reproduces within bovine lymphocytes, leading to the destruction of host cells and the development of clinical signs such as high fever, lymphadenopathy, anemia, and respiratory distress. Transmission occurs through the bite of infected ticks, primarily of the genus Rhipicephalus appendiculatus. The disease is prevalent in sub-Saharan Africa and poses a significant threat to the livestock industry in endemic areas.

Host-parasite interactions refer to the relationship between a parasitic organism (the parasite) and its host, which can be an animal, plant, or human body. The parasite lives on or inside the host and derives nutrients from it, often causing harm in the process. This interaction can range from relatively benign to severe, depending on various factors such as the species of the parasite, the immune response of the host, and the duration of infection.

The host-parasite relationship is often categorized based on the degree of harm caused to the host. Parasites that cause little to no harm are called commensals, while those that cause significant damage or disease are called parasitic pathogens. Some parasites can even manipulate their hosts' behavior and physiology to enhance their own survival and reproduction, leading to complex interactions between the two organisms.

Understanding host-parasite interactions is crucial for developing effective strategies to prevent and treat parasitic infections, as well as for understanding the ecological relationships between different species in natural ecosystems.

"Plasmodium vivax" is a species of protozoan parasite that causes malaria in humans. It's one of the five malaria parasites that can infect humans, with P. falciparum being the most deadly.

P. vivax typically enters the human body through the bite of an infected Anopheles mosquito. Once inside the human host, the parasite travels to the liver where it multiplies and matures. After a period of development that can range from weeks to several months, the mature parasites are released into the bloodstream, where they infect red blood cells and continue to multiply.

The symptoms of P. vivax malaria include fever, chills, headache, muscle and joint pain, and fatigue. One distinctive feature of P. vivax is its ability to form dormant stages (hypnozoites) in the liver, which can reactivate and cause relapses of the disease months or even years after the initial infection.

P. vivax malaria is treatable with medications such as chloroquine, but resistance to this drug has been reported in some parts of the world. Prevention measures include using insecticide-treated bed nets and indoor residual spraying to reduce mosquito populations, as well as taking prophylactic medications for travelers visiting areas where malaria is common.

"Plasmodium gallinaceum" is not a medical term per se, but it is a scientific name used in the field of parasitology. It refers to a species of protozoan parasites that belong to the genus Plasmodium, which are known to cause malaria in birds, particularly chickens and turkeys.

The life cycle of "Plasmodium gallinaceum" involves two hosts: an Anopheles mosquito vector and a bird host. When an infected mosquito bites a bird, the parasites enter the bloodstream and infect the red blood cells, where they multiply and cause damage, leading to symptoms of malaria in the bird host.

While "Plasmodium gallinaceum" is not a human pathogen, research on this species has contributed significantly to our understanding of the biology and epidemiology of Plasmodium parasites, including those that cause malaria in humans.

Theileriasis is a disease caused by the intracellular parasitic protozoa of the genus Theileria, which primarily infects and affects the erythrocytes (red blood cells) and lymphocytes (white blood cells) of various animals, including domestic and wild ruminants. This disease is mainly transmitted through the bite of infected ticks.

Infection with Theileria parasites can lead to a wide range of clinical signs in affected animals, depending on the specific Theileria species involved and the immune status of the host. Some common symptoms include fever, anemia, weakness, weight loss, lymphadenopathy (swelling of the lymph nodes), jaundice, and abortion in pregnant animals.

Two major Theileria species that cause significant economic losses in livestock are:

1. Theileria parva: This species is responsible for East Coast fever in cattle, which is a severe and often fatal disease endemic to Eastern and Southern Africa.
2. Theileria annulata: This species causes Tropical theileriosis or Mediterranean coast fever in cattle and buffaloes, primarily found in regions around the Mediterranean basin, Middle East, and Asia.

Preventive measures for theileriasis include tick control, use of live vaccines, and management practices that reduce exposure to infected ticks. Treatment options are limited but may involve chemotherapeutic agents such as buparvaquone or parvaquone, which can help control parasitemia (parasite multiplication in the blood) and alleviate clinical signs. However, these treatments do not provide complete immunity against reinfection.

Insect vectors are insects that transmit disease-causing pathogens (such as viruses, bacteria, parasites) from one host to another. They do this while feeding on the host's blood or tissues. The insects themselves are not infected by the pathogen but act as mechanical carriers that pass it on during their bite. Examples of diseases spread by insect vectors include malaria (transmitted by mosquitoes), Lyme disease (transmitted by ticks), and plague (transmitted by fleas). Proper prevention measures, such as using insect repellent and reducing standing water where mosquitoes breed, can help reduce the risk of contracting these diseases.

Coccidiosis is a parasitic infection caused by protozoa of the Eimeria genus, which typically affects the intestinal tract of animals, including humans. The infection occurs when a person or animal ingests oocysts (the infective stage of the parasite) through contaminated food, water, or direct contact with infected feces.

In humans, coccidiosis is most commonly found in children living in poor sanitary conditions and in individuals with weakened immune systems, such as those with HIV/AIDS or organ transplant recipients on immunosuppressive therapy. The infection can cause watery diarrhea, abdominal pain, nausea, vomiting, and fever. In severe cases, it may lead to dehydration, weight loss, and even death in individuals with compromised immune systems.

In animals, particularly in poultry, swine, and ruminants, coccidiosis can cause significant economic losses due to decreased growth rates, poor feed conversion, and increased mortality. Preventive measures include improving sanitation, reducing overcrowding, and administering anticoccidial drugs or vaccines.

'Life cycle stages' is a term used in the context of public health and medicine to describe the different stages that an organism goes through during its lifetime. This concept is particularly important in the field of epidemiology, where understanding the life cycle stages of infectious agents (such as bacteria, viruses, parasites) can help inform strategies for disease prevention and control.

The life cycle stages of an infectious agent may include various forms such as spores, cysts, trophozoites, schizonts, or vectors, among others, depending on the specific organism. Each stage may have different characteristics, such as resistance to environmental factors, susceptibility to drugs, and ability to transmit infection.

For example, the life cycle stages of the malaria parasite include sporozoites (the infective form transmitted by mosquitoes), merozoites (the form that infects red blood cells), trophozoites (the feeding stage inside red blood cells), schizonts (the replicating stage inside red blood cells), and gametocytes (the sexual stage that can be taken up by mosquitoes to continue the life cycle).

Understanding the life cycle stages of an infectious agent is critical for developing effective interventions, such as vaccines, drugs, or other control measures. For example, targeting a specific life cycle stage with a drug may prevent transmission or reduce the severity of disease. Similarly, designing a vaccine to elicit immunity against a particular life cycle stage may provide protection against infection or disease.

Insect bites and stings refer to the penetration of the skin by insects, such as mosquitoes, fleas, ticks, or bees, often resulting in localized symptoms including redness, swelling, itching, and pain. The reaction can vary depending on the individual's sensitivity and the type of insect. In some cases, systemic reactions like anaphylaxis may occur, which requires immediate medical attention. Treatment typically involves relieving symptoms with topical creams, antihistamines, or in severe cases, epinephrine. Prevention measures include using insect repellent and protective clothing.

Hepatocytes are the predominant type of cells in the liver, accounting for about 80% of its cytoplasmic mass. They play a key role in protein synthesis, protein storage, transformation of carbohydrates, synthesis of cholesterol, bile salts and phospholipids, detoxification, modification, and excretion of exogenous and endogenous substances, initiation of formation and secretion of bile, and enzyme production. Hepatocytes are essential for the maintenance of homeostasis in the body.

Malaria, Falciparum is defined as a severe and often fatal form of malaria caused by the parasite Plasmodium falciparum. It is transmitted to humans through the bites of infected Anopheles mosquitoes. This type of malaria is characterized by high fever, chills, headache, muscle and joint pain, and vomiting. If left untreated, it can cause severe anemia, kidney failure, seizures, coma, and even death. It is a major public health problem in many tropical and subtropical regions of the world, particularly in Africa.

I'm sorry for any confusion, but there seems to be a mistake in your question. Avian malaria is a disease that affects birds, not humans. It is caused by parasites from the genus Plasmodium, which are different than the ones causing human malaria (Plasmodium falciparum, Plasmodium vivax, Plasmodium ovale, and Plasmodium malariae).

Avian malaria is not a significant public health concern, and it's not transmitted to humans through mosquitoes or any other means. However, it can have serious impacts on bird populations.

Coccidia are a group of single-celled, microscopic parasites that belong to the phylum Apicomplexa. They are obligate intracellular parasites, which means they need to infect and live inside the cells of a host organism to survive and multiply. Coccidia are primarily found in animals, including mammals, birds, reptiles, and fish, but some species can also infect humans.

Coccidia are known to cause coccidiosis, a common intestinal disease that affects various animal species, including poultry, cattle, swine, sheep, goats, and pets such as cats and dogs. The disease is characterized by diarrhea, weight loss, dehydration, and sometimes death, particularly in young animals.

In humans, coccidia infection is usually caused by the species Cryptosporidium and Cyclospora. These parasites can infect the small intestine and cause watery diarrhea, stomach cramps, nausea, vomiting, fever, and weight loss. In immunocompromised individuals, such as those with HIV/AIDS or those undergoing chemotherapy, coccidia infections can be severe and life-threatening.

Coccidia are typically transmitted through the fecal-oral route, either by ingesting contaminated food or water or by direct contact with infected animals or their feces. Prevention measures include good hygiene practices, such as washing hands thoroughly after handling animals or using the restroom, avoiding drinking untreated water from sources that may be contaminated with animal feces, and practicing safe food handling and preparation.

BALB/c is an inbred strain of laboratory mouse that is widely used in biomedical research. The strain was developed at the Institute of Cancer Research in London by Henry Baldwin and his colleagues in the 1920s, and it has since become one of the most commonly used inbred strains in the world.

BALB/c mice are characterized by their black coat color, which is determined by a recessive allele at the tyrosinase locus. They are also known for their docile and friendly temperament, making them easy to handle and work with in the laboratory.

One of the key features of BALB/c mice that makes them useful for research is their susceptibility to certain types of tumors and immune responses. For example, they are highly susceptible to developing mammary tumors, which can be induced by chemical carcinogens or viral infection. They also have a strong Th2-biased immune response, which makes them useful models for studying allergic diseases and asthma.

BALB/c mice are also commonly used in studies of genetics, neuroscience, behavior, and infectious diseases. Because they are an inbred strain, they have a uniform genetic background, which makes it easier to control for genetic factors in experiments. Additionally, because they have been bred in the laboratory for many generations, they are highly standardized and reproducible, making them ideal subjects for scientific research.

Malaria, Vivax:

A type of malaria caused by the parasite Plasmodium vivax. It is transmitted to humans through the bites of infected Anopheles mosquitoes. Malaria, Vivax is characterized by recurring fevers, chills, and flu-like symptoms, which can occur every other day or every third day. This type of malaria can have mild to severe symptoms and can sometimes lead to complications such as anemia and splenomegaly (enlarged spleen). One distinguishing feature of Malaria, Vivax is its ability to form dormant stages in the liver (called hypnozoites), which can reactivate and cause relapses even after years of apparent cure. Effective treatment includes medication to kill both the blood and liver stages of the parasite. Preventive measures include using mosquito nets, insect repellents, and antimalarial drugs for prophylaxis in areas with high transmission rates.

Immunization is defined medically as the process where an individual is made immune or resistant to an infectious disease, typically through the administration of a vaccine. The vaccine stimulates the body's own immune system to recognize and fight off the specific disease-causing organism, thereby preventing or reducing the severity of future infections with that organism.

Immunization can be achieved actively, where the person is given a vaccine to trigger an immune response, or passively, where antibodies are transferred to the person through immunoglobulin therapy. Immunizations are an important part of preventive healthcare and have been successful in controlling and eliminating many infectious diseases worldwide.

Synthetic vaccines are artificially produced, designed to stimulate an immune response and provide protection against specific diseases. Unlike traditional vaccines that are derived from weakened or killed pathogens, synthetic vaccines are created using synthetic components, such as synthesized viral proteins, DNA, or RNA. These components mimic the disease-causing agent and trigger an immune response without causing the actual disease. The use of synthetic vaccines offers advantages in terms of safety, consistency, and scalability in production, making them valuable tools for preventing infectious diseases.

There is no medical definition for "Protozoan Vaccines" as such because there are currently no licensed vaccines available for human protozoan diseases. Protozoa are single-celled microorganisms that can cause various diseases in humans, such as malaria, toxoplasmosis, and leishmaniasis.

Researchers have been working on developing vaccines against some of these diseases, but none have yet been approved for use in humans. Therefore, it is not possible to provide a medical definition for "Protozoan Vaccines" as a recognized category of vaccines.

Aotidae is a family of nocturnal primates also known as lorises or slow lorises. They are native to Southeast Asia and are characterized by their small size, round head, large eyes, and a wet-nosed face. Slow lorises have a toxic bite, which they use to defend themselves against predators. They are currently listed as vulnerable or endangered due to habitat loss and hunting.

The liver is a large, solid organ located in the upper right portion of the abdomen, beneath the diaphragm and above the stomach. It plays a vital role in several bodily functions, including:

1. Metabolism: The liver helps to metabolize carbohydrates, fats, and proteins from the food we eat into energy and nutrients that our bodies can use.
2. Detoxification: The liver detoxifies harmful substances in the body by breaking them down into less toxic forms or excreting them through bile.
3. Synthesis: The liver synthesizes important proteins, such as albumin and clotting factors, that are necessary for proper bodily function.
4. Storage: The liver stores glucose, vitamins, and minerals that can be released when the body needs them.
5. Bile production: The liver produces bile, a digestive juice that helps to break down fats in the small intestine.
6. Immune function: The liver plays a role in the immune system by filtering out bacteria and other harmful substances from the blood.

Overall, the liver is an essential organ that plays a critical role in maintaining overall health and well-being.

Cryptosporidiosis is a diarrheal disease caused by microscopic parasites called Cryptosporidium. The parasites are found in the feces of infected animals and humans. People can become infected with Cryptosporidium by ingesting contaminated water or food, or by coming into contact with infected persons or animals.

The infection can cause a wide range of symptoms, including watery diarrhea, stomach cramps, nausea, vomiting, fever, and dehydration. In people with weakened immune systems, such as those with HIV/AIDS, the infection can be severe and even life-threatening.

Cryptosporidiosis is typically treated with increased fluid intake to prevent dehydration, and in some cases, medication may be prescribed to help manage symptoms. Good hygiene practices, such as washing hands thoroughly after using the bathroom or changing diapers, can help prevent the spread of Cryptosporidium.

Cryptosporidium is a genus of protozoan parasites that can cause the diarrheal disease known as cryptosporidiosis in humans and animals. These microscopic pathogens infect the epithelial cells of the gastrointestinal tract, primarily in the small intestine, leading to symptoms such as watery diarrhea, stomach cramps, nausea, vomiting, fever, and dehydration.

Cryptosporidium parasites have a complex life cycle, including several developmental stages within host cells. They are protected by an outer shell called oocyst, which allows them to survive outside the host's body for extended periods, making them resistant to chlorine-based disinfectants commonly used in water treatment.

Transmission of Cryptosporidium occurs through the fecal-oral route, often via contaminated water or food, or direct contact with infected individuals or animals. People at higher risk for severe illness include young children, elderly people, pregnant women, and those with weakened immune systems due to HIV/AIDS, cancer treatment, or organ transplantation.

Preventive measures include proper hand hygiene, avoiding consumption of untreated water or raw fruits and vegetables likely to be contaminated, and practicing safe sex. For immunocompromised individuals, antiparasitic medications such as nitazoxanide may help reduce the severity and duration of symptoms.

Attenuated vaccines consist of live microorganisms that have been weakened (attenuated) through various laboratory processes so they do not cause disease in the majority of recipients but still stimulate an immune response. The purpose of attenuation is to reduce the virulence or replication capacity of the pathogen while keeping it alive, allowing it to retain its antigenic properties and induce a strong and protective immune response.

Examples of attenuated vaccines include:

1. Sabin oral poliovirus vaccine (OPV): This vaccine uses live but weakened polioviruses to protect against all three strains of the disease-causing poliovirus. The weakened viruses replicate in the intestine and induce an immune response, which provides both humoral (antibody) and cell-mediated immunity.
2. Measles, mumps, and rubella (MMR) vaccine: This combination vaccine contains live attenuated measles, mumps, and rubella viruses. It is given to protect against these three diseases and prevent their spread in the population.
3. Varicella (chickenpox) vaccine: This vaccine uses a weakened form of the varicella-zoster virus, which causes chickenpox. By introducing this attenuated virus into the body, it stimulates an immune response that protects against future infection with the wild-type virus.
4. Yellow fever vaccine: This live attenuated vaccine is used to prevent yellow fever, a viral disease transmitted by mosquitoes in tropical and subtropical regions of Africa and South America. The vaccine contains a weakened form of the yellow fever virus that cannot cause the disease but still induces an immune response.
5. Bacillus Calmette-Guérin (BCG) vaccine: This live attenuated vaccine is used to protect against tuberculosis (TB). It contains a weakened strain of Mycobacterium bovis, which does not cause TB in humans but stimulates an immune response that provides some protection against the disease.

Attenuated vaccines are generally effective at inducing long-lasting immunity and can provide robust protection against targeted diseases. However, they may pose a risk for individuals with weakened immune systems, as the attenuated viruses or bacteria could potentially cause illness in these individuals. Therefore, it is essential to consider an individual's health status before administering live attenuated vaccines.

Parasitemia is a medical term that refers to the presence of parasites, particularly malaria-causing Plasmodium species, in the bloodstream. It is the condition where red blood cells are infected by these parasites, which can lead to various symptoms such as fever, chills, anemia, and organ damage in severe cases. The level of parasitemia is often used to assess the severity of malaria infection and to guide treatment decisions.

"Plasmodium malariae" is a species of protozoan parasite that causes malaria in humans. It's one of the five Plasmodium species known to cause malaria in humans, with the other four being P. falciparum, P. vivax, P. ovale, and P. knowlesi.

P. malariae is transmitted through the bites of infected Anopheles mosquitoes. Once inside the human body, the parasites travel to the liver where they multiply and then infect red blood cells. The infection caused by P. malariae can persist for several years, even a lifetime, if not treated properly.

The symptoms of P. malariae infection include fever, chills, headache, muscle and joint pain, and anemia. However, the severity of these symptoms is generally less than that caused by P. falciparum, which is the most deadly form of malaria.

It's worth noting that while P. malariae can be effectively treated with antimalarial drugs such as chloroquine and primaquine, drug resistance has been reported in some areas, making accurate diagnosis and treatment even more critical for controlling the spread of this disease.

Isospora is a genus of protozoan parasites that belong to the phylum Apicomplexa. These parasites are the causative agents of coccidiosis, a type of gastrointestinal infection that primarily affects birds and mammals, including humans. The disease is characterized by watery diarrhea, abdominal pain, vomiting, and weight loss.

Isospora species have a complex life cycle that involves two hosts: an intermediate host, where the parasite reproduces asexually, and a definitive host, where the parasite undergoes sexual reproduction. The infectious stage of the parasite is called an oocyst, which is shed in the feces of the infected host and can survive in the environment for long periods. When ingested by another host, the oocyst releases sporozoites, which invade the intestinal cells and multiply, causing damage to the intestinal lining and leading to the symptoms of coccidiosis.

In humans, Isospora belli is the most common species that causes infection. It is typically transmitted through the fecal-oral route, either by ingesting contaminated food or water or by person-to-person contact. Immunocompromised individuals, such as those with HIV/AIDS, are at higher risk of developing severe and chronic infections with Isospora. Treatment usually involves the use of antiprotozoal drugs, such as trimethoprim-sulfamethoxazole.

Glycoconjugates are a type of complex molecule that form when a carbohydrate (sugar) becomes chemically linked to a protein or lipid (fat) molecule. This linkage, known as a glycosidic bond, results in the formation of a new molecule that combines the properties and functions of both the carbohydrate and the protein or lipid component.

Glycoconjugates can be classified into several categories based on the type of linkage and the nature of the components involved. For example, glycoproteins are glycoconjugates that consist of a protein backbone with one or more carbohydrate chains attached to it. Similarly, glycolipids are molecules that contain a lipid anchor linked to one or more carbohydrate residues.

Glycoconjugates play important roles in various biological processes, including cell recognition, signaling, and communication. They are also involved in the immune response, inflammation, and the development of certain diseases such as cancer and infectious disorders. As a result, understanding the structure and function of glycoconjugates is an active area of research in biochemistry, cell biology, and medical science.

"Plasmodium knowlesi" is a species of protozoan parasite that causes malaria in certain primates, particularly macaques. It can also infect humans, and has been identified as a significant cause of malaria in Southeast Asia. The life cycle of P. knowlesi involves two hosts: anopheline mosquitoes and primates. The parasite is transmitted to the host through the bite of an infected mosquito, and then invades and reproduces within the host's red blood cells, leading to symptoms such as fever, chills, headache, and muscle and joint pain. In severe cases, P. knowlesi infections can lead to complications such as respiratory distress, kidney failure, and coma.

It is important to note that "Plasmodium knowlesi" malaria is different from the more common forms of human malaria caused by Plasmodium falciparum, Plasmodium vivax, Plasmodium ovale, and Plasmodium malariae. P. knowlesi infections can be effectively treated with antimalarial drugs, but early diagnosis and prompt treatment are crucial to prevent severe disease and complications.

Merozoites are infective forms of certain protozoan parasites, including those that cause malaria. They are produced during the asexual reproduction of these parasites within the red blood cells of their hosts. Merozoites are released from the infected red blood cells when they rupture and can then invade other red blood cells to continue the cycle of infection. These organisms have an outer membrane that allows them to interact with and invade host cells, and they contain proteins on their surface that help them evade the host's immune system. Merozoites are typically small, oval-shaped structures that measure around 1 micrometer in diameter.

Surface antigens are molecules found on the surface of cells that can be recognized by the immune system as being foreign or different from the host's own cells. Antigens are typically proteins or polysaccharides that are capable of stimulating an immune response, leading to the production of antibodies and activation of immune cells such as T-cells.

Surface antigens are important in the context of infectious diseases because they allow the immune system to identify and target infected cells for destruction. For example, viruses and bacteria often display surface antigens that are distinct from those found on host cells, allowing the immune system to recognize and attack them. In some cases, these surface antigens can also be used as targets for vaccines or other immunotherapies.

In addition to their role in infectious diseases, surface antigens are also important in the context of cancer. Tumor cells often display abnormal surface antigens that differ from those found on normal cells, allowing the immune system to potentially recognize and attack them. However, tumors can also develop mechanisms to evade the immune system, making it difficult to mount an effective response.

Overall, understanding the properties and behavior of surface antigens is crucial for developing effective immunotherapies and vaccines against infectious diseases and cancer.

A disease vector is a living organism that transmits infectious pathogens from one host to another. These vectors can include mosquitoes, ticks, fleas, and other arthropods that carry viruses, bacteria, parasites, or other disease-causing agents. The vector becomes infected with the pathogen after biting an infected host, and then transmits the infection to another host through its saliva or feces during a subsequent blood meal.

Disease vectors are of particular concern in public health because they can spread diseases rapidly and efficiently, often over large geographic areas. Controlling vector-borne diseases requires a multifaceted approach that includes reducing vector populations, preventing bites, and developing vaccines or treatments for the associated diseases.

'Anopheles gambiae' is a species of mosquito that is a major vector for the transmission of malaria. The female Anopheles gambiae mosquito bites primarily during the nighttime hours and preferentially feeds on human blood, which allows it to transmit the Plasmodium parasite that causes malaria. This species is widely distributed throughout much of Africa and is responsible for transmitting a significant proportion of the world's malaria cases.

The Anopheles gambiae complex actually consists of several closely related species or forms, which can be difficult to distinguish based on morphological characteristics alone. However, advances in molecular techniques have allowed for more accurate identification and differentiation of these species. Understanding the biology and behavior of Anopheles gambiae is crucial for developing effective strategies to control malaria transmission.

'Babesia bovis' is a species of intraerythrocytic protozoan parasite that causes bovine babesiosis, also known as cattle fever or redwater fever, in cattle. The parasite is transmitted through the bite of infected ticks, primarily from the genus Boophilus (e.g., Boophilus microplus).

The life cycle of 'Babesia bovis' involves two main stages: the sporozoite stage and the merozoite stage. Sporozoites are injected into the host's bloodstream during tick feeding and invade erythrocytes (red blood cells), where they transform into trophozoites. The trophozoites multiply asexually, forming new infective stages called merozoites. These merozoites are released from the infected erythrocytes and invade other red blood cells, continuing the life cycle.

Clinical signs of bovine babesiosis caused by 'Babesia bovis' include fever, anemia, icterus (jaundice), hemoglobinuria (the presence of hemoglobin in the urine), and occasionally neurologic symptoms due to the parasite's ability to invade and damage blood vessels in the brain. The disease can be severe or fatal, particularly in naïve animals or those exposed to high parasitemia levels.

Prevention and control strategies for bovine babesiosis include tick control measures, such as acaricides and environmental management, as well as vaccination using attenuated or recombinant vaccine candidates. Treatment typically involves the use of antiprotozoal drugs, such as imidocarb dipropionate or diminazene accurate, to reduce parasitemia and alleviate clinical signs.

Parasitic liver diseases refer to conditions caused by protozoa or helminths (parasitic worms) that infect and damage the liver. These parasites can enter the body through contaminated food, water, or direct contact with an infected host. Some examples of parasitic liver diseases include:

1. Ascariasis: Caused by the roundworm Ascaris lumbricoides, which can infect the liver and bile ducts, leading to inflammation, obstruction, and abscess formation.
2. Echinococcosis (Hydatid disease): A rare but serious condition caused by the larval stage of tapeworms from the genus Echinococcus. The liver is the most commonly affected organ, with cysts forming in the liver parenchyma that can grow slowly over several years and cause complications such as rupture or secondary bacterial infection.
3. Fascioliasis: A foodborne trematode (fluke) infection caused by Fasciola hepatica or Fasciola gigantica, which affects the liver and bile ducts. The larvae migrate through the liver tissue, causing inflammation, necrosis, and fibrosis.
4. Leishmaniasis: A protozoan infection caused by Leishmania spp., which can affect various organs, including the liver. Visceral leishmaniasis (kala-azar) is the most severe form of the disease, characterized by hepatosplenomegaly, fever, and anemia.
5. Toxoplasmosis: A protozoan infection caused by Toxoplasma gondii, which can affect the liver and other organs. While most immunocompetent individuals remain asymptomatic or experience mild flu-like symptoms, immunocompromised patients are at risk of severe liver damage and disseminated disease.
6. Schistosomiasis: A trematode (fluke) infection caused by Schistosoma spp., which affects the liver and portal venous system. The parasites lay eggs in the liver, causing granulomatous inflammation, fibrosis, and portal hypertension.
7. Fasciolopsiasis: A trematode (fluke) infection caused by Fasciolopsis buski, which affects the small intestine and liver. The larvae migrate through the liver tissue, causing inflammation, necrosis, and fibrosis.
8. Paragonimiasis: A trematode (lung fluke) infection caused by Paragonimus spp., which can affect the lungs, brain, and other organs, including the liver. The larvae migrate through the liver tissue, causing inflammation, necrosis, and fibrosis.
9. Clonorchiasis: A trematode (liver fluke) infection caused by Clonorchis sinensis, which affects the bile ducts and liver. The parasites lay eggs in the bile ducts, causing inflammation, cholangitis, and cholangiocarcinoma.
10. Opisthorchiasis: A trematode (liver fluke) infection caused by Opisthorchis spp., which affects the bile ducts and liver. The parasites lay eggs in the bile ducts, causing inflammation, cholangitis, and cholangiocarcinoma.
11. Heterophyiasis: A trematode (intestinal fluke) infection caused by Heterophyes spp., which affects the small intestine and liver. The larvae migrate through the liver tissue, causing inflammation, necrosis, and fibrosis.
12. Metagonimiasis: A trematode (intestinal fluke) infection caused by Metagonimus spp., which affects the small intestine and liver. The larvae migrate through the liver tissue, causing inflammation, necrosis, and fibrosis.
13. Echinostomiasis: A trematode (intestinal fluke) infection caused by Echinostoma spp., which affects the small intestine and liver. The larvae migrate through the liver tissue, causing inflammation, necrosis, and fibrosis.
14. Gastrodiscoidiasis: A trematode (intestinal fluke) infection caused by Gastrodiscoides spp., which affects the large intestine and liver. The larvae migrate through the liver tissue, causing inflammation, necrosis, and fibrosis.
15. Fascioliasis: A trematode (liver fluke) infection caused by Fasciola spp., which affects the liver and bile ducts. The larvae migrate through the liver tissue, causing inflammation, necrosis, and fibrosis.
16. Paragonimiasis: A trematode (lung fluke) infection caused by Paragonimus spp., which affects the lungs and sometimes the liver. The larvae migrate through the liver tissue, causing inflammation, necrosis, and fibrosis.
17. Schistosomiasis: A trematode (blood fluke) infection caused by Schistosoma spp., which affects the blood vessels and sometimes the liver. The larvae migrate through the liver tissue, causing inflammation, necrosis, and fibrosis.
18. Clonorchiasis: A trematode (liver fluke) infection caused by Clonorchis sinensis, which affects the liver and bile ducts. The larvae migrate through the liver tissue, causing inflammation, necrosis, and fibrosis.
19. Opisthorchiasis: A trematode (liver fluke) infection caused by Opisthorchis spp., which affects the liver and bile ducts. The larvae migrate through the liver tissue, causing inflammation, necrosis, and fibrosis.
20. Metagonimiasis: A trematode (intestinal fluke) infection caused by Metagonimus spp., which affects the small intestine and sometimes the liver. The larvae migrate through the liver tissue, causing inflammation, necrosis, and fibrosis.
21. Heterophyesiasis: A trematode (intestinal fluke) infection caused by Heterophyes spp., which affects the small intestine and sometimes the liver. The larvae migrate through the liver tissue, causing inflammation, necrosis, and fibrosis.
22. Echinostomiasis: A trematode (intestinal fluke) infection caused by Echinostoma spp., which affects the small intestine and sometimes the liver. The larvae migrate through the liver tissue, causing inflammation, necrosis, and fibrosis.
23. Fasciolopsiasis: A trematode (intestinal fluke) infection caused by Fasciolopsis buski, which affects the small intestine and sometimes the liver. The larvae migrate through the liver tissue, causing inflammation, necrosis, and fibrosis.
24. Paragonimiasis: A trematode (lung fluke) infection caused by Paragonimus spp., which affects the lungs and sometimes the liver. The larvae migrate through the liver tissue, causing inflammation, necrosis, and fibrosis.
25. Spirometra mansoni: A trematode (tapeworm) infection caused by Spirometra mansoni, which affects the brain and sometimes the liver. The larvae migrate through the liver tissue, causing inflammation, necrosis, and fibrosis.
26. Taenia solium: A trematode (tapeworm) infection caused by Taenia solium, which affects the brain and sometimes the liver. The larvae migrate through the liver tissue, causing inflammation, necrosis, and fibrosis.
27. Hymenolepis nana: A trematode (tapeworm) infection caused by Hymenolepis nana, which affects the small intestine and sometimes the liver. The larvae migrate through the liver tissue, causing inflammation, necrosis, and fibrosis.
28. Diphyllobothrium latum: A trematode (tapeworm) infection caused by Diphyllobothrium latum, which affects the small intestine and sometimes the liver. The larvae migrate through the liver tissue, causing inflammation, necrosis, and fibrosis.
29. Echinococcus granulosus:

"Toxoplasma" is a genus of protozoan parasites, and the most well-known species is "Toxoplasma gondii." This particular species is capable of infecting virtually all warm-blooded animals, including humans. It's known for its complex life cycle that involves felines (cats) as the definitive host.

Infection in humans, called toxoplasmosis, often occurs through ingestion of contaminated food or water, or through contact with cat feces that contain T. gondii oocysts. While many people infected with Toxoplasma show no symptoms, it can cause serious health problems in immunocompromised individuals and developing fetuses if a woman becomes infected during pregnancy.

It's important to note that while I strive to provide accurate information, this definition should not be used for self-diagnosis or treatment. Always consult with a healthcare professional for medical advice.

Monoclonal antibodies are a type of antibody that are identical because they are produced by a single clone of cells. They are laboratory-produced molecules that act like human antibodies in the immune system. They can be designed to attach to specific proteins found on the surface of cancer cells, making them useful for targeting and treating cancer. Monoclonal antibodies can also be used as a therapy for other diseases, such as autoimmune disorders and inflammatory conditions.

Monoclonal antibodies are produced by fusing a single type of immune cell, called a B cell, with a tumor cell to create a hybrid cell, or hybridoma. This hybrid cell is then able to replicate indefinitely, producing a large number of identical copies of the original antibody. These antibodies can be further modified and engineered to enhance their ability to bind to specific targets, increase their stability, and improve their effectiveness as therapeutic agents.

Monoclonal antibodies have several mechanisms of action in cancer therapy. They can directly kill cancer cells by binding to them and triggering an immune response. They can also block the signals that promote cancer growth and survival. Additionally, monoclonal antibodies can be used to deliver drugs or radiation directly to cancer cells, increasing the effectiveness of these treatments while minimizing their side effects on healthy tissues.

Monoclonal antibodies have become an important tool in modern medicine, with several approved for use in cancer therapy and other diseases. They are continuing to be studied and developed as a promising approach to treating a wide range of medical conditions.

There doesn't seem to be a specific medical definition for "DNA, protozoan" as it is simply a reference to the DNA found in protozoa. Protozoa are single-celled eukaryotic organisms that can be found in various environments such as soil, water, and the digestive tracts of animals.

Protozoan DNA refers to the genetic material present in these organisms. It is composed of nucleic acids, including deoxyribonucleic acid (DNA) and ribonucleic acid (RNA), which contain the instructions for the development, growth, and reproduction of the protozoan.

The DNA in protozoa, like in other organisms, is made up of two strands of nucleotides that coil together to form a double helix. The four nucleotide bases that make up protozoan DNA are adenine (A), thymine (T), guanine (G), and cytosine (C). These bases pair with each other to form the rungs of the DNA ladder, with A always pairing with T and G always pairing with C.

The genetic information stored in protozoan DNA is encoded in the sequence of these nucleotide bases. This information is used to synthesize proteins, which are essential for the structure and function of the organism's cells. Protozoan DNA also contains other types of genetic material, such as regulatory sequences that control gene expression and repetitive elements with no known function.

Understanding the DNA of protozoa is important for studying their biology, evolution, and pathogenicity. It can help researchers develop new treatments for protozoan diseases and gain insights into the fundamental principles of genetics and cellular function.

Erythrocytes, also known as red blood cells (RBCs), are the most common type of blood cell in circulating blood in mammals. They are responsible for transporting oxygen from the lungs to the body's tissues and carbon dioxide from the tissues to the lungs.

Erythrocytes are formed in the bone marrow and have a biconcave shape, which allows them to fold and bend easily as they pass through narrow blood vessels. They do not have a nucleus or mitochondria, which makes them more flexible but also limits their ability to reproduce or repair themselves.

In humans, erythrocytes are typically disc-shaped and measure about 7 micrometers in diameter. They contain the protein hemoglobin, which binds to oxygen and gives blood its red color. The lifespan of an erythrocyte is approximately 120 days, after which it is broken down in the liver and spleen.

Abnormalities in erythrocyte count or function can lead to various medical conditions, such as anemia, polycythemia, and sickle cell disease.

'Animal structures' is a broad term that refers to the various physical parts and organs that make up animals. These structures can include everything from the external features, such as skin, hair, and scales, to the internal organs and systems, such as the heart, lungs, brain, and digestive system.

Animal structures are designed to perform specific functions that enable the animal to survive, grow, and reproduce. For example, the heart pumps blood throughout the body, delivering oxygen and nutrients to the cells, while the lungs facilitate gas exchange between the animal and its environment. The brain serves as the control center of the nervous system, processing sensory information and coordinating motor responses.

Animal structures can be categorized into different systems based on their function, such as the circulatory system, respiratory system, nervous system, digestive system, and reproductive system. Each system is made up of various structures that work together to perform a specific function.

Understanding animal structures and how they function is essential for understanding animal biology and behavior. It also has important implications for human health, as many animals serve as models for studying human disease and developing new treatments.

Molecular sequence data refers to the specific arrangement of molecules, most commonly nucleotides in DNA or RNA, or amino acids in proteins, that make up a biological macromolecule. This data is generated through laboratory techniques such as sequencing, and provides information about the exact order of the constituent molecules. This data is crucial in various fields of biology, including genetics, evolution, and molecular biology, allowing for comparisons between different organisms, identification of genetic variations, and studies of gene function and regulation.

An epitope is a specific region on the surface of an antigen (a molecule that can trigger an immune response) that is recognized by an antibody, B-cell receptor, or T-cell receptor. It is also commonly referred to as an antigenic determinant. Epitopes are typically composed of linear amino acid sequences or conformational structures made up of discontinuous amino acids in the antigen. They play a crucial role in the immune system's ability to differentiate between self and non-self molecules, leading to the targeted destruction of foreign substances like viruses and bacteria. Understanding epitopes is essential for developing vaccines, diagnostic tests, and immunotherapies.

A parasite is an organism that lives on or in a host organism and gets its sustenance at the expense of the host. Parasites are typically much smaller than their hosts, and they may be classified as either ectoparasites (which live on the outside of the host's body) or endoparasites (which live inside the host's body).

Parasites can cause a range of health problems in humans, depending on the type of parasite and the extent of the infection. Some parasites may cause only mild symptoms or none at all, while others can lead to serious illness or even death. Common symptoms of parasitic infections include diarrhea, abdominal pain, weight loss, and fatigue.

There are many different types of parasites that can infect humans, including protozoa (single-celled organisms), helminths (worms), and ectoparasites (such as lice and ticks). Parasitic infections are more common in developing countries with poor sanitation and hygiene, but they can also occur in industrialized nations.

Preventing parasitic infections typically involves practicing good hygiene, such as washing hands regularly, cooking food thoroughly, and avoiding contaminated water. Treatment for parasitic infections usually involves medication to kill the parasites and relieve symptoms.

... to give rise to the sporozoites. The sporozoites escape from the oocyst and migrate within the body of the vector to the ... Sporozoites have three walls. Heteroxenous: alternates between vertebrate host (in which merogony occurs) and invertebrate host ... Frischknecht, Friedrich; Matuschewski, Kai (2017-01-20). "Plasmodium Sporozoite Biology". Cold Spring Harbor Perspectives in ... for the set of organelles in the sporozoite. The Apicomplexa comprise the bulk of what used to be called the Sporozoa, a group ...
They have four infective sporozoites each. The sporozoites undergo schizogony (merogony). Giard A (1884). Note sur un nouveau ...
Each spore has eight sporozoites. Parasites in this genus infect Systenus species. Ormières R, Tuzet, Odette, Vago C et al ( ...
The oocyst contains numerous sporozoites. Sporocysts do not occur. L. helminthorum - nematode (Mononchus composticola) L. ...
Each sporocyst produces 4 sporozoites. The gamonts are elongated. During syngny, four microgametes associate with the ...
The encysted sporozoites are ingested. The sporozoites decyst and invade the intestinal wall and from there reach the liver and ...
Each sporocyst has 2 sporozoites. Ray, HN, Raghavachari K (1942) Observations on a new coccidium, Octosporella mabuiae n. gen ...
Each sporocyst have 2 sporozoites. McQuistionin T (1990) Polysporella genovesae n. gen., n. sp. (Apicomplexa: Eimeriidae) from ...
Once ingested the sporozoites invade the wall of the gut en route to the fat body. After invasion the sporozoites enlarge into ... Each oocyst contains 8 sporozoites. This species infects the scorpion fly (Panorpa communis). Grell K G (1938) Untersuchungen ...
Eight sporozoites form per oocyst. Tuzet O, Manier JF (1953) Syncystis aeschnae n.sp. Néogrégarine (Schizogrégarine, Léger, ...
Sporozoites are the transmission stage. If they enter an avian host they may infect. Aedes aegypti is a vector. P. gallinaceum ... On the other hand sporozoites do the opposite: They decrease the volume of meals, increasing the number of meals taken, ... The complete inhibition of sporozoite colonization of Aedes aegypti salivary glands they achieved could be due to the antibody ... Ghosh, Anil Kumar; Jacobs-Lorena, Marcelo (2009-07-14). "Plasmodium sporozoite invasion of the mosquito salivary gland". ...
Sporozoites have not been described. Huxley JS (1910) On Ganymedes anaspidis (nov. gen., nov. sp.), a gregarine from the ...
Eight sporozoites form per oocyst. Tuzet O, Manier JF (1953) Syncystis aeschnae n.sp. Néogrégarine (Schizogrégarine, Léger, ...
Each sporocyst has numerous sporozoites. This genus and species has been described in the European hedgehog (Erinaceus ...
Each sporocyst has four sporozoites. Species from this genus have been described from vertebrates and invertebrates. It seems ...
Sporulated oocyst then releases 8 sporozoites. These sporozoites attack the intestinal epithelial cells where they develop into ...
The sporozoites are elongated and measure ~7 μm × 3 μm. They escape from oocyst while in gut lumen when polar plugs dissolve. ... Flexing by the sporozoites generates motility. This permits them to penetrate the gut wall and migrate to the body fat where ... Four or eight sporozoites are formed internally after 2 or 3 nuclear divisions respectively. M. alphitobii - lesser mealworm ( ... An apical complex appears to be present in sporozoites, merozoites and gamonts. The meronts are found in a parasitophorous ...
Each sporocyst generally has 2 sporozoites. Desser, S.S.; Bower, S.M.; Hong, H. (1998). "Pseudoklossia semiluna n. sp. ( ...
The sporocysts give rise to eight sporozoites. This species is found in species of the ascidian genus Amaroucium. The parasite ...
The sporozoites may also invade liver parenchyma or tissue macrophages. A quite distinct feature of the parasite is that it ... The sporozoites invade macrophages or endothelial cells. After development there, they invade circulating blood cells. ... The oocysts usually contain more than 32 sporozoites. There are no sporocysts. In the species that infect amphibians, the ... The most commonly described stages are the sporozoites found in the peripheral blood erythrocytes. Despite considerable ...
The oocysts contain eight (rarely four) sporozoites. Grassé, Pierre-Paul, ed. (1953). "Classe des gregarinomorphes ( ...
Cells infected with sporozoites eventually burst, releasing merozoites into the bloodstream. Sporozoites are motile and they ... A sporozoite (ancient Greek sporos, seed + zōon, animal) is the cell form that infects new hosts. In Plasmodium, for instance, ... This results in the production of sporozoites. Other forms of replication include endodyogeny and endopolygeny. Endodyogeny is ... the sporozoites are cells that develop in the mosquito's salivary glands, leave the mosquito during a blood meal, and enter ...
Each oocyst have 8-14 free sporozoites. A large oocyst residuum is present. The micropyle tends to be large. Wasielewski T ( ...
The extracellular sporozoites develop directly into gamonts. The family Grelliidae includes the genera Coelotropha and Grellia ...
Within the intestine these develop into sporozoites. The sporozoites penetrate the gut wall and invade the haemocoele ...
The sporocytes have 2-4 sporozoites each. Very little is known about the life cycle. The parasites are presumably ingested via ...
Sporozoites from the tick secrete into the feeding site of the animal. Sporozoites enter lymphoblasts to form a schizont. There ... From this, sporogony occurs to create sporozoites to continue the life cycle. In the cattle host T. parva is an intracellular ... Research is being done to create a vaccine with a mixture of many antigens from sporozoite and schizont stage to increase ...
The oocysts are spindle-shaped with eight sporozoites. v t e (Articles with short description, Short description is different ...
The oocysts contain sporocysts with two sporozoites each. Levine ND (1979). "Agamococcidiorida ord. n. and Rhytidocystidae fam ...
Each oocysts contains 2 sporocysts with 4 sporozoites. The oocysts have a polar body and a prominent residuum but lack ...
  • Plasmodium falciparum infected Anopheles stephensi , taken from a group of mosquitoes which had been used to challenge recipients of (NANP) 3 -TT vaccine, were tested for P. falciparum sporozoite content by an immunoradiometric assay. (ajtmh.org)
  • The project aims at providing an understanding of antibody-mediated neutralization of Plasmodium sporozoites. (anr.fr)
  • In this study we present the first systematic analysis of the immunity induced by normal Plasmodium yoelii sporozoites in mice. (unifesp.br)
  • Malaria infections initiate when infectious Plasmodium sporozoites are transmitted by Anopheline mosquitoes during their blood meal. (psu.edu)
  • Here is described a discontinuous density gradient purification method for Plasmodium sporozoites that maintains parasite infectivity in vitro and in vivo and greatly reduces mosquito and microbial contaminants. (psu.edu)
  • In addition to safety and tolerability of Plasmodium falciparum Sporozoites (PfRAS), this study is a comprehensive, systems biology-based effort to identify and validate biomarkers of protection with PfRAS immunization, comparing sterility protected to nonprotected study subjects. (cognitive-liberty.online)
  • Diseases caused by Apicomplexa include: Babesiosis (Babesia) Malaria (Plasmodium) Cryptosporidiosis (Cryptosporidium parvum) Cyclosporiasis (Cyclospora cayetanensis) Cystoisosporiasis (Cystoisospora belli) Toxoplasmosis (Toxoplasma gondii) The name Apicomplexa derives from two Latin words-apex (top) and complexus (infolds)-for the set of organelles in the sporozoite. (wikipedia.org)
  • Pf etramp10.3 is related to rodent Plasmodium uis4 and the uis4 promoter has been used to drive high transgene expression in rodent parasite sporozoites and liver-stages. (ox.ac.uk)
  • Erratum to ''Naturally acquired immune responses against Plasmodium falciparum sporozoites and liver infection" [Int. J. Parasitol. (ox.ac.uk)
  • Plasmodium species exhibit three life-cycle stages- gametocytes , sporozoites , and merozoites . (britannica.com)
  • Near infrared spectroscopy (NIRS), a fast and non-destructive method, has recently been shown to distinguish, with 95% accuracy, between uninfected and sporozoite-infected mosquitoes using laboratory strains of Plasmodium falciparum (PfN54). (ox.ac.uk)
  • Vaccination with RTS,S induces antibodies against circumsporozoite protein (CSP), which is expressed by sporozoites, the infective form of Plasmodium that mosquitos transmit. (jci.org)
  • Other features common to this phylum are a lack of cilia, sexual reproduction, use of micropores for feeding, and the production of oocysts containing sporozoites as the infective form. (wikipedia.org)
  • An 18.3 kDa sporozoite specific protein was discovered and an assay developed to determine whether and when serum antibody to this protein detects infection acquired from ingestion of oocysts. (usda.gov)
  • Presence of serum antibody to sporozoite 18.3 kDa protein identifies acquisition of infection with oocysts in the prior ~6 months. (usda.gov)
  • Sporulated oocysts, containing 4 sporozoites, are excreted by the infected host through feces and possibly other routes such as respiratory secretions (1) . (cdc.gov)
  • Despite the high density of Anopheles , no parasite sporozoites or oocysts were found in dissected mosquitoes. (who.int)
  • The most important demonstration will be to demonstrate equivalent protection to IV administration, using radiation-attenuated sporozoites. (sbir.gov)
  • OBJECTIVE: To develop an innovative method for administering a malaria sporozoite vaccine that provides efficient access by the sporozoites to the intravascular space, thereby mimicking direct intravenous (IV) delivery. (sbir.gov)
  • Proof-of-concept should be established in animal models using cryopreserved malaria sporozoites as the Phase I objective, with pre-clinical development, clinical testing and FDA licensure of a P. falciparum sporozoite vaccine (administered by this novel method) projected for later development phases. (sbir.gov)
  • The method may incorporate novel administration devices, locations, volumes, formulations or other innovative approaches, and should be equivalent to the current gold standard, direct intravenous inoculation, as measured by sporozoite infectivity, vaccine immunogenicity or vaccine efficacy on subsequent malaria challenge. (sbir.gov)
  • To rationally style a highly powerful malaria vaccine that assists trigger immunity in the pre-erythrocytic stage, even more insight in to the skin-liver migration systems and immune system priming by sporozoites can be urgently required. (arqueologiamendoza.com)
  • The sporozoite is the infectious stage of the malaria parasite transmitted to humans by the female Anopheles mosquito. (sbir.gov)
  • The cryopreserved sporozoites can be either fully infectious or radiation-attenuated. (sbir.gov)
  • Following true-immunization or mock-immunization, study subjects and nonimmunized infectivity controls will receive a challenge via the bites of 5 An stephensi mosquitoes carrying infectious P falciparum sporozoites within a controlled clinical environment (controlled human malaria infection, CHMI) to determine the level of sterile protection. (cognitive-liberty.online)
  • All members of this phylum have an infectious stage-the sporozoite-which possesses three distinct structures in an apical complex. (wikipedia.org)
  • Sporozoites become infectious 24 hours or more after the cat sheds the oocyst via feces. (medscape.com)
  • These data suggest that this challenge for evaluating P. falciparum sporozoite vaccines is a demanding test of immunity. (ajtmh.org)
  • Immunization of female CBA mice by infection with live sporozoites of a single strain, CB or AJ, of the malaria parasite P. c. chabaudi, under the cover of the anti-blood-stage antimalarial drug, MF, induced responses that were variously effective before and/or during patent blood infection following challenge with either sporozoites or blood-stage parasites of one or the other of these two strains of parasite. (mirnamimic.com)
  • sporozoite infection in mosquitoes is routinely done using ELISA (enzyme-linked immunosorbent assay). (ox.ac.uk)
  • The aim of this present study was to further investigate the reproducibility of NIRS to identify sporozoite infection in mosquitoes infected using field isolates of P. falciparum gametocytes from asymptomatic carriers. (ox.ac.uk)
  • Mosquitoes were kept for 14-days post feeding after which they were scanned using NIRS and subsequently analysed for sporozoite infection using circumsporozoite-ELISA. (ox.ac.uk)
  • A predictive model could not be generated.Conclusions: The results of this study were not consistent with previous published research on NIRS for detection of sporozoite infection in the same mosquito species and may reflect differences between laboratory and field conditions. (ox.ac.uk)
  • Detection of serum antibody to an 18.3 kDa sporozoite protein was a sensitive and specific method to identify primary infection by sporozoites within the past 6-8 months in persons infected post-natally. (usda.gov)
  • Blood samples were taken twice a the level of malaria transmission by mea- month from January to October 2002 from suring sporozoite infection rates in field- all persons presenting or having presented collected anopheline mosquitoes from with fever. (who.int)
  • During infection in unvaccinated individuals, sporozoites travel to the liver, where they move through hepatocytes and differentiate to hepatic merozoites. (jci.org)
  • Antibodies to CSP following RTS,S vaccination immobilize the sporozoites, thereby preventing infection of hepatocytes. (jci.org)
  • Protection was not found to be mediated by the Abs elicited against pre-erythrocytic and blood stage parasites, as demonstrated by inhibition assays of sporozoite penetration or development in vitro and in vivo assays of sporozoite infectivity or blood stage parasite development. (unifesp.br)
  • and movement cytometry as well as the fitness of labelled sporozoites was dependant on evaluation of infectivity to individual hepatocytes within a rodent infections modelUsing confocal video microscopy and custom made software, single-sporozoite monitoring studies in individual skin-explants had been performed. (arqueologiamendoza.com)
  • Immunization With sporozoites, which was conducted under chloroquine treatment to minimize the influence of blood stage parasites, induced a strong protection against a subsequent sporozoite and, to a lesser extent, against infected RBC challenges. (unifesp.br)
  • Induction of this protective immunity depended on the presence of liver stage parasites, as primaquine treatment concurrent with sporozoite immunization abrogated protection. (unifesp.br)
  • pan-strain suppression buy Hydroxychloroquine of patent erythrocytic parasite growth (CB sporozoite-immunization suppressed growth of erythrocytic parasites in sporozoite- and blood parasite-induced infections of both AJ and CB). (mirnamimic.com)
  • While both AJ and CB were involved in the induction of strain-specific immunity against the blood-stage parasites, only CB, and not AJ, live sporozoite immunization induced powerful pan-strain effects in suppressing blood-stage parasites. (mirnamimic.com)
  • It is conceivable that differences in the viabilities of CB and AJ sporozoites may have contributed to some of the effects observed in this study, as this would result in the development of differing numbers of exo-erythrocytic stage parasites for each strain during the immunization procedure. (mirnamimic.com)
  • However, we found no evidence for any differences in viabilities when assessing sporozoite motility prior to inoculation. (mirnamimic.com)
  • EIR, entomologic inoculation rate expressed as the monthly average no. of sporozoite-infected bites/person-night. (cdc.gov)
  • At this time, the amount of parasites continues to be low (~100 sporozoites are injected per mosquito bite 2) and throughout their migration from your skin inoculation site towards the liver organ the extracellular sporozoites are susceptible to strike by immunoglobulins 3, 4. (arqueologiamendoza.com)
  • A P. falciparum NF54 Reporter Line Expressing mCherry-Luciferase in Gametocytes, Sporozoites, and Liver-Stages. (ox.ac.uk)
  • The [email protected] parasites express mCherry in gametocytes, sporozoites, and liver-stages. (ox.ac.uk)
  • While no mCherry signal was detected in asexual blood-stage parasites above background levels, luciferase expression was detected in asexual blood-stages, as well as in gametocytes, sporozoites and liver-stages, with the highest levels of reporter expression detected in stage III-V gametocytes and in sporozoites. (ox.ac.uk)
  • The expression of mCherry and luciferase in gametocytes and sporozoites makes this transgenic parasite line suitable to use in in vitro assays that examine the effect of transmission blocking inhibitors and to analyse gametocyte and sporozoite biology. (ox.ac.uk)
  • Gametocytes within a mosquito develop into sporozoites. (britannica.com)
  • During the following 1 to 2 weeks, gametocytes inside the mosquito reproduce sexually and produce infective sporozoites. (msdmanuals.com)
  • This laboratory test is now often used to determine whether mosquito salivary glands are positive for sporozoites. (cdc.gov)
  • The percentage of P. knowlesi -positive salivary glands among the sporozoite-positive salivary glands that underwent PCR. (cdc.gov)
  • parasites, i.e. sporozoites injected by an contaminated mosquito that infect liver organ cells. (arqueologiamendoza.com)
  • In rodents, genetically manufactured murine parasites expressing reporter proteins such as for example green fluorescent proteins (GFP) or luciferase offered unprecedented understanding into host-to-host parasite transmitting and following migratory behavior of sporozoites from pores and skin to liver organ. (arqueologiamendoza.com)
  • By using such equipment, sporozoite motility in your skin was visualized 11-13 and the original dermal immunological reactions to injected parasites could possibly be characterized 14, 15. (arqueologiamendoza.com)
  • As soon as sporozoites are injected into the skin by the mosquito, individual parasites begin to quickly move toward the blood vessels. (sciencedaily.com)
  • However, sporozoites can only be produced in and isolated from mosquitoes, and their isolation results in large amounts of accompanying mosquito debris and contaminating microbes. (psu.edu)
  • A total of 134 (7%, 134/1881) sporozoite-infected mosquitoes were obtained from 9 successful experiments. (ox.ac.uk)
  • The PLS models were unable to distinguish between sporozoite-infected and uninfected mosquitoes. (ox.ac.uk)
  • The current findings indicate that methods for sporozoite detection should be tested on field isolates at an early stage in their development and are informative for future research seeking novel high-throughput methods for parasite detection in mosquitoes. (ox.ac.uk)
  • In conjunction with aseptic mosquito rearing techniques, this purification technique will also support production of live attenuated sporozoites for vaccination. (psu.edu)
  • The zygote sporulates and divides to form sporozoites within the oocyst. (medscape.com)
  • The therapeutic effectiveness of large doses of paludrine in acute attacks of sporozoite-induced vivax malaria, Chesson strain. (vivaxmalaria.org)
  • Therefore, it is a significant tool for advancement of vaccines predicated on attenuated sporozoites and their path of administration. (arqueologiamendoza.com)
  • Large-scale preparations of purified sporozoites will allow for enhanced in vitro infections, proteomics, and biochemical characterizations. (psu.edu)
  • Malaria transmission begins when uni-nucleated sporozoites are transmitted by mosquito bite, reach the liver and invade hepatocytes within which they transform into multi-nucleated hepatic schizonts. (elifesciences.org)
  • Lors d'une enquête parasitologique en 2002, aucun cas de paludisme n'a été identifié mais une enquête entomologique a trouvé de fortes densités d' Anopheles stephensi et d' A. pulcherrimus . (who.int)
  • When the mosquito feeds on another human, sporozoites are inoculated and quickly reach the liver and infect hepatocytes. (msdmanuals.com)
  • Conclusions: This novel method effectively purifies viable malaria sporozoites by greatly reducing contaminating mosquito debris and microbial burdens associated with parasite isolation. (psu.edu)
  • Conclusions: The capability to label and picture non-GMO sporozoites supplies the basis for comprehensive studies in the individual epidermis stage of malaria with prospect of translation. (arqueologiamendoza.com)
  • The sporozoite form of the parasite is injected into the human blood stream with mosquito saliva. (nottingham.ac.uk)
  • This sporozoite density is greater than that usually found in the field. (ajtmh.org)
  • that it is species-specific and it can detect sporozoites in pooled samples [ 2 ]. (who.int)
  • The sporozoites are transmitted via the saliva of a feeding mosquito to the human bloodstream. (britannica.com)
  • As a result, there is certainly demand for imaging systems that support monitoring of single not really genetically revised (non-GMO) sporozoites in human being pores and skin. (arqueologiamendoza.com)
  • Predicated on these resources, we reasoned fluorescent tracers could possibly be utilized to track non-GMO sporozoites IACS-8968 S-enantiomer in human pores and skin also. (arqueologiamendoza.com)
  • This innovative method should contrast with traditional intramuscular (IM), subcutaneous (SC) or intradermal (ID) methods delivering sporozoites primarily to the interstitial space. (sbir.gov)
  • Eventually, just around 25 % of injected sporozoites shall make their method through the shot site towards the liver organ, leaving almost all behind in your skin 5. (arqueologiamendoza.com)
  • In parallel to the entomological investiga- cient and economic method for tion, a malaria prevalence survey was con- determining sporozoite prevalence, espe- ducted in the same 8 villages following the cially in areas of low malaria endemicity criteria of the National Malaria Control Pro- where dissections may not be conducted gramme [ 5 ]. (who.int)
  • Is the Subject Area "Sporozoites" applicable to this article? (plos.org)
  • This technique backed the visualization and following quantitative analysis from the migration patterns of specific non-GMO sporozoites in individual epidermis and didn't influence the fitness of sporozoites. (arqueologiamendoza.com)