The first stomach of ruminants. It lies on the left side of the body, occupying the whole of the left side of the abdomen and even stretching across the median plane of the body to the right side. It is capacious, divided into an upper and a lower sac, each of which has a blind sac at its posterior extremity. The rumen is lined by mucous membrane containing no digestive glands, but mucus-secreting glands are present in large numbers. Coarse, partially chewed food is stored and churned in the rumen until the animal finds circumstances convenient for rumination. When this occurs, little balls of food are regurgitated through the esophagus into the mouth, and are subjected to a second more thorough mastication, swallowed, and passed on into other parts of the compound stomach. (From Black's Veterinary Dictionary, 17th ed)
A phylum of EUKARYOTES characterized by the presence of cilia at some time during the life cycle. It comprises three classes: KINETOFRAGMINOPHOREA; OLIGOHYMENOPHOREA; and POLYMENOPHOREA.
Short-chain fatty acids of up to six carbon atoms in length. They are the major end products of microbial fermentation in the ruminant digestive tract and have also been implicated in the causation of neurological diseases in humans.
Anaerobic degradation of GLUCOSE or other organic nutrients to gain energy in the form of ATP. End products vary depending on organisms, substrates, and enzymatic pathways. Common fermentation products include ETHANOL and LACTIC ACID.
The second stomach of ruminants. It lies almost in the midline in the front of the abdomen, in contact with the liver and diaphragm and communicates freely with the RUMEN via the ruminoreticular orifice. The lining of the reticulum is raised into folds forming a honeycomb pattern over the surface. (From Concise Veterinary Dictionary, 1988)
Foodstuff used especially for domestic and laboratory animals, or livestock.
Any of the ruminant mammals with curved horns in the genus Ovis, family Bovidae. They possess lachrymal grooves and interdigital glands, which are absent in GOATS.
Domesticated bovine animals of the genus Bos, usually kept on a farm or ranch and used for the production of meat or dairy products or for heavy labor.
A suborder of the order ARTIODACTYLA whose members have the distinguishing feature of a four-chambered stomach, including the capacious RUMEN. Horns or antlers are usually present, at least in males.
The process of breakdown of food for metabolism and use by the body.
One of the three domains of life (the others being Eukarya and ARCHAEA), also called Eubacteria. They are unicellular prokaryotic microorganisms which generally possess rigid cell walls, multiply by cell division, and exhibit three principal forms: round or coccal, rodlike or bacillary, and spiral or spirochetal. Bacteria can be classified by their response to OXYGEN: aerobic, anaerobic, or facultatively anaerobic; by the mode by which they obtain their energy: chemotrophy (via chemical reaction) or PHOTOTROPHY (via light reaction); for chemotrophs by their source of chemical energy: CHEMOLITHOTROPHY (from inorganic compounds) or chemoorganotrophy (from organic compounds); and by their source for CARBON; NITROGEN; etc.; HETEROTROPHY (from organic sources) or AUTOTROPHY (from CARBON DIOXIDE). They can also be classified by whether or not they stain (based on the structure of their CELL WALLS) with CRYSTAL VIOLET dye: gram-negative or gram-positive.
The fourth stomach of ruminating animals. It is also called the "true" stomach. It is an elongated pear-shaped sac lying on the floor of the abdomen, on the right-hand side, and roughly between the seventh and twelfth ribs. It leads to the beginning of the small intestine. (From Black's Veterinary Dictionary, 17th ed)
The simplest saturated hydrocarbon. It is a colorless, flammable gas, slightly soluble in water. It is one of the chief constituents of natural gas and is formed in the decomposition of organic matter. (Grant & Hackh's Chemical Dictionary, 5th ed)
One of the three domains of life (the others being BACTERIA and ARCHAEA), also called Eukarya. These are organisms whose cells are enclosed in membranes and possess a nucleus. They comprise almost all multicellular and many unicellular organisms, and are traditionally divided into groups (sometimes called kingdoms) including ANIMALS; PLANTS; FUNGI; and various algae and other taxa that were previously part of the old kingdom Protista.
In ruminants, the stomach is a complex, multi-chambered organ consisting of the rumen, reticulum, omasum, and abomasum, which functions to soften and breakdown ingested plant material through microbial fermentation and mechanical churning before further digestion in the small intestine.
A genus of gram-negative, anaerobic bacteria in the family Fibrobacteraceae, isolated from the human GASTROINTESTINAL TRACT.
Fodder converted into succulent feed for livestock through processes of anaerobic fermentation (as in a silo).
An element with the atomic symbol N, atomic number 7, and atomic weight [14.00643; 14.00728]. Nitrogen exists as a diatomic gas and makes up about 78% of the earth's atmosphere by volume. It is a constituent of proteins and nucleic acids and found in all living cells.
A genus of gram-positive, anaerobic, cocci to short rod-shaped ARCHAEA, in the family METHANOBACTERIACEAE, order METHANOBACTERIALES. They are found in the GASTROINTESTINAL TRACT or other anoxic environments.
A genus of gram-positive bacteria in the family Lachnospiraceae that inhabits the RUMEN; LARGE INTESTINE; and CECUM of MAMMALS.
A large family of narrow-leaved herbaceous grasses of the order Cyperales, subclass Commelinidae, class Liliopsida (monocotyledons). Food grains (EDIBLE GRAIN) come from members of this family. RHINITIS, ALLERGIC, SEASONAL can be induced by POLLEN of many of the grasses.
Nutritional physiology of animals.
The third stomach of ruminants, situated on the right side of the abdomen at a higher level than the fourth stomach and between this latter and the second stomach, with both of which it communicates. From its inner surface project large numbers of leaves or folia, each of which possesses roughened surfaces. In the center of each folium is a band of muscle fibers which produces a rasping movement of the leaf when it contracts. One leaf rubs against those on either side of it, and large particles of food material are ground down between the rough surfaces, preparatory to further digestion in the succeeding parts of the alimentary canal. (Black's Veterinary Dictionary, 17th ed)
A polysaccharide with glucose units linked as in CELLOBIOSE. It is the chief constituent of plant fibers, cotton being the purest natural form of the substance. As a raw material, it forms the basis for many derivatives used in chromatography, ion exchange materials, explosives manufacturing, and pharmaceutical preparations.
The contents included in all or any segment of the GASTROINTESTINAL TRACT.
A species of anaerobic bacteria, in the family Lachnospiraceae, found in RUMINANTS. It is considered both gram-positive and gram-negative.
A colorless alkaline gas. It is formed in the body during decomposition of organic materials during a large number of metabolically important reactions. Note that the aqueous form of ammonia is referred to as AMMONIUM HYDROXIDE.
A plant species of the family FABACEAE widely cultivated for ANIMAL FEED.
A family of bacteria found in the mouth and intestinal and respiratory tracts of man and other animals as well as in the human female urogenital tract. Its organisms are also found in soil and on cereal grains.
Derivatives of propionic acid. Included under this heading are a broad variety of acid forms, salts, esters, and amides that contain the carboxyethane structure.
A large group of anaerobic bacteria which show up as pink (negative) when treated by the Gram-staining method.
Regular course of eating and drinking adopted by a person or animal.
An antiprotozoal agent produced by Streptomyces cinnamonensis. It exerts its effect during the development of first-generation trophozoites into first-generation schizonts within the intestinal epithelial cells. It does not interfere with hosts' development of acquired immunity to the majority of coccidial species. Monensin is a sodium and proton selective ionophore and is widely used as such in biochemical studies.
A genus of gram-negative, anaerobic, rod-shaped bacteria. Its organisms are normal inhabitants of the oral, respiratory, intestinal, and urogenital cavities of humans, animals, and insects. Some species may be pathogenic.
A genus of gram-positive, rod-shaped bacteria found in cavities of man and animals, animal and plant products, infections of soft tissue, and soil. Some species may be pathogenic. No endospores are produced. The genus Eubacterium should not be confused with EUBACTERIA, one of the three domains of life.
A genus of gram-negative, anaerobic, nonsporeforming, nonmotile rods. Organisms of this genus had originally been classified as members of the BACTEROIDES genus but overwhelming biochemical and chemical findings in 1990 indicated the need to separate them from other Bacteroides species, and hence, this new genus was established.
The complete absence, or (loosely) the paucity, of gaseous or dissolved elemental oxygen in a given place or environment. (From Singleton & Sainsbury, Dictionary of Microbiology and Molecular Biology, 2d ed)
The normality of a solution with respect to HYDROGEN ions; H+. It is related to acidity measurements in most cases by pH = log 1/2[1/(H+)], where (H+) is the hydrogen ion concentration in gram equivalents per liter of solution. (McGraw-Hill Dictionary of Scientific and Technical Terms, 6th ed)
Addition of hydrogen to a compound, especially to an unsaturated fat or fatty acid. (From Stedman, 26th ed)
The remnants of plant cell walls that are resistant to digestion by the alimentary enzymes of man. It comprises various polysaccharides and lignins.
A collective genome representative of the many organisms, primarily microorganisms, existing in a community.
A disaccharide consisting of two glucose units in beta (1-4) glycosidic linkage. Obtained from the partial hydrolysis of cellulose.
Seeds from grasses (POACEAE) which are important in the diet.
The liquid secretion of the stomach mucosa consisting of hydrochloric acid (GASTRIC ACID); PEPSINOGENS; INTRINSIC FACTOR; GASTRIN; MUCUS; and the bicarbonate ion (BICARBONATES). (From Best & Taylor's Physiological Basis of Medical Practice, 12th ed, p651)
Any of numerous agile, hollow-horned RUMINANTS of the genus Capra, in the family Bovidae, closely related to the SHEEP.
The ejection of gas or air through the mouth from the stomach.
Curved bacteria, usually crescent-shaped rods, with ends often tapered, occurring singly, in pairs, or short chains. They are non-encapsulated, non-sporing, motile, and ferment glucose. Selenomonas are found mainly in the human buccal cavity, the rumen of herbivores, and the cecum of pigs and several rodents. (From Bergey's Manual of Determinative Bacteriology, 9th ed)
Derivatives of BUTYRIC ACID. Included under this heading are a broad variety of acid forms, salts, esters, and amides that contain the carboxypropane structure.
Any of a group of polysaccharides of the general formula (C6-H10-O5)n, composed of a long-chain polymer of glucose in the form of amylose and amylopectin. It is the chief storage form of energy reserve (carbohydrates) in plants.
A plant species of the family POACEAE. It is a tall grass grown for its EDIBLE GRAIN, corn, used as food and animal FODDER.

Actinobacillus succinogenes sp. nov., a novel succinic-acid-producing strain from the bovine rumen. (1/2194)

Strain 130ZT was isolated from the bovine rumen. It is a facultatively anaerobic, pleomorphic, Gram-negative rod. It exhibits a 'Morse code' form of morphology, which is characteristic of the genus Actinobacillus. Strain 130ZT is a capnophilic, osmotolerant succinogen that utilizes a broad range of sugars. It accumulates high concentrations of succinic acid (> 70 g l-1). Strain 130ZT is positive for catalase, oxidase, alkaline phosphatase and beta-galactosidase, but does not produce indole or urease. Acid but no gas is produced from D-glucose and D-fructose. 16S rRNA sequence analysis places strain 130ZT within the family Pasteurellaceae; the most closely related members of the family Pasteurellaceae have 16S rRNA similarities of 95.5% or less with strain 130ZT. Strain 130ZT was compared with Actinobacillus lignieresii and the related Bisgaard Taxa 6 and 10. Based upon morphological and biochemical properties, strain 130ZT is most similar to members of the genus Actinobacillus within the family Pasteurellaceae. It is proposed that strain 130ZT be classified as a new species, Actinobacillus succinogenes. The type strain of Actinobacillus succinogenes sp. nov. is ATCC 55618T.  (+info)

A cold-active glucanase from the ruminal bacterium Fibrobacter succinogenes S85. (2/2194)

We previously characterized two endoglucanases, CelG and EGD, from the mesophilic ruminal anaerobe Fibrobacter succinogenes S85. Further comparative experiments have shown that CelG is a cold-active enzyme whose catalytic properties are superior to those of several other intensively studied cold-active enzymes. It has a lower temperature optimum, of 25 degrees C, and retains about 70% of its maximum activity at 0 degrees C, while EGD has a temperature optimum of 35 degrees C and retains only about 18% of its maximal activity at 0 degrees C. When assayed at 4 degrees C, CelG exhibits a 33-fold-higher kcat value and a 73-fold-higher physiological efficiency (kcat/Km) than EGD. CelG has a low thermal stability, as indicated by the effect of temperature on its activity and secondary structure. The presence of small amino acids around the putative catalytic residues may add to the flexibility of the enzyme, thereby increasing its activity at cold temperatures. Its activity is modulated by sodium chloride, with an increase of over 1.8-fold at an ionic strength of 0.03. Possible explanations for the presence of a cold-active enzyme in a mesophile are that cold-active enzymes are more broadly distributed than previously expected, that lateral transfer of the gene from a psychrophile occurred, or that F. succinogenes originated from the marine environment.  (+info)

Processing, mixing, and particle size reduction of forages for dairy cattle. (3/2194)

Adequate forage amounts in both physical and chemical forms are necessary for proper ruminal function in dairy cows. Under conditions in which total amounts of forage or particle size of the forage are reduced, cows spend less time ruminating and have a decreased amount of buoyant digesta in the rumen. These factors reduce saliva production and allow ruminal pH to fall, depressing activity of cellulolytic bacteria and causing a prolonged period of low ruminal pH. Insufficient particle size of the diet decreases the ruminal acetate-to-propionate ratio and reduces ruminal pH. The mean particle size of the diet, the variation in particle size, and the amount of chemical fiber (i.e., NDF or ADF) are all nutritionally important for dairy cows. Defining amounts and physical characteristics of fiber is important in balancing dairy cattle diets. Because particle size plays such an important role in digestion and animal performance, it must be an important consideration from harvest through feeding. Forages should not be reduced in particle size beyond what is necessary to achieve minimal storage losses and what can be accommodated by existing equipment. Forage and total mixed ration (TMR) particle sizes are potentially reduced in size by all phases of harvesting, storing, taking out of storage, mixing, and delivery of feed to the dairy cow. Mixing feed causes a reduction in size of all feed particles and is directly related to TMR mixing time; field studies show that the longest particles (>27 mm) may be reduced in size by 50%. Forage and TMR particle size as fed to the cows should be periodically monitored to maintain adequate nutrition for the dairy cow.  (+info)

Ruminally undegraded intake protein in sheep fed low-quality forage: effect on weight, growth, cell proliferation, and morphology of visceral organs. (4/2194)

To determine the influence of increasing levels of supplemental ruminally undegraded intake protein (UIP) on visceral organ weights, growth, cell proliferation, and morphology, 20 mature ewes of mixed breeding were fed a 6.55% CP grass hay:straw mixture (40:60) and assigned to one of four supplemental treatments. Supplements were control (no supplement) and low, medium, and high levels of UIP. After 42 to 46 d on treatment, ewes were infused i.v. with 5-bromo-2-deoxy-uridine (BrdU, a thymidine analog used to provide an index of the rate of intestinal cell proliferation) and slaughtered 1 h later. Visceral organs were weighed, and subsamples were obtained to evaluate visceral DNA, RNA, and protein contents (frozen samples) as well as intestinal morphology (fixed samples). Final BW; eviscerated BW (EBW); total visceral weight; and liver fresh, dry, and dry fat-free weights were increased (P<.10) in protein-supplemented ewes compared with controls, but were not influenced by increasing levels of UIP. Tissue weights of duodenum, jejunum, ileum, cecum, and colon were not greatly influenced by treatment. There were no differences among treatments in intestinal DNA and protein concentrations and the ratios RNA:DNA and protein:DNA. Jejunal RNA concentration and content was increased (P<.10) in low compared with medium and high treatments. Jejunal RNA content also was decreased (P<.10) in high compared with the medium UIP treatment. Liver RNA and protein contents were increased (P<.10) with protein supplementation. In contrast, contents of RNA, DNA, and protein in duodenum, ileum, cecum, and colon were not influenced by treatment. In addition, neither the rate of intestinal proliferation (BrdU labeling) nor intestinal morphology (crypt depth, villus length, or villus width) were affected by treatment. These data indicate that the influence of protein supplementation on visceral growth involves primarily the liver and not the intestines. These data also indicate that visceral growth, except in jejunum, are not altered by differing levels of UIP supplementation.  (+info)

Fermentation substrate and dilution rate interact to affect microbial growth and efficiency. (5/2194)

The effect of dilution rate (D) on carbohydrate, fibrous and nonfibrous, and protein fermentation by ruminal microorganisms was studied using a single-effluent continuous-culture system. The diets of fibrous carbohydrate, nonfibrous carbohydrate, or protein were formulated with soybean hulls (FC), ground corn (NFC), or isolated soy protein (PR) as the primary ingredient, respectively. Six dilution rates (.025, .050, .075, .10, .15, and .20/h of fermenter volume) were used. Digestibilities of DM, OM, and CP for the three diets and of NDF and ADF for the FC diet decreased (P<.001) as D increased, although the response of the digestibility to D varied with diet. Increasing D resulted in an increase in pH (P<.001) and a decrease (P<.001) in ammonia concentration. Daily volatile fatty acid production increased (quadratic; P<.01) for the FC and NFC diets, but decreased (quadratic; P<.001) for the PR diet. Increasing D quadratically increased (P<.001) the molar percentage of acetate and propionate, but quadratically decreased (P<.001) butyrate and valerate for the FC and NFC diets. For the PR diet, the molar percentage of propionate and valerate increased (quadratic; P<.01), whereas acetate and butyrate decreased (linear; P<.001) in response to increasing D. Molar percentage of isobutyrate and isovalerate decreased (P<.01) with increasing D for all three diets. As D increased, daily microbial N production showed quadratic responses with maximum values achieved at .126, .143, and .187/h D for the FC, NFC, and PR diet, respectively. There was a positive correlation between microbial growth efficiency (MOEFF) and D. A quadratic model fit the data of MOEFF as affected by D, and maximum MOEFF of 37.3, 59.6, and 71.4 g of bacterial N/kg OM truly fermented were calculated to be achieved at .177, .314, and .207/h D for the FC, NFC, and PR diet, respectively. Dilution rate significantly influenced the ruminal microbial fermentation of fibrous and nonfibrous carbohydrates and proteins, and was positively related to microbial yield and growth efficiency. In addition, microbial nitrogen composition, and therefore efficiency, was affected by substrate fermented.  (+info)

Relationship between ruminal starch degradation and the physical characteristics of corn grain. (6/2194)

The objectives of this study were to determine the range of variation in the rate and extent of in situ ruminal starch degradation of 14 corns differing in vitreousness and to predict ruminal starch degradability by physical characteristics of corn grains. This study was conducted with eight dent and six flint corns. Ruminal starch degradability was determined by an in situ technique on 3-mm ground grains. Physical characteristics of corn grain were measured: hardness by grinding energy and particle size distribution, apparent and true densities, and specific surface area. Ruminal DM and starch degradabilities averaged 50 and 55.1% and varied from 39.7 to 71.5% and from 40.6 to 77.6%, respectively. Ruminal starch degradability averaged 61.9 and 46.2% in dent and flint types, respectively. The proportion of coarse particles (61.9 vs. 69.6% for dent and flint, respectively), the apparent density (1.29 vs. 1.36 g/cm3 for dent and flint, respectively), and the specific surface area (.13 vs. .07 m2/g for dent and flint, respectively) varied with the vitreousness. Ruminal starch degradability could be predicted accurately by vitreousness (r2 = .89) or by the combination of apparent density and 1,000-grain weight (R2 = .91), a measurement faster than the vitreousness determination.  (+info)

Nutrient-specific preferences by lambs conditioned with intraruminal infusions of starch, casein, and water. (7/2194)

We hypothesized that lambs discriminate between postingestive effects of energy and protein and associate those effects with a food's flavor to modify food choices. Based on this hypothesis, we predicted that 1) lambs would acquire a preference for a poorly nutritious food (grape pomace) eaten during intraruminal infusions of energy (starch) or protein (casein) and that 2) shortly after an intraruminal infusion of energy or protein (preload), lambs would decrease their preferences for foods previously conditioned with starch or casein, respectively. Thirty lambs were allotted to three groups and conditioned as follows. On d 1, lambs in each group received grape pomace containing a different flavor and water was infused into their rumens as they ate the pomace. On d 2, the flavors were switched so each group received a new flavor and a suspension of starch (10% of the DE required per day) replaced the water infusion. On d 3, the flavors were switched again, and a suspension of casein (2.7 to 5.4% of the CP required per day) replaced the starch infusion. Conditioning was repeated during four consecutive trials. Lambs in Trial 1 had a basal diet of alfalfa pellets (e.g., free access from 1200 to 1700) and 400 g of rolled barley. Lambs in Trials 2, 3, and 4 received a restricted amount of alfalfa pellets (990 g/d) as their basal diet. After conditioning, all animals received an infusion of water, and, 30 min later, they were offered a choice of the three flavors previously paired with water, starch, or casein. On the ensuing days, the choice was repeated, but starch, casein, and barley replaced the water preload. The nutrient density of the infused preloads was increased during consecutive trials. Lambs preferred the flavors paired with starch > water > casein during Trial 1 (P < .05) and the flavors paired with starch > casein > water during Trials 2 (P < .05), 3 (P < .001), and 4 (P < .001). Preloads of casein decreased preferences for flavors previously paired with casein (P < .10 [Trial 2]; P < .001 [Trial 3], and increased preferences for flavors paired with starch (P < .05 [Trial 2]; P < .001 [Trial 3]). Preloads of energy (barley) had the opposite effect (P < .05 [Trial 3]). These results indicate that lambs discriminated between the postingestive effects of starch and casein and associated the effects with specific external cues (i.e., added flavors) to regulate macronutrient ingestion.  (+info)

Degradation of two protein sources at three solids retention times in continuous culture. (8/2194)

Effects of solids retention times (SRT) of 10, 20, and 30 h on protein degradation and microbial metabolism were studied in continuous cultures of ruminal contents. Liquid dilution rate was constant across all retention times at .12 h(-1) (8.3 h mean retention time). Two semipurified diets that contained either soybean meal (SBM) or alfalfa hay (ALFH) as the sole nitrogen source were provided in amounts that decreased as SRT was increased. Digestion coefficients for DM, NDF, and ADF increased with increasing SRT. Digestion coefficients for nonstructural carbohydrates were higher in the SBM diet than in the ALFH diet but were not affected by SRT. Protein degradation in the ALFH diet averaged 51% and was unaffected by retention time. In the SBM diet, digestion of protein was 77, 78, and 96% at 10-, 20-, and 30-h retention times, respectively. Microbial efficiency decreased with increasing SRT and was greater for the SBM than for the ALFH diet. Efficiencies ranged from 30.6 to 35.7 and 20.8 to 29.2 g of N/kg of digested DM for the SBM and ALFH diets, respectively, as SRT decreased from 30 to 10 h. The diaminopimelic acid content of the microbes increased as SRT increased, indicating that changes in microbial species occurred owing to passage rates. From these results, we concluded that the digestibility decreases associated with increased ruminal turnover rates may be less for nonstructural carbohydrates and protein than for the fiber fractions.  (+info)

The rumen is the largest compartment of the stomach in ruminant animals, such as cows, goats, and sheep. It is a specialized fermentation chamber where microbes break down tough plant material into nutrients that the animal can absorb and use for energy and growth. The rumen contains billions of microorganisms, including bacteria, protozoa, and fungi, which help to break down cellulose and other complex carbohydrates in the plant material through fermentation.

The rumen is characterized by its large size, muscular walls, and the presence of a thick mat of partially digested food and microbes called the rumen mat or cud. The animal regurgitates the rumen contents periodically to chew it again, which helps to break down the plant material further and mix it with saliva, creating a more favorable environment for fermentation.

The rumen plays an essential role in the digestion and nutrition of ruminant animals, allowing them to thrive on a diet of low-quality plant material that would be difficult for other animals to digest.

Ciliophora is a phylum in the taxonomic classification system that consists of unicellular organisms commonly known as ciliates. These are characterized by the presence of hair-like structures called cilia, which are attached to the cell surface and beat in a coordinated manner to facilitate movement and feeding. Ciliophora includes a diverse group of organisms, many of which are found in aquatic environments. Examples of ciliates include Paramecium, Tetrahymena, and Vorticella.

Volatile fatty acids (VFA) are a type of fatty acid that have a low molecular weight and are known for their ability to evaporate at room temperature. They are produced in the body during the breakdown of carbohydrates and proteins in the absence of oxygen, such as in the digestive tract by certain bacteria.

The most common volatile fatty acids include acetic acid, propionic acid, and butyric acid. These compounds have various roles in the body, including providing energy to cells in the intestines, modulating immune function, and regulating the growth of certain bacteria. They are also used as precursors for the synthesis of other molecules, such as cholesterol and bile acids.

In addition to their role in the body, volatile fatty acids are also important in the food industry, where they are used as flavorings and preservatives. They are produced naturally during fermentation and aging processes, and are responsible for the distinctive flavors of foods such as yogurt, cheese, and wine.

Fermentation is a metabolic process in which an organism converts carbohydrates into alcohol or organic acids using enzymes. In the absence of oxygen, certain bacteria, yeasts, and fungi convert sugars into carbon dioxide, hydrogen, and various end products, such as alcohol, lactic acid, or acetic acid. This process is commonly used in food production, such as in making bread, wine, and beer, as well as in industrial applications for the production of biofuels and chemicals.

In anatomical terms, the reticulum is the second chamber in the ruminant stomach, located between the rumen and the omasum. It is responsible for the continued breakdown of cellulose through microbial fermentation.

However, I believe you may be referring to a term used in pathology or histology. In these contexts, "reticulum" refers to a network of fine fibers, often composed of collagen, that surround cells or organize tissue. It is an important component of the extracellular matrix and provides structural support.

For example, within the liver, the reticulin fibers are part of the hepatic sinusoids' walls and help maintain the liver's architecture. In some disease processes like cirrhosis, these reticulin fibers can become abnormally thickened and contribute to the distortion of the liver's normal structure.

Please let me know if you were looking for information in a different context, and I would be happy to help further!

Animal feed refers to any substance or mixture of substances, whether processed, unprocessed, or partially processed, which is intended to be used as food for animals, including fish, without further processing. It includes ingredients such as grains, hay, straw, oilseed meals, and by-products from the milling, processing, and manufacturing industries. Animal feed can be in the form of pellets, crumbles, mash, or other forms, and is used to provide nutrients such as energy, protein, fiber, vitamins, and minerals to support the growth, reproduction, and maintenance of animals. It's important to note that animal feed must be safe, nutritious, and properly labeled to ensure the health and well-being of the animals that consume it.

I apologize, but "sheep" is not a term that has a medical definition. It is a common animal with the scientific name Ovis aries. If you have any medical or health-related questions, I would be happy to try and help answer those for you.

"Cattle" is a term used in the agricultural and veterinary fields to refer to domesticated animals of the genus *Bos*, primarily *Bos taurus* (European cattle) and *Bos indicus* (Zebu). These animals are often raised for meat, milk, leather, and labor. They are also known as bovines or cows (for females), bulls (intact males), and steers/bullocks (castrated males). However, in a strict medical definition, "cattle" does not apply to humans or other animals.

Ruminants are a category of hooved mammals that are known for their unique digestive system, which involves a process called rumination. This group includes animals such as cattle, deer, sheep, goats, and giraffes, among others. The digestive system of ruminants consists of a specialized stomach with multiple compartments (the rumen, reticulum, omasum, and abomasum).

Ruminants primarily consume plant-based diets, which are high in cellulose, a complex carbohydrate that is difficult for many animals to digest. In the rumen, microbes break down the cellulose into simpler compounds, producing volatile fatty acids (VFAs) that serve as a major energy source for ruminants. The animal then regurgitates the partially digested plant material (known as cud), chews it further to mix it with saliva and additional microbes, and swallows it again for further digestion in the rumen. This process of rumination allows ruminants to efficiently extract nutrients from their fibrous diets.

Digestion is the complex process of breaking down food into smaller molecules that can be absorbed and utilized by the body for energy, growth, and cell repair. This process involves both mechanical and chemical actions that occur in the digestive system, which includes the mouth, esophagus, stomach, small intestine, large intestine, and accessory organs such as the pancreas, liver, and gallbladder.

The different stages of digestion are:

1. Ingestion: This is the first step in digestion, where food is taken into the mouth.
2. Mechanical digestion: This involves physically breaking down food into smaller pieces through chewing, churning, and mixing with digestive enzymes.
3. Chemical digestion: This involves breaking down food molecules into simpler forms using various enzymes and chemicals produced by the digestive system.
4. Absorption: Once the food is broken down into simple molecules, they are absorbed through the walls of the small intestine into the bloodstream and transported to different parts of the body.
5. Elimination: The undigested material that remains after absorption is moved through the large intestine and eliminated from the body as feces.

The process of digestion is essential for maintaining good health, as it provides the necessary nutrients and energy required for various bodily functions.

Bacteria are single-celled microorganisms that are among the earliest known life forms on Earth. They are typically characterized as having a cell wall and no membrane-bound organelles. The majority of bacteria have a prokaryotic organization, meaning they lack a nucleus and other membrane-bound organelles.

Bacteria exist in diverse environments and can be found in every habitat on Earth, including soil, water, and the bodies of plants and animals. Some bacteria are beneficial to their hosts, while others can cause disease. Beneficial bacteria play important roles in processes such as digestion, nitrogen fixation, and biogeochemical cycling.

Bacteria reproduce asexually through binary fission or budding, and some species can also exchange genetic material through conjugation. They have a wide range of metabolic capabilities, with many using organic compounds as their source of energy, while others are capable of photosynthesis or chemosynthesis.

Bacteria are highly adaptable and can evolve rapidly in response to environmental changes. This has led to the development of antibiotic resistance in some species, which poses a significant public health challenge. Understanding the biology and behavior of bacteria is essential for developing strategies to prevent and treat bacterial infections and diseases.

The abomasum is the fourth and final stomach chamber in ruminant animals, such as cows, sheep, and goats. It is often referred to as the "true" stomach because its structure and function are most similar to the stomachs of non-ruminant animals, including humans.

In the abomasum, gastric juices containing hydrochloric acid and digestive enzymes are secreted, which help to break down proteins and fats in the ingested feed. The abomasum also serves as a site for nutrient absorption and further mechanical breakdown of food particles before they enter the small intestine.

The term "abomasum" is derived from Latin, where "ab-" means "away from," and "omassum" refers to the "stomach." This name reflects its location away from the other three stomach chambers in ruminants.

Methane is not a medical term, but it is a chemical compound that is often mentioned in the context of medicine and health. Medically, methane is significant because it is one of the gases produced by anaerobic microorganisms during the breakdown of organic matter in the gut, leading to conditions such as bloating, cramping, and diarrhea. Excessive production of methane can also be a symptom of certain digestive disorders like irritable bowel syndrome (IBS) and small intestinal bacterial overgrowth (SIBO).

In broader terms, methane is a colorless, odorless gas that is the primary component of natural gas. It is produced naturally by the decomposition of organic matter in anaerobic conditions, such as in landfills, wetlands, and the digestive tracts of animals like cows and humans. Methane is also a potent greenhouse gas with a global warming potential 25 times greater than carbon dioxide over a 100-year time frame.

Eukaryota is a domain that consists of organisms whose cells have a true nucleus and complex organelles. This domain includes animals, plants, fungi, and protists. The term "eukaryote" comes from the Greek words "eu," meaning true or good, and "karyon," meaning nut or kernel. In eukaryotic cells, the genetic material is housed within a membrane-bound nucleus, and the DNA is organized into chromosomes. This is in contrast to prokaryotic cells, which do not have a true nucleus and have their genetic material dispersed throughout the cytoplasm.

Eukaryotic cells are generally larger and more complex than prokaryotic cells. They have many different organelles, including mitochondria, chloroplasts, endoplasmic reticulum, and Golgi apparatus, that perform specific functions to support the cell's metabolism and survival. Eukaryotic cells also have a cytoskeleton made up of microtubules, actin filaments, and intermediate filaments, which provide structure and shape to the cell and allow for movement of organelles and other cellular components.

Eukaryotes are diverse and can be found in many different environments, ranging from single-celled organisms that live in water or soil to multicellular organisms that live on land or in aquatic habitats. Some eukaryotes are unicellular, meaning they consist of a single cell, while others are multicellular, meaning they consist of many cells that work together to form tissues and organs.

In summary, Eukaryota is a domain of organisms whose cells have a true nucleus and complex organelles. This domain includes animals, plants, fungi, and protists, and the eukaryotic cells are generally larger and more complex than prokaryotic cells.

A ruminant stomach is not a term that is typically used in human medicine, but it is a key feature of the digestive system in animals that are classified as ruminants. Ruminants are hoofed mammals that chew their cud, such as cattle, deer, sheep, and goats.

The ruminant stomach is actually composed of four distinct compartments: the rumen, reticulum, omasum, and abomasum. These compartments work together to break down plant material through a process of fermentation by microbes.

The rumen is the largest of the compartments and functions as a fermentation vat where plant material is broken down by microbes into simpler molecules that can be absorbed and utilized by the animal. The reticulum is connected to the rumen and helps sort and move the partially digested food particles.

The omasum is a smaller compartment that absorbs water and some nutrients from the digesta before it passes into the abomasum, which is the final compartment and functions similarly to the human stomach, where digestive enzymes are secreted to further break down the food and absorb nutrients.

Therefore, a ruminant stomach refers to the complex and specialized digestive system found in animals that chew their cud, allowing them to efficiently extract nutrients from plant material.

Fibrobacter is a genus of anaerobic, gram-negative bacteria that primarily resides in the gastrointestinal tracts of ruminants and other herbivorous animals. These bacteria are specialized in breaking down complex plant fibers, such as cellulose and xylan, into simpler sugars through fermentation. This process plays a crucial role in the digestion and nutrient acquisition from plant-based diets in these animals.

In human medicine, Fibrobacter species have been found in the oral cavity and gastrointestinal tract, but their significance in human health and disease is not well understood. Some studies suggest that an increased abundance of Fibrobacter may be associated with certain gut disorders like irritable bowel syndrome or inflammatory bowel disease; however, more research is needed to establish a clear relationship and understand the underlying mechanisms.

Silage is not typically considered a medical term. It is an agricultural term that refers to fermented, moist green fodder (such as grasses, clover, or corn) that are stored in a silo and used as animal feed. However, if contaminated with harmful bacteria like Listeria or mold, it can cause foodborne illness in animals and potentially in humans who consume the contaminated silage or products made from contaminated animals.

Nitrogen is not typically referred to as a medical term, but it is an element that is crucial to medicine and human life.

In a medical context, nitrogen is often mentioned in relation to gas analysis, respiratory therapy, or medical gases. Nitrogen (N) is a colorless, odorless, and nonreactive gas that makes up about 78% of the Earth's atmosphere. It is an essential element for various biological processes, such as the growth and maintenance of organisms, because it is a key component of amino acids, nucleic acids, and other organic compounds.

In some medical applications, nitrogen is used to displace oxygen in a mixture to create a controlled environment with reduced oxygen levels (hypoxic conditions) for therapeutic purposes, such as in certain types of hyperbaric chambers. Additionally, nitrogen gas is sometimes used in cryotherapy, where extremely low temperatures are applied to tissues to reduce pain, swelling, and inflammation.

However, it's important to note that breathing pure nitrogen can be dangerous, as it can lead to unconsciousness and even death due to lack of oxygen (asphyxiation) within minutes.

Methanobrevibacter is a genus of archaea (single-celled microorganisms) that are methanogens, meaning they produce methane as a metabolic byproduct. These organisms are commonly found in the digestive tracts of animals, including humans, where they help break down organic matter and recycle nutrients. They are strict anaerobes, requiring an environment free of oxygen to survive and grow. Some species within this genus have been associated with dental diseases such as periodontitis. However, more research is needed to fully understand their role in human health and disease.

Ruminococcus is a genus of obligate anaerobic, gram-positive bacteria that are commonly found in the gastrointestinal tracts of humans and other animals. These bacteria play a crucial role in breaking down complex carbohydrates and fibers in the gut through fermentation, producing short-chain fatty acids (SCFAs) as byproducts. Ruminococcus species are particularly abundant in the rumen of ruminants such as cows and sheep, where they help to digest plant material. In humans, Ruminococcus species have been associated with various aspects of health and disease, including gut inflammation, colon cancer, and metabolic disorders. However, more research is needed to fully understand the complex relationship between these bacteria and human health.

Poaceae is not a medical term but a taxonomic category, specifically the family name for grasses. In a broader sense, you might be asking for a medical context where knowledge of this plant family could be relevant. For instance, certain members of the Poaceae family can cause allergies or negative reactions in some people.

In a medical definition, Poaceae would be defined as:

The family of monocotyledonous plants that includes grasses, bamboo, and sedges. These plants are characterized by narrow leaves with parallel veins, jointed stems (called "nodes" and "internodes"), and flowers arranged in spikelets. Some members of this family are important food sources for humans and animals, such as rice, wheat, corn, barley, oats, and sorghum. Other members can cause negative reactions, like skin irritation or allergies, due to their silica-based defense structures called phytoliths.

"Animal nutritional physiological phenomena" is not a standardized medical or scientific term. However, it seems to refer to the processes and functions related to nutrition and physiology in animals. Here's a breakdown of the possible components:

1. Animal: This term refers to non-human living organisms that are multicellular, heterotrophic, and have a distinct nervous system.
2. Nutritional: This term pertains to the nourishment and energy requirements of an animal, including the ingestion, digestion, absorption, transportation, metabolism, and excretion of nutrients.
3. Physiological: This term refers to the functions and processes that occur within a living organism, including the interactions between different organs and systems.
4. Phenomena: This term generally means an observable fact or event.

Therefore, "animal nutritional physiological phenomena" could refer to the observable events and processes related to nutrition and physiology in animals. Examples of such phenomena include digestion, absorption, metabolism, energy production, growth, reproduction, and waste elimination.

The omasum is the third compartment of the ruminant stomach, located between the rumen and the abomasum. It is also known as the manyplies because of its structure, which consists of numerous folds or leaves that are arranged in a circular pattern. The main function of the omasum is to absorb water, electrolytes, and volatile fatty acids from the digesta that passes through it, helping to concentrate the solids and prepare them for further digestion in the abomasum.

Cellulose is a complex carbohydrate that is the main structural component of the cell walls of green plants, many algae, and some fungi. It is a polysaccharide consisting of long chains of beta-glucose molecules linked together by beta-1,4 glycosidic bonds. Cellulose is insoluble in water and most organic solvents, and it is resistant to digestion by humans and non-ruminant animals due to the lack of cellulase enzymes in their digestive systems. However, ruminants such as cows and sheep can digest cellulose with the help of microbes in their rumen that produce cellulase.

Cellulose has many industrial applications, including the production of paper, textiles, and building materials. It is also used as a source of dietary fiber in human food and animal feed. Cellulose-based materials are being explored for use in biomedical applications such as tissue engineering and drug delivery due to their biocompatibility and mechanical properties.

Gastrointestinal (GI) contents refer to the physical substances within the gastrointestinal tract, which includes the stomach, small intestine, and large intestine. These contents can vary depending on the time since the last meal and the digestive process that is underway. Generally, GI contents include food, fluids, digestive enzymes, secretions, bacteria, and other waste products.

In a more specific context, GI contents may also refer to the stomach contents, which are often analyzed during autopsies or in cases of suspected poisoning or overdose. Stomach contents can provide valuable information about the type and amount of substances that have been ingested within a few hours prior to the analysis.

It is important to note that GI contents should not be confused with gastrointestinal fluids, which specifically refer to the secretions produced by the gastrointestinal tract, such as gastric juice in the stomach or bile in the small intestine.

Butyrivibrio is a genus of gram-positive, anaerobic bacteria that are commonly found in the gastrointestinal tracts of animals, including ruminants and humans. These bacteria play an important role in the digestion of plant material by producing enzymes that break down complex carbohydrates into simpler sugars, which can then be fermented to produce butyrate, a short-chain fatty acid that serves as an energy source for the host animal.

The name Butyrivibrio is derived from the Latin word "butyrum," meaning butter, and the Greek word "vibrios," meaning rod-shaped. This reflects the fact that these bacteria are known to produce butyrate, which is a fatty acid that is commonly found in butter and other dairy products.

Butyrivibrio species are generally considered to be beneficial members of the gut microbiota, as they help to maintain a healthy balance of microorganisms in the digestive tract and contribute to the breakdown and absorption of nutrients from food. However, like all bacteria, they can potentially cause disease if they enter other parts of the body or if they overgrow and disrupt the normal balance of the gut microbiota.

Ammonia is a colorless, pungent-smelling gas with the chemical formula NH3. It is a compound of nitrogen and hydrogen and is a basic compound, meaning it has a pH greater than 7. Ammonia is naturally found in the environment and is produced by the breakdown of organic matter, such as animal waste and decomposing plants. In the medical field, ammonia is most commonly discussed in relation to its role in human metabolism and its potential toxicity.

In the body, ammonia is produced as a byproduct of protein metabolism and is typically converted to urea in the liver and excreted in the urine. However, if the liver is not functioning properly or if there is an excess of protein in the diet, ammonia can accumulate in the blood and cause a condition called hyperammonemia. Hyperammonemia can lead to serious neurological symptoms, such as confusion, seizures, and coma, and is treated by lowering the level of ammonia in the blood through medications, dietary changes, and dialysis.

'Medicago sativa' is the scientific name for a plant species more commonly known as alfalfa. In a medical context, alfalfa is often considered a herbal supplement and its medicinal properties include being a source of vitamins, minerals, and antioxidants. It has been used in traditional medicine to treat a variety of conditions such as kidney problems, asthma, arthritis, and high cholesterol levels. However, it's important to note that the effectiveness of alfalfa for these uses is not conclusively established by scientific research and its use may have potential risks or interactions with certain medications. Always consult a healthcare provider before starting any new supplement regimen.

Peptococcaceae is a family of obligately anaerobic, non-spore forming, gram-positive cocci that are found as normal flora in the human gastrointestinal tract. These bacteria are commonly isolated from feces and are known to be associated with various human infections, particularly intra-abdominal abscesses, bacteremia, and brain abscesses. The genus Peptococcus includes several species, such as Peptococcus niger and Peptococcus saccharolyticus, which are known to be associated with human infections. However, it is important to note that the taxonomy of this group of bacteria has undergone significant revisions in recent years, and some species previously classified as Peptococcaceae have been reassigned to other families.

Propionates, in a medical context, most commonly refer to a group of medications that are used as topical creams or gels to treat fungal infections of the skin. Propionic acid and its salts, such as propionate, are the active ingredients in these medications. They work by inhibiting the growth of fungi, which causes the infection. Common examples of propionate-containing medications include creams used to treat athlete's foot, ringworm, and jock itch.

It is important to note that there are many different types of medications and compounds that contain the word "propionate" in their name, as it refers to a specific chemical structure. However, in a medical context, it most commonly refers to antifungal creams or gels.

Gram-negative anaerobic bacteria are a type of bacteria that do not require oxygen to grow and are characterized by their cell wall structure, which does not retain crystal violet dye in the Gram staining procedure. This is because they lack a thick peptidoglycan layer in their cell walls, which is typically stained dark purple in Gram-positive bacteria. Instead, gram-negative bacteria have an outer membrane that contains lipopolysaccharides (LPS), which can be toxic to human cells and contribute to the pathogenicity of these organisms.

Examples of gram-negative anaerobic bacteria include Bacteroides fragilis, Prevotella species, and Porphyromonas species. These bacteria are commonly found in the human mouth, gastrointestinal tract, and genitourinary tract, and can cause a variety of infections, including abscesses, wound infections, and bacteremia.

It's important to note that while gram-negative anaerobic bacteria do not require oxygen to grow, some may still tolerate or even prefer oxygen-rich environments. Therefore, the term "anaerobe" can be somewhat misleading when used to describe these organisms.

A diet, in medical terms, refers to the planned and regular consumption of food and drinks. It is a balanced selection of nutrient-rich foods that an individual eats on a daily or periodic basis to meet their energy needs and maintain good health. A well-balanced diet typically includes a variety of fruits, vegetables, whole grains, lean proteins, and low-fat dairy products.

A diet may also be prescribed for therapeutic purposes, such as in the management of certain medical conditions like diabetes, hypertension, or obesity. In these cases, a healthcare professional may recommend specific restrictions or modifications to an individual's regular diet to help manage their condition and improve their overall health.

It is important to note that a healthy and balanced diet should be tailored to an individual's age, gender, body size, activity level, and any underlying medical conditions. Consulting with a healthcare professional, such as a registered dietitian or nutritionist, can help ensure that an individual's dietary needs are being met in a safe and effective way.

Monensin is a type of antibiotic known as a polyether ionophore, which is used primarily in the veterinary field for the prevention and treatment of coccidiosis, a parasitic disease caused by protozoa in animals. It works by selectively increasing the permeability of cell membranes to sodium ions, leading to disruption of the ion balance within the cells of the parasite and ultimately causing its death.

In addition to its use as an animal antibiotic, monensin has also been studied for its potential effects on human health, including its ability to lower cholesterol levels and improve insulin sensitivity in type 2 diabetes. However, it is not currently approved for use in humans due to concerns about toxicity and potential side effects.

Bacteroides are a genus of gram-negative, anaerobic, rod-shaped bacteria that are normally present in the human gastrointestinal tract. They are part of the normal gut microbiota and play an important role in breaking down complex carbohydrates and other substances in the gut. However, some species of Bacteroides can cause opportunistic infections, particularly in individuals with weakened immune systems or when they spread to other parts of the body. They are resistant to many commonly used antibiotics, making infections caused by these bacteria difficult to treat.

"Eubacterium" is a genus of Gram-positive, obligately anaerobic, non-sporeforming bacteria that are commonly found in the human gastrointestinal tract. These bacteria are typically rod-shaped and can be either straight or curved. They play an important role in the breakdown of complex carbohydrates and the production of short-chain fatty acids in the gut, which are beneficial for host health. Some species of Eubacterium have also been shown to have probiotic properties and may provide health benefits when consumed in appropriate quantities. However, other species can be opportunistic pathogens and cause infections under certain circumstances.

Preventella is a genus of Gram-negative, anaerobic, rod-shaped bacteria that are commonly found in the human oral cavity, gastrointestinal tract, and urogenital tract. They are part of the normal microbiota but can also be associated with various infections, particularly in individuals with compromised immune systems or underlying medical conditions.

Prevotella species have been implicated in a variety of diseases, including periodontal disease, dental caries, respiratory tract infections, bacteremia, soft tissue infections, and joint infections. They can also be found in association with abscesses, wound infections, and other types of infections, particularly in the head and neck region.

Prevotella species are generally resistant to antibiotics commonly used to treat anaerobic infections, such as clindamycin and metronidazole, making them difficult to eradicate. Therefore, accurate identification and susceptibility testing of Prevotella isolates is important for the appropriate management of infections caused by these organisms.

Anaerobiosis is a state in which an organism or a portion of an organism is able to live and grow in the absence of molecular oxygen (O2). In biological contexts, "anaerobe" refers to any organism that does not require oxygen for growth, and "aerobe" refers to an organism that does require oxygen for growth.

There are two types of anaerobes: obligate anaerobes, which cannot tolerate the presence of oxygen and will die if exposed to it; and facultative anaerobes, which can grow with or without oxygen but prefer to grow in its absence. Some organisms are able to switch between aerobic and anaerobic metabolism depending on the availability of oxygen, a process known as "facultative anaerobiosis."

Anaerobic respiration is a type of metabolic process that occurs in the absence of molecular oxygen. In this process, organisms use alternative electron acceptors other than oxygen to generate energy through the transfer of electrons during cellular respiration. Examples of alternative electron acceptors include nitrate, sulfate, and carbon dioxide.

Anaerobic metabolism is less efficient than aerobic metabolism in terms of energy production, but it allows organisms to survive in environments where oxygen is not available or is toxic. Anaerobic bacteria are important decomposers in many ecosystems, breaking down organic matter and releasing nutrients back into the environment. In the human body, anaerobic bacteria can cause infections and other health problems if they proliferate in areas with low oxygen levels, such as the mouth, intestines, or deep tissue wounds.

Hydrogen-ion concentration, also known as pH, is a measure of the acidity or basicity of a solution. It is defined as the negative logarithm (to the base 10) of the hydrogen ion activity in a solution. The standard unit of measurement is the pH unit. A pH of 7 is neutral, less than 7 is acidic, and greater than 7 is basic.

In medical terms, hydrogen-ion concentration is important for maintaining homeostasis within the body. For example, in the stomach, a high hydrogen-ion concentration (low pH) is necessary for the digestion of food. However, in other parts of the body such as blood, a high hydrogen-ion concentration can be harmful and lead to acidosis. Conversely, a low hydrogen-ion concentration (high pH) in the blood can lead to alkalosis. Both acidosis and alkalosis can have serious consequences on various organ systems if not corrected.

Hydrogenation, in the context of food science and biochemistry, refers to the process of adding hydrogen atoms to certain unsaturated fats or oils, converting them into saturated fats. This is typically done through a chemical reaction using hydrogen gas in the presence of a catalyst, often a metal such as nickel or palladium.

The process of hydrogenation increases the stability and shelf life of fats and oils, but it can also lead to the formation of trans fats, which have been linked to various health issues, including heart disease. Therefore, the use of partially hydrogenated oils has been largely phased out in many countries.

Dietary fiber, also known as roughage, is the indigestible portion of plant foods that makes up the structural framework of the plants we eat. It is composed of cellulose, hemicellulose, pectin, gums, lignins, and waxes. Dietary fiber can be classified into two categories: soluble and insoluble.

Soluble fiber dissolves in water to form a gel-like material in the gut, which can help slow down digestion, increase feelings of fullness, and lower cholesterol levels. Soluble fiber is found in foods such as oats, barley, fruits, vegetables, legumes, and nuts.

Insoluble fiber does not dissolve in water and passes through the gut intact, helping to add bulk to stools and promote regular bowel movements. Insoluble fiber is found in foods such as whole grains, bran, seeds, and the skins of fruits and vegetables.

Dietary fiber has numerous health benefits, including promoting healthy digestion, preventing constipation, reducing the risk of heart disease, controlling blood sugar levels, and aiding in weight management. The recommended daily intake of dietary fiber is 25-38 grams per day for adults, depending on age and gender.

A metagenome is the collective genetic material contained within a sample taken from a specific environment, such as soil or water, or within a community of organisms, like the microbiota found in the human gut. It includes the genomes of all the microorganisms present in that environment or community, including bacteria, archaea, fungi, viruses, and other microbes, whether they can be cultured in the lab or not. By analyzing the metagenome, scientists can gain insights into the diversity, abundance, and functional potential of the microbial communities present in that environment.

Cellobiose is a disaccharide made up of two molecules of glucose joined by a β-1,4-glycosidic bond. It is formed when cellulose or beta-glucans are hydrolyzed, and it can be further broken down into its component glucose molecules by the action of the enzyme beta-glucosidase. Cellobiose has a sweet taste, but it is not as sweet as sucrose (table sugar). It is used in some industrial processes and may have potential applications in the food industry.

Cereals, in a medical context, are not specifically defined. However, cereals are generally understood to be grasses of the family Poaceae that are cultivated for the edible components of their grain (the seed of the grass). The term "cereal" is derived from Ceres, the Roman goddess of agriculture and harvest.

The most widely consumed cereals include:

1. Wheat
2. Rice
3. Corn (Maize)
4. Barley
5. Oats
6. Millet
7. Sorghum
8. Rye

Cereals are a significant part of the human diet, providing energy in the form of carbohydrates, as well as protein, fiber, vitamins, and minerals. They can be consumed in various forms, such as whole grains, flour, flakes, or puffed cereals. Some people may have allergies or intolerances to specific cereals, like celiac disease, an autoimmune disorder that requires a gluten-free diet (wheat, barley, and rye contain gluten).

Gastric juice is a digestive fluid that is produced in the stomach. It is composed of several enzymes, including pepsin, which helps to break down proteins, and gastric amylase, which begins the digestion of carbohydrates. Gastric juice also contains hydrochloric acid, which creates a low pH environment in the stomach that is necessary for the activation of pepsin and the digestion of food. Additionally, gastric juice contains mucus, which helps to protect the lining of the stomach from the damaging effects of the hydrochloric acid. The production of gastric juice is controlled by hormones and the autonomic nervous system.

I'm sorry for any confusion, but "goats" is not a term commonly used in medical definitions. It is a common noun referring to the domesticated animal species Capra aegagrus hircus. If you have any questions about a specific medical condition or term, please provide that and I would be happy to help.

Eructation is the medical term for belching or burping. It refers to the act of expelling gas from the upper digestive tract (esophagus and stomach) through the mouth. This voluntary or involuntary action helps to relieve symptoms of bloating, discomfort, or pain caused by excessive gas build-up in the stomach. Eructation often occurs after swallowing air while eating or drinking quickly, consuming carbonated beverages, or experiencing anxiety or stress. In some cases, frequent eructations may indicate an underlying digestive disorder such as gastroesophageal reflux disease (GERD) or gastritis.

Selenomonas is a genus of gram-negative, anaerobic bacteria that are commonly found in the oral cavity and gastrointestinal tract of humans and animals. These bacteria have a unique characteristic of having curved or spiral-shaped morphology and a polar flagellum for motility. They are named after their ability to reduce selenite to elemental selenium, which gives them a characteristic red color.

Selenomonas species are often associated with dental caries and periodontal disease due to their production of acid and other virulence factors that can contribute to tissue destruction. However, they also play important roles in the breakdown of complex carbohydrates and the production of volatile sulfur compounds in the gut.

It's worth noting that while Selenomonas species are generally considered to be commensal organisms, they have been implicated in various opportunistic infections, particularly in immunocompromised individuals or those with underlying medical conditions.

Butyrates are a type of fatty acid, specifically called short-chain fatty acids (SCFAs), that are produced in the gut through the fermentation of dietary fiber by gut bacteria. The name "butyrate" comes from the Latin word for butter, "butyrum," as butyrate was first isolated from butter.

Butyrates have several important functions in the body. They serve as a primary energy source for colonic cells and play a role in maintaining the health and integrity of the intestinal lining. Additionally, butyrates have been shown to have anti-inflammatory effects, regulate gene expression, and may even help prevent certain types of cancer.

In medical contexts, butyrate supplements are sometimes used to treat conditions such as ulcerative colitis, a type of inflammatory bowel disease (IBD), due to their anti-inflammatory properties and ability to promote gut health. However, more research is needed to fully understand the potential therapeutic uses of butyrates and their long-term effects on human health.

I'm happy to help! However, it seems there might be a bit of confusion here. Starch is not typically considered a medical term, but rather a nutritional and biochemical concept. Here's a brief explanation:

Starch is a complex carbohydrate that serves as the primary form of energy storage in plants. It is made up of long chains of glucose molecules and can be found in various foods such as grains, legumes, fruits, and vegetables. Amylase, an enzyme present in our saliva and digestive system, helps break down starch into simpler sugars during the digestion process so that our bodies can absorb them for energy.

I hope this clarifies any confusion! If you have any other questions or need further information on a medical topic, please don't hesitate to ask.

'Zea mays' is the biological name for corn or maize, which is not typically considered a medical term. However, corn or maize can have medical relevance in certain contexts. For example, cornstarch is sometimes used as a diluent for medications and is also a component of some skin products. Corn oil may be found in topical ointments and creams. In addition, some people may have allergic reactions to corn or corn-derived products. But generally speaking, 'Zea mays' itself does not have a specific medical definition.

At birth, the rumen organ, rumen epithelium, and rumen microbiota are not fully developed. Developing the rumen after birth is ... growth in rumen epithelium is essential for rumen functionality. Papillae increase the surface area inside of the rumen. ... Over this period, rumen organ and epithelium growth, along with the establishment of rumen microbiota, will prove to be ... An undeveloped rumen maintains a smooth, papillae-lacking outer surface. A developed rumen possesses thick, papillae-full walls ...
Link to Rumen Petrov by selecting a button and using the embed code provided more.... ...
Of 1,107/225/1,141 rumen microbial genera/metagenome assembled uncultured genomes (RUGs)/genes identified from whole ... Our study provides substantial evidence that the host genome affects the comprehensive function of the microbiome in the rumen ... it is well known that the rumen pH has an overarching effect on the rumen microbial community and its metabolism. The rumen pH ... Compendium of 4,941 rumen metagenome-assembled genomes for rumen microbiome biology and enzyme discovery. Nat. Biotechnol. 37, ...
Samples of rumen contents were collected in 1997 and 2001 from various indigenous African wild ruminants in Kenya. All three ... BURK A. DEHORITY and AGNES A. ODENYO "Influence of Diet on the Rumen Protozoal Fauna of Indigenous African Wild Ruminants," The ... BURK A. DEHORITY, AGNES A. ODENYO "Influence of Diet on the Rumen Protozoal Fauna of Indigenous African Wild Ruminants," The ... Influence of Diet on the Rumen Protozoal Fauna of Indigenous African Wild Ruminants. ...
Our earlier metagenomic analysis of the moose rumen microbiome identified a gene coding for a bacterial enzyme with a possible ... A homodimeric bacterial exo-beta-1,3-glucanase derived from moose rumen microbiome shows a structural framework similar to ... Exo-beta-1,3-glucanase from moose rumen microbiome, wild type. *PDB DOI: https://doi.org/10.2210/pdb6ZB9/pdb ... 3-glucanase from moose rumen microbiome, wild type ...
PhD, D.Tsenov Academy of Economics, Svishtov, Bulgaria , Publica carte la Editura Stiintifica LUMEN , Erusalimov, Rumen ... Erusalimov, Rumen. Erusalimov, Rumen - Prof. Univ. PhD, D.Tsenov Academy of Economics, Svishtov, Bulgaria ...
Agricultural Minister Rumen Porozhanov is ready to resign, reported BTA. Agriculture Minister Rumen Porozhanov declares that he ... Agricultural Minister Rumen Porozhanov is Ready to Resign. Politics » DOMESTIC , May 9, 2019, Thursday // 15:16 ...
Better rumen health, higher milk yield and efficient feeding is what you get with the Lely Cosmix. The concentrate feeder can ... By feeding according to cows requirements, rumen health improves and milk yield rises. The Lely Cosmix, along with the Lely ...
Rumen necrosis and hemorrhage, bovine. Gross pathology photograph of a bovine rumen displaying necrotic (large arrow) and ...
... making it an effective solution for delivering nutrients past the rumen. ... Rumen fluid was collected from two rumen cannulated sheep maintained on an all forage diet. Fresh rumen fluid was homogenized ... particularly if the source is high in unsaturated fatty acids which tend to be more harmful to rumen bacteria [8] . Rumen pH ... Rumen fluid was obtained from 2 non-lactating cows, filtered through 3 layers of cheese cloth and flushed with carbon dioxide ...
Rumen Spetsov has been re-appointed as executive director of the National Revenue Agency, the cabinet decided. The previous ... President Rumen Radev unveils Bulgarian pavilion at COP28 in Dubai. Bulgarias President Rumen Radev unveiled the Bulgarian ... Rumen Spetsov returns to the position of head of the NRA published on 6/7/23 6:22 PM ... Rumen Spetsov has been re-appointed as executive director of the National Revenue Agency, the cabinet decided. The previous ...
Therefore, the focus of this thesis was to study airs impact on rumen fermentation and to determine if probiotics could offset ... Future studies will further develop this model with in vivo studies to further interpretation and understanding of rumen ... Therefore, the focus of this thesis was to study airs impact on rumen fermentation and to determine if probiotics could offset ... Future studies will further develop this model with in vivo studies to further interpretation and understanding of rumen ...
Lactation support for low milk supply. A traditional herb to safely stimulate the development of mammary tissue. Rapidly increases breast milk production. Recommended by Naturopathic Doctors and Lactation Consultants. Certified Organic. Encourages development of mammary tissue. Increases production and flow of milk. In
Rumina ★. Rumina is a Malmö-based DJ, producer, and member of the eclectic music collective FNGRLCKN. As a DJ she stays unloyal ... Brought to you by Rumina. ★彡[ʟɪɴᴇᴜᴘ]彡★. ★ ABADIR (EG/DE) ★. ABADIR (Rami Abadir) is a music producer, sound designer, DJ and ... Rattle #3: ABADIR, Deb Foam, Rumina Rattle is a club concept that explores the sounds of deconstructed, experimental, and ...
The elegant simplicity of the Pacific Coast Rumina Table Lamp is perfect for any home ...
Rumen fluid hydrolyzed synthetic aromatic polyesters with higher amounts of terephthalic acid released from poly(butylene ... Rumen fluid hydrolyzed synthetic aromatic polyesters with higher amounts of terephthalic acid released from poly(butylene ... A screening with model substrates demonstrated hydrolytic activities of rumen fluid on p-NP-esters with four to eight carbon ... A screening with model substrates demonstrated hydrolytic activities of rumen fluid on p-NP-esters with 4 to 8 carbon atoms. ...
Rumen Bayraktarov graduated from the State Academy of Music in 1975. He studied Composition under Professor Alexander Raychev. ...
Posts about Rumen Porozhanov written by Екип на Биволъ ... Porozhanov Roumiana Chenalova ruja ignatova Rules violation Rumen Andreev Rumen Andrrev Rumen Gaitanski Rumen Porozhanov Rumen ...
... - tis ce tip a dal technickou podporu poskytuje firma Arkance Systems, Autodesk Platinum Partner
... - tis ce tip a dal technickou podporu poskytuje firma Arkance Systems, Autodesk Platinum Partner
The objective of the current study was to evaluate isoflavone supplementation with fescue seed consumption on rumen and serum ... Following the trial, blood and rumen fluid were collected for metabolite analysis. Metabolites were extracted and then analyzed ... and eleven metabolites in the rumen due to seed type (p , 0.05). Pathways affected by treatments were related to amino acid and ... nucleic acid metabolism in both rumen fluid and serum (p , 0.05). Therefore, metabolism was altered by fescue seed in the rumen ...
Named in honour of Rumina, the Roman Goddess of Breastfeeding, this postpartum breastfeeding tea is crafted from seeds rich in ... Matraea Abundance Rumina Milk Tea is formulated by midwives and certified organic by Ecocert Canada. A balanced herbal blend to ...
Cow Rumen and the Early Days of Metagenomics. Tracing a cow rumen dataset from the lab to material for a hands-on undergraduate ...
site.btaPresident Rumen Radev Has Phone Conversation with Hungarian Foreign Minister Peter Szijjarto. Desislava Toncheva ... President Rumen Radev held a telephone conversation with the Minister of Foreign Affairs and Trade of Hungary, Peter Szijjarto ...
... and Rumen D. Andreev (Bulgarian Academy of Sciences, Institute of Information and Communication Technologies, Bulgaria). ...
P.130 left column: Because most rumen ciliates are about 20-200µm in length, many can be seen with the naked eye, especially ... Yokoyama MG, Johnson KA: Microbiology of the rumen andintestine. In The Ruminant Animal: Digestive Physiology and Nutrition, ... when they are allowed to sediment out of rumen fluid. All of the protozoa are strictly anaerobic.. ...
Feed, most notably dry feed, has to remain in the rumen in order to begin the rumen development process. Dry feed, such as calf ... Feed, most notably dry feed, has to remain in the rumen in order to begin the rumen development process. Dry feed, such as calf ... Papillae are the finger-like projections that line the inside of the rumen. Papillae are essential for rumen function, as they ... However, butyric acid is not absorbed through the rumen wall, and the cells of the rumen wall have an alternative metabolic ...
Decrease quantity for Hugo Erbe #5- Bovine Rumen Preparation Increase quantity for Hugo Erbe #5- Bovine Rumen Preparation ... Hugo Erbe #5- Bovine Rumen Preparation. Hugo Erbe #5- Bovine Rumen Preparation ...
Scena Hipster Concert "Sax on the max - Ivaylo Enchev and Rumen Halachev", "Summer Fusion 2023" ...

No FAQ available that match "rumen"

No images available that match "rumen"