Endogenous compounds and drugs that bind to and activate GAMMA-AMINOBUTYRIC ACID receptors (RECEPTORS, GABA).
Drugs that bind to but do not activate GABA RECEPTORS, thereby blocking the actions of endogenous GAMMA-AMINOBUTYRIC ACID and GABA RECEPTOR AGONISTS.
Substances used for their pharmacological actions on GABAergic systems. GABAergic agents include agonists, antagonists, degradation or uptake inhibitors, depleters, precursors, and modulators of receptor function.
The most common inhibitory neurotransmitter in the central nervous system.
Substances that do not act as agonists or antagonists but do affect the GAMMA-AMINOBUTYRIC ACID receptor-ionophore complex. GABA-A receptors (RECEPTORS, GABA-A) appear to have at least three allosteric sites at which modulators act: a site at which BENZODIAZEPINES act by increasing the opening frequency of GAMMA-AMINOBUTYRIC ACID-activated chloride channels; a site at which BARBITURATES act to prolong the duration of channel opening; and a site at which some steroids may act. GENERAL ANESTHETICS probably act at least partly by potentiating GABAergic responses, but they are not included here.
Cell surface proteins which bind GAMMA-AMINOBUTYRIC ACID and contain an integral membrane chloride channel. Each receptor is assembled as a pentamer from a pool of at least 19 different possible subunits. The receptors belong to a superfamily that share a common CYSTEINE loop.
A family of plasma membrane neurotransmitter transporter proteins that regulates extracellular levels of the inhibitory neurotransmitter GAMMA-AMINOBUTYRIC ACID. They differ from GABA RECEPTORS, which signal cellular responses to GAMMA-AMINOBUTYRIC ACID. They control GABA reuptake into PRESYNAPTIC TERMINALS in the CENTRAL NERVOUS SYSTEM through high-affinity sodium-dependent transport.
A subset of GABA RECEPTORS that signal through their interaction with HETEROTRIMERIC G-PROTEINS.
Compounds that suppress or block the plasma membrane transport of GAMMA-AMINOBUTYRIC ACID by GABA PLASMA MEMBRANE TRANSPORT PROTEINS.
Drugs that bind to but do not activate GABA-A RECEPTORS thereby blocking the actions of endogenous or exogenous GABA-A RECEPTOR AGONISTS.
Endogenous compounds and drugs that bind to and activate GABA-A RECEPTORS.
A GAMMA-AMINOBUTYRIC ACID derivative that is a specific agonist of GABA-B RECEPTORS. It is used in the treatment of MUSCLE SPASTICITY, especially that due to SPINAL CORD INJURIES. Its therapeutic effects result from actions at spinal and supraspinal sites, generally the reduction of excitatory transmission.
A neurotoxic isoxazole isolated from species of AMANITA. It is obtained by decarboxylation of IBOTENIC ACID. Muscimol is a potent agonist of GABA-A RECEPTORS and is used mainly as an experimental tool in animal and tissue studies.
An isoquinoline alkaloid obtained from Dicentra cucullaria and other plants. It is a competitive antagonist for GABA-A receptors.
Nipecotic acids are a class of compounds, specifically GABAergic drugs, that act as reversible inhibitors of the presynaptic GABA transporter (GAT), increasing the concentration of GABA in the synaptic cleft and enhancing its inhibitory effects on neurotransmission.
Endogenous compounds and drugs that bind to and activate GABA-B RECEPTORS.
A noncompetitive antagonist at GABA-A receptors and thus a convulsant. Picrotoxin blocks the GAMMA-AMINOBUTYRIC ACID-activated chloride ionophore. Although it is most often used as a research tool, it has been used as a CNS stimulant and an antidote in poisoning by CNS depressants, especially the barbiturates.
Inorganic or organic derivatives of phosphinic acid, H2PO(OH). They include phosphinates and phosphinic acid esters.
An enzyme that converts brain gamma-aminobutyric acid (GAMMA-AMINOBUTYRIC ACID) into succinate semialdehyde, which can be converted to succinic acid and enter the citric acid cycle. It also acts on beta-alanine. EC 2.6.1.19.
Drugs that bind to but do not activate GABA-B RECEPTORS thereby blocking the actions of endogenous or exogenous GABA-B RECEPTOR AGONISTS.
The function of opposing or restraining the excitation of neurons or their target excitable cells.
A pyridoxal-phosphate protein that catalyzes the alpha-decarboxylation of L-glutamic acid to form gamma-aminobutyric acid and carbon dioxide. The enzyme is found in bacteria and in invertebrate and vertebrate nervous systems. It is the rate-limiting enzyme in determining GAMMA-AMINOBUTYRIC ACID levels in normal nervous tissues. The brain enzyme also acts on L-cysteate, L-cysteine sulfinate, and L-aspartate. EC 4.1.1.15.
The basic cellular units of nervous tissue. Each neuron consists of a body, an axon, and dendrites. Their purpose is to receive, conduct, and transmit impulses in the NERVOUS SYSTEM.
Hyperpolarization of membrane potentials at the SYNAPTIC MEMBRANES of target neurons during NEUROTRANSMISSION. They are local changes which diminish responsiveness to excitatory signals.
An electrophysiologic technique for studying cells, cell membranes, and occasionally isolated organelles. All patch-clamp methods rely on a very high-resistance seal between a micropipette and a membrane; the seal is usually attained by gentle suction. The four most common variants include on-cell patch, inside-out patch, outside-out patch, and whole-cell clamp. Patch-clamp methods are commonly used to voltage clamp, that is control the voltage across the membrane and measure current flow, but current-clamp methods, in which the current is controlled and the voltage is measured, are also used.
**Pyridazine** is a heterocyclic organic compound, consisting of a six-membered ring containing two nitrogen atoms, which is a basic structure found in certain pharmaceuticals and natural compounds, though it does not have a specific medical definition itself as a component or condition.
The communication from a NEURON to a target (neuron, muscle, or secretory cell) across a SYNAPSE. In chemical synaptic transmission, the presynaptic neuron releases a NEUROTRANSMITTER that diffuses across the synaptic cleft and binds to specific synaptic receptors, activating them. The activated receptors modulate specific ion channels and/or second-messenger systems in the postsynaptic cell. In electrical synaptic transmission, electrical signals are communicated as an ionic current flow across ELECTRICAL SYNAPSES.
A benzodiazepine with anticonvulsant, anxiolytic, sedative, muscle relaxant, and amnesic properties and a long duration of action. Its actions are mediated by enhancement of GAMMA-AMINOBUTYRIC ACID activity.
An analogue of GAMMA-AMINOBUTYRIC ACID. It is an irreversible inhibitor of 4-AMINOBUTYRATE TRANSAMINASE, the enzyme responsible for the catabolism of GAMMA-AMINOBUTYRIC ACID. (From Martindale The Extra Pharmacopoeia, 31st ed)
A family of vesicular neurotransmitter transporter proteins that sequester the inhibitory neurotransmitters GLYCINE; GAMMA-AMINOBUTYRIC ACID; and possibly GAMMA-HYDROXYBUTYRATE into SECRETORY VESICLES.
A strain of albino rat used widely for experimental purposes because of its calmness and ease of handling. It was developed by the Sprague-Dawley Animal Company.
Heterocyclic acids that are derivatives of 4-pyridinecarboxylic acid (isonicotinic acid).
A pregnane found in the urine of pregnant women and sows. It has anesthetic, hypnotic, and sedative properties.
A curved elevation of GRAY MATTER extending the entire length of the floor of the TEMPORAL HORN of the LATERAL VENTRICLE (see also TEMPORAL LOBE). The hippocampus proper, subiculum, and DENTATE GYRUS constitute the hippocampal formation. Sometimes authors include the ENTORHINAL CORTEX in the hippocampal formation.
A non-essential amino acid naturally occurring in the L-form. Glutamic acid is the most common excitatory neurotransmitter in the CENTRAL NERVOUS SYSTEM.
Derivatives of BUTYRIC ACID that contain one or more amino groups attached to the aliphatic structure. Included under this heading are a broad variety of acid forms, salts, esters, and amides that include the aminobutryrate structure.
Specialized junctions at which a neuron communicates with a target cell. At classical synapses, a neuron's presynaptic terminal releases a chemical transmitter stored in synaptic vesicles which diffuses across a narrow synaptic cleft and activates receptors on the postsynaptic membrane of the target cell. The target may be a dendrite, cell body, or axon of another neuron, or a specialized region of a muscle or secretory cell. Neurons may also communicate via direct electrical coupling with ELECTRICAL SYNAPSES. Several other non-synaptic chemical or electric signal transmitting processes occur via extracellular mediated interactions.
A group of two-ring heterocyclic compounds consisting of a benzene ring fused to a diazepine ring.
Neurons whose primary neurotransmitter is GAMMA-AMINOBUTYRIC ACID.
Single chains of amino acids that are the units of multimeric PROTEINS. Multimeric proteins can be composed of identical or non-identical subunits. One or more monomeric subunits may compose a protomer which itself is a subunit structure of a larger assembly.
Proteins involved in the transport of organic anions. They play an important role in the elimination of a variety of endogenous substances, xenobiotics and their metabolites from the body.
Most generally any NEURONS which are not motor or sensory. Interneurons may also refer to neurons whose AXONS remain within a particular brain region in contrast to projection neurons, which have axons projecting to other brain regions.
The sodium salt of 4-hydroxybutyric acid. It is used for both induction and maintenance of ANESTHESIA.
A benzodiazepine with pharmacologic actions similar to those of DIAZEPAM that can cause ANTEROGRADE AMNESIA. Some reports indicate that it is used as a date rape drug and suggest that it may precipitate violent behavior. The United States Government has banned the importation of this drug.
Drugs that inhibit the transport of neurotransmitters into axon terminals or into storage vesicles within terminals. For many transmitters, uptake determines the time course of transmitter action so inhibiting uptake prolongs the activity of the transmitter. Blocking uptake may also deplete available transmitter stores. Many clinically important drugs are uptake inhibitors although the indirect reactions of the brain rather than the acute block of uptake itself is often responsible for the therapeutic effects.
The voltage differences across a membrane. For cellular membranes they are computed by subtracting the voltage measured outside the membrane from the voltage measured inside the membrane. They result from differences of inside versus outside concentration of potassium, sodium, chloride, and other ions across cells' or ORGANELLES membranes. For excitable cells, the resting membrane potentials range between -30 and -100 millivolts. Physical, chemical, or electrical stimuli can make a membrane potential more negative (hyperpolarization), or less negative (depolarization).
An alkaloid found in the seeds of STRYCHNOS NUX-VOMICA. It is a competitive antagonist at glycine receptors and thus a convulsant. It has been used as an analeptic, in the treatment of nonketotic hyperglycinemia and sleep apnea, and as a rat poison.
A non-essential amino acid. It is found primarily in gelatin and silk fibroin and used therapeutically as a nutrient. It is also a fast inhibitory neurotransmitter.
Substances used for their pharmacological actions on any aspect of neurotransmitter systems. Neurotransmitter agents include agonists, antagonists, degradation inhibitors, uptake inhibitors, depleters, precursors, and modulators of receptor function.
The study of the generation and behavior of electrical charges in living organisms particularly the nervous system and the effects of electricity on living organisms.
A potent benzodiazepine receptor antagonist. Since it reverses the sedative and other actions of benzodiazepines, it has been suggested as an antidote to benzodiazepine overdoses.
The distal terminations of axons which are specialized for the release of neurotransmitters. Also included are varicosities along the course of axons which have similar specializations and also release transmitters. Presynaptic terminals in both the central and peripheral nervous systems are included.
Derivatives of BUTYRIC ACID that include a double bond between carbon 2 and 3 of the aliphatic structure. Included under this heading are a broad variety of acid forms, salts, esters, and amides that include the aminobutryrate structure.
The relationship between the dose of an administered drug and the response of the organism to the drug.
Depolarization of membrane potentials at the SYNAPTIC MEMBRANES of target neurons during neurotransmission. Excitatory postsynaptic potentials can singly or in summation reach the trigger threshold for ACTION POTENTIALS.
A strain of albino rat developed at the Wistar Institute that has spread widely at other institutions. This has markedly diluted the original strain.
Cell surface receptors that bind GLYCINE with high affinity and trigger intracellular changes which influence the behavior of cells. Glycine receptors in the CENTRAL NERVOUS SYSTEM have an intrinsic chloride channel and are usually inhibitory.
Drugs that bind to but do not activate excitatory amino acid receptors, thereby blocking the actions of agonists.
Substances that act in the brain stem or spinal cord to produce tonic or clonic convulsions, often by removing normal inhibitory tone. They were formerly used to stimulate respiration or as antidotes to barbiturate overdose. They are now most commonly used as experimental tools.
Substances used for their pharmacological actions on glycinergic systems. Glycinergic agents include agonists, antagonists, degradation or uptake inhibitors, depleters, precursors, and modulators of receptor function.
Inorganic compounds derived from hydrochloric acid that contain the Cl- ion.
Use of electric potential or currents to elicit biological responses.
Abrupt changes in the membrane potential that sweep along the CELL MEMBRANE of excitable cells in response to excitation stimuli.
Refers to animals in the period of time just after birth.
An inhibitor of glutamate decarboxylase. It decreases the GAMMA-AMINOBUTYRIC ACID concentration in the brain, thereby causing convulsions.
Projection neurons in the CEREBRAL CORTEX and the HIPPOCAMPUS. Pyramidal cells have a pyramid-shaped soma with the apex and an apical dendrite pointed toward the pial surface and other dendrites and an axon emerging from the base. The axons may have local collaterals but also project outside their cortical region.
The thin layer of GRAY MATTER on the surface of the CEREBRAL HEMISPHERES that develops from the TELENCEPHALON and folds into gyri and sulchi. It reaches its highest development in humans and is responsible for intellectual faculties and higher mental functions.
The commonest and widest ranging species of the clawed "frog" (Xenopus) in Africa. This species is used extensively in research. There is now a significant population in California derived from escaped laboratory animals.
Pregnane derivatives in which two side-chain methyl groups or two methylene groups in the ring skeleton (or a combination thereof) have been oxidized to keto groups.
A group of pyrido-indole compounds. Included are any points of fusion of pyridine with the five-membered ring of indole and any derivatives of these compounds. These are similar to CARBAZOLES which are benzo-indoles.
A potent excitatory amino acid antagonist with a preference for non-NMDA iontropic receptors. It is used primarily as a research tool.
The part of brain that lies behind the BRAIN STEM in the posterior base of skull (CRANIAL FOSSA, POSTERIOR). It is also known as the "little brain" with convolutions similar to those of CEREBRAL CORTEX, inner white matter, and deep cerebellar nuclei. Its function is to coordinate voluntary movements, maintain balance, and learn motor skills.
Imidazole derivative anesthetic and hypnotic with little effect on blood gases, ventilation, or the cardiovascular system. It has been proposed as an induction anesthetic.
Agents that alleviate ANXIETY, tension, and ANXIETY DISORDERS, promote sedation, and have a calming effect without affecting clarity of consciousness or neurologic conditions. ADRENERGIC BETA-ANTAGONISTS are commonly used in the symptomatic treatment of anxiety but are not included here.
Organic compounds that contain phosphorus as an integral part of the molecule. Included under this heading is broad array of synthetic compounds that are used as PESTICIDES and DRUGS.
Agents that inhibit SODIUM-POTASSIUM-CHLORIDE SYMPORTERS which are concentrated in the thick ascending limb at the junction of the LOOP OF HENLE and KIDNEY TUBULES, DISTAL. They act as DIURETICS. Excess use is associated with HYPOKALEMIA and HYPERGLYCEMIA.
A clear, colorless liquid rapidly absorbed from the gastrointestinal tract and distributed throughout the body. It has bactericidal activity and is used often as a topical disinfectant. It is widely used as a solvent and preservative in pharmaceutical preparations as well as serving as the primary ingredient in ALCOHOLIC BEVERAGES.
Na-K-Cl transporter ubiquitously expressed. It plays a key role in salt secretion in epithelial cells and cell volume regulation in nonepithelial cells.
Azoles with an OXYGEN and a NITROGEN next to each other at the 1,2 positions, in contrast to OXAZOLES that have nitrogens at the 1,3 positions.
Neurotransmitter receptors located on or near presynaptic terminals or varicosities. Presynaptic receptors which bind transmitter molecules released by the terminal itself are termed AUTORECEPTORS.
Membrane proteins whose primary function is to facilitate the transport of molecules across a biological membrane. Included in this broad category are proteins involved in active transport (BIOLOGICAL TRANSPORT, ACTIVE), facilitated transport and ION CHANNELS.
The part of CENTRAL NERVOUS SYSTEM that is contained within the skull (CRANIUM). Arising from the NEURAL TUBE, the embryonic brain is comprised of three major parts including PROSENCEPHALON (the forebrain); MESENCEPHALON (the midbrain); and RHOMBENCEPHALON (the hindbrain). The developed brain consists of CEREBRUM; CEREBELLUM; and other structures in the BRAIN STEM.
Drugs used to prevent SEIZURES or reduce their severity.
Female germ cells derived from OOGONIA and termed OOCYTES when they enter MEIOSIS. The primary oocytes begin meiosis but are arrested at the diplotene state until OVULATION at PUBERTY to give rise to haploid secondary oocytes or ova (OVUM).
Electrical responses recorded from nerve, muscle, SENSORY RECEPTOR, or area of the CENTRAL NERVOUS SYSTEM following stimulation. They range from less than a microvolt to several microvolts. The evoked potential can be auditory (EVOKED POTENTIALS, AUDITORY), somatosensory (EVOKED POTENTIALS, SOMATOSENSORY), visual (EVOKED POTENTIALS, VISUAL), or motor (EVOKED POTENTIALS, MOTOR), or other modalities that have been reported.
An aminoperhydroquinazoline poison found mainly in the liver and ovaries of fishes in the order TETRAODONTIFORMES, which are eaten. The toxin causes paresthesia and paralysis through interference with neuromuscular conduction.
An anxiolytic benzodiazepine derivative with anticonvulsant, sedative, and amnesic properties. It has also been used in the symptomatic treatment of alcohol withdrawal.
Cells propagated in vitro in special media conducive to their growth. Cultured cells are used to study developmental, morphologic, metabolic, physiologic, and genetic processes, among others.
A conditionally essential nutrient, important during mammalian development. It is present in milk but is isolated mostly from ox bile and strongly conjugates bile acids.
A group of compounds that are derivatives of methoxybenzene and contain the general formula R-C7H7O.
Pinched-off nerve endings and their contents of vesicles and cytoplasm together with the attached subsynaptic area of the membrane of the post-synaptic cell. They are largely artificial structures produced by fractionation after selective centrifugation of nervous tissue homogenates.
The injection of very small amounts of fluid, often with the aid of a microscope and microsyringes.
Therapeutic introduction of ions of soluble salts into tissues by means of electric current. In medical literature it is commonly used to indicate the process of increasing the penetration of drugs into surface tissues by the application of electric current. It has nothing to do with ION EXCHANGE; AIR IONIZATION nor PHONOPHORESIS, none of which requires current.
Clinical or subclinical disturbances of cortical function due to a sudden, abnormal, excessive, and disorganized discharge of brain cells. Clinical manifestations include abnormal motor, sensory and psychic phenomena. Recurrent seizures are usually referred to as EPILEPSY or "seizure disorder."
An enzyme that plays a role in the GLUTAMATE and butanoate metabolism pathways by catalyzing the oxidation of succinate semialdehyde to SUCCINATE using NAD+ as a coenzyme. Deficiency of this enzyme, causes 4-hydroxybutyricaciduria, a rare inborn error in the metabolism of the neurotransmitter 4-aminobutyric acid (GABA).
Compounds that contain the radical R2C=N.OH derived from condensation of ALDEHYDES or KETONES with HYDROXYLAMINE. Members of this group are CHOLINESTERASE REACTIVATORS.
An amino acid formed in vivo by the degradation of dihydrouracil and carnosine. Since neuronal uptake and neuronal receptor sensitivity to beta-alanine have been demonstrated, the compound may be a false transmitter replacing GAMMA-AMINOBUTYRIC ACID. A rare genetic disorder, hyper-beta-alaninemia, has been reported.
A very loosely defined group of drugs that tend to reduce the activity of the central nervous system. The major groups included here are ethyl alcohol, anesthetics, hypnotics and sedatives, narcotics, and tranquilizing agents (antipsychotics and antianxiety agents).
The largest portion of the CEREBRAL CORTEX in which the NEURONS are arranged in six layers in the mammalian brain: molecular, external granular, external pyramidal, internal granular, internal pyramidal and multiform layers.
Extensions of the nerve cell body. They are short and branched and receive stimuli from other NEURONS.
A pharmaceutical agent that displays activity as a central nervous system and respiratory stimulant. It is considered a non-competitive GAMMA-AMINOBUTYRIC ACID antagonist. Pentylenetetrazole has been used experimentally to study seizure phenomenon and to identify pharmaceuticals that may control seizure susceptibility.
The representation of the phylogenetically oldest part of the corpus striatum called the paleostriatum. It forms the smaller, more medial part of the lentiform nucleus.
Drugs used to induce drowsiness or sleep or to reduce psychological excitement or anxiety.
An inhibitor of glutamate decarboxylase and an antagonist of GAMMA-AMINOBUTYRIC ACID. It is used to induce convulsions in experimental animals.
The action of a drug that may affect the activity, metabolism, or toxicity of another drug.
Amino derivatives of caproic acid. Included under this heading are a broad variety of acid forms, salts, esters, and amides that contain the amino caproic acid structure.
Cell membrane glycoproteins that form channels to selectively pass chloride ions. Nonselective blockers include FENAMATES; ETHACRYNIC ACID; and TAMOXIFEN.
Agents that are capable of inducing a total or partial loss of sensation, especially tactile sensation and pain. They may act to induce general ANESTHESIA, in which an unconscious state is achieved, or may act locally to induce numbness or lack of sensation at a targeted site.
The voltages across pre- or post-SYNAPTIC MEMBRANES.
A technique for measuring extracellular concentrations of substances in tissues, usually in vivo, by means of a small probe equipped with a semipermeable membrane. Substances may also be introduced into the extracellular space through the membrane.
The ten-layered nervous tissue membrane of the eye. It is continuous with the OPTIC NERVE and receives images of external objects and transmits visual impulses to the brain. Its outer surface is in contact with the CHOROID and the inner surface with the VITREOUS BODY. The outer-most layer is pigmented, whereas the inner nine layers are transparent.
The modification of the reactivity of ENZYMES by the binding of effectors to sites (ALLOSTERIC SITES) on the enzymes other than the substrate BINDING SITES.
INTERNEURONS of the vertebrate RETINA containing two processes. They receive inputs from the RETINAL PHOTORECEPTOR CELLS and send outputs to the RETINAL GANGLION CELLS. The bipolar cells also make lateral connections in the retina with the RETINAL HORIZONTAL CELLS and with the AMACRINE CELLS.
A technique for maintenance or growth of animal organs in vitro. It refers to three-dimensional cultures of undisaggregated tissue retaining some or all of the histological features of the tissue in vivo. (Freshney, Culture of Animal Cells, 3d ed, p1)
Drugs that bind to and activate excitatory amino acid receptors.
One of the catecholamine NEUROTRANSMITTERS in the brain. It is derived from TYROSINE and is the precursor to NOREPINEPHRINE and EPINEPHRINE. Dopamine is a major transmitter in the extrapyramidal system of the brain, and important in regulating movement. A family of receptors (RECEPTORS, DOPAMINE) mediate its action.
A region in the MESENCEPHALON which is dorsomedial to the SUBSTANTIA NIGRA and ventral to the RED NUCLEUS. The mesocortical and mesolimbic dopaminergic systems originate here, including an important projection to the NUCLEUS ACCUMBENS. Overactivity of the cells in this area has been suspected to contribute to the positive symptoms of SCHIZOPHRENIA.
Low molecular weight, calcium binding muscle proteins. Their physiological function is possibly related to the contractile process.
(2S-(2 alpha,3 beta,4 beta))-2-Carboxy-4-(1-methylethenyl)-3-pyrrolidineacetic acid. Ascaricide obtained from the red alga Digenea simplex. It is a potent excitatory amino acid agonist at some types of excitatory amino acid receptors and has been used to discriminate among receptor types. Like many excitatory amino acid agonists it can cause neurotoxicity and has been used experimentally for that purpose.
A class of chemicals derived from barbituric acid or thiobarbituric acid. Many of these are GABA MODULATORS used as HYPNOTICS AND SEDATIVES, as ANESTHETICS, or as ANTICONVULSANTS.
A cylindrical column of tissue that lies within the vertebral canal. It is composed of WHITE MATTER and GRAY MATTER.
The D-enantiomer is a potent and specific antagonist of NMDA glutamate receptors (RECEPTORS, N-METHYL-D-ASPARTATE). The L form is inactive at NMDA receptors but may affect the AP4 (2-amino-4-phosphonobutyrate; APB) excitatory amino acid receptors.
The opening and closing of ion channels due to a stimulus. The stimulus can be a change in membrane potential (voltage-gated), drugs or chemical transmitters (ligand-gated), or a mechanical deformation. Gating is thought to involve conformational changes of the ion channel which alters selective permeability.
The observable response an animal makes to any situation.
The electrical properties, characteristics of living organisms, and the processes of organisms or their parts that are involved in generating and responding to electrical charges.
Agents that induce various degrees of analgesia; depression of consciousness, circulation, and respiration; relaxation of skeletal muscle; reduction of reflex activity; and amnesia. There are two types of general anesthetics, inhalation and intravenous. With either type, the arterial concentration of drug required to induce anesthesia varies with the condition of the patient, the desired depth of anesthesia, and the concomitant use of other drugs. (From AMA Drug Evaluations Annual, 1994, p.173)
Quinoxalines are heterocyclic organic compounds consisting of a benzene fused to a pyrazine ring, which have been studied for their potential antibacterial, antifungal, and anticancer properties.
Inbred C57BL mice are a strain of laboratory mice that have been produced by many generations of brother-sister matings, resulting in a high degree of genetic uniformity and homozygosity, making them widely used for biomedical research, including studies on genetics, immunology, cancer, and neuroscience.
A disorder characterized by recurrent episodes of paroxysmal brain dysfunction due to a sudden, disorderly, and excessive neuronal discharge. Epilepsy classification systems are generally based upon: (1) clinical features of the seizure episodes (e.g., motor seizure), (2) etiology (e.g., post-traumatic), (3) anatomic site of seizure origin (e.g., frontal lobe seizure), (4) tendency to spread to other structures in the brain, and (5) temporal patterns (e.g., nocturnal epilepsy). (From Adams et al., Principles of Neurology, 6th ed, p313)
Transport proteins that carry specific substances in the blood or across cell membranes.
INTERNEURONS of the vertebrate RETINA. They integrate, modulate, and interpose a temporal domain in the visual message presented to the RETINAL GANGLION CELLS, with which they synapse in the inner plexiform layer.
Histochemical localization of immunoreactive substances using labeled antibodies as reagents.
Branch-like terminations of NERVE FIBERS, sensory or motor NEURONS. Endings of sensory neurons are the beginnings of afferent pathway to the CENTRAL NERVOUS SYSTEM. Endings of motor neurons are the terminals of axons at the muscle cells. Nerve endings which release neurotransmitters are called PRESYNAPTIC TERMINALS.
A class of saturated compounds consisting of two rings only, having two or more atoms in common, containing at least one hetero atom, and that take the name of an open chain hydrocarbon containing the same total number of atoms. (From Riguady et al., Nomenclature of Organic Chemistry, 1979, p31)
Derivatives of GLUTAMIC ACID. Included under this heading are a broad variety of acid forms, salts, esters, and amides that contain the 2-aminopentanedioic acid structure.
A class of ionotropic glutamate receptors characterized by affinity for N-methyl-D-aspartate. NMDA receptors have an allosteric binding site for glycine which must be occupied for the channel to open efficiently and a site within the channel itself to which magnesium ions bind in a voltage-dependent manner. The positive voltage dependence of channel conductance and the high permeability of the conducting channel to calcium ions (as well as to monovalent cations) are important in excitotoxicity and neuronal plasticity.
A basic element found in nearly all organized tissues. It is a member of the alkaline earth family of metals with the atomic symbol Ca, atomic number 20, and atomic weight 40. Calcium is the most abundant mineral in the body and combines with phosphorus to form calcium phosphate in the bones and teeth. It is essential for the normal functioning of nerves and muscles and plays a role in blood coagulation (as factor IV) and in many enzymatic processes.
GRAY MATTER situated above the GYRUS HIPPOCAMPI. It is composed of three layers. The molecular layer is continuous with the HIPPOCAMPUS in the hippocampal fissure. The granular layer consists of closely arranged spherical or oval neurons, called GRANULE CELLS, whose AXONS pass through the polymorphic layer ending on the DENDRITES of PYRAMIDAL CELLS in the hippocampus.
One of four subsections of the hippocampus described by Lorente de No, located furthest from the DENTATE GYRUS.
Neural tracts connecting one part of the nervous system with another.
The ability of a substrate to allow the passage of ELECTRONS.
Postsynaptic potentials generated from a release of neurotransmitters from a presynaptic nerve terminal in the absence of an ACTION POTENTIAL. They may be m.e.p.p.s (miniature EXCITATORY POSTSYNAPTIC POTENTIALS) or m.i.p.p.s (miniature INHIBITORY POSTSYNAPTIC POTENTIALS).
An anticonvulsant used for several types of seizures, including myotonic or atonic seizures, photosensitive epilepsy, and absence seizures, although tolerance may develop. It is seldom effective in generalized tonic-clonic or partial seizures. The mechanism of action appears to involve the enhancement of GAMMA-AMINOBUTYRIC ACID receptor responses.
Cell-surface proteins that bind glutamate and trigger changes which influence the behavior of cells. Glutamate receptors include ionotropic receptors (AMPA, kainate, and N-methyl-D-aspartate receptors), which directly control ion channels, and metabotropic receptors which act through second messenger systems. Glutamate receptors are the most common mediators of fast excitatory synaptic transmission in the central nervous system. They have also been implicated in the mechanisms of memory and of many diseases.
The output neurons of the cerebellar cortex.
An organochlorine insecticide whose use has been cancelled or suspended in the United States. It has been used to control locusts, tropical disease vectors, in termite control by direct soil injection, and non-food seed and plant treatment. (From HSDB)
An intravenous anesthetic agent which has the advantage of a very rapid onset after infusion or bolus injection plus a very short recovery period of a couple of minutes. (From Smith and Reynard, Textbook of Pharmacology, 1992, 1st ed, p206). Propofol has been used as ANTICONVULSANTS and ANTIEMETICS.
Cell membranes associated with synapses. Both presynaptic and postsynaptic membranes are included along with their integral or tightly associated specializations for the release or reception of transmitters.
Common name for Carassius auratus, a type of carp (CARPS).
Membrane transporters that co-transport two or more dissimilar molecules in the same direction across a membrane. Usually the transport of one ion or molecule is against its electrochemical gradient and is "powered" by the movement of another ion or molecule with its electrochemical gradient.
Cell surface receptors that bind signalling molecules released by neurons and convert these signals into intracellular changes influencing the behavior of cells. Neurotransmitter is used here in its most general sense, including not only messengers that act to regulate ion channels, but also those which act on second messenger systems and those which may act at a distance from their release sites. Included are receptors for neuromodulators, neuroregulators, neuromediators, and neurohumors, whether or not located at synapses.
Almond-shaped group of basal nuclei anterior to the INFERIOR HORN OF THE LATERAL VENTRICLE of the TEMPORAL LOBE. The amygdala is part of the limbic system.
An amino acid that, as the D-isomer, is the defining agonist for the NMDA receptor subtype of glutamate receptors (RECEPTORS, NMDA).
Toluenes in which one hydrogen of the methyl group is substituted by an amino group. Permitted are any substituents on the benzene ring or the amino group.
Ventral part of the DIENCEPHALON extending from the region of the OPTIC CHIASM to the caudal border of the MAMMILLARY BODIES and forming the inferior and lateral walls of the THIRD VENTRICLE.
A subclass of symporters that specifically transport SODIUM CHLORIDE and/or POTASSIUM CHLORIDE across cellular membranes in a tightly coupled process.
Proteins which are found in membranes including cellular and intracellular membranes. They consist of two types, peripheral and integral proteins. They include most membrane-associated enzymes, antigenic proteins, transport proteins, and drug, hormone, and lectin receptors.
A group of peptide antibiotics from BACILLUS brevis. Gramicidin C or S is a cyclic, ten-amino acid polypeptide and gramicidins A, B, D are linear. Gramicidin is one of the two principal components of TYROTHRICIN.
A class of drugs that act by inhibition of sodium influx through cell membranes. Blockade of sodium channels slows the rate and amplitude of initial rapid depolarization, reduces cell excitability, and reduces conduction velocity.
Strains of mice in which certain GENES of their GENOMES have been disrupted, or "knocked-out". To produce knockouts, using RECOMBINANT DNA technology, the normal DNA sequence of the gene being studied is altered to prevent synthesis of a normal gene product. Cloned cells in which this DNA alteration is successful are then injected into mouse EMBRYOS to produce chimeric mice. The chimeric mice are then bred to yield a strain in which all the cells of the mouse contain the disrupted gene. Knockout mice are used as EXPERIMENTAL ANIMAL MODELS for diseases (DISEASE MODELS, ANIMAL) and to clarify the functions of the genes.
The capacity of the NERVOUS SYSTEM to change its reactivity as the result of successive activations.
Elements of limited time intervals, contributing to particular results or situations.
Amino acids with uncharged R groups or side chains.
The lower portion of the BRAIN STEM. It is inferior to the PONS and anterior to the CEREBELLUM. Medulla oblongata serves as a relay station between the brain and the spinal cord, and contains centers for regulating respiratory, vasomotor, cardiac, and reflex activities.
A sulfamyl diuretic.
Theoretical representations that simulate the behavior or activity of the neurological system, processes or phenomena; includes the use of mathematical equations, computers, and other electronic equipment.
Cyclohexanecarboxylic acids are organic compounds consisting of a cyclohexane ring substituted with a carboxylic acid group, typically represented by the structural formula C6H11COOH.
A childhood seizure disorder characterized by rhythmic electrical brain discharges of generalized onset. Clinical features include a sudden cessation of ongoing activity usually without loss of postural tone. Rhythmic blinking of the eyelids or lip smacking frequently accompanies the SEIZURES. The usual duration is 5-10 seconds, and multiple episodes may occur daily. Juvenile absence epilepsy is characterized by the juvenile onset of absence seizures and an increased incidence of myoclonus and tonic-clonic seizures. (Menkes, Textbook of Child Neurology, 5th ed, p736)
An outbred strain of rats developed in 1915 by crossing several Wistar Institute white females with a wild gray male. Inbred strains have been derived from this original outbred strain, including Long-Evans cinnamon rats (RATS, INBRED LEC) and Otsuka-Long-Evans-Tokushima Fatty rats (RATS, INBRED OLETF), which are models for Wilson's disease and non-insulin dependent diabetes mellitus, respectively.
Changes in the amounts of various chemicals (neurotransmitters, receptors, enzymes, and other metabolites) specific to the area of the central nervous system contained within the head. These are monitored over time, during sensory stimulation, or under different disease states.
GRAY MATTER located in the dorsomedial part of the MEDULLA OBLONGATA associated with the solitary tract. The solitary nucleus receives inputs from most organ systems including the terminations of the facial, glossopharyngeal, and vagus nerves. It is a major coordinator of AUTONOMIC NERVOUS SYSTEM regulation of cardiovascular, respiratory, gustatory, gastrointestinal, and chemoreceptive aspects of HOMEOSTASIS. The solitary nucleus is also notable for the large number of NEUROTRANSMITTERS which are found therein.
Ultrashort-acting anesthetics that are used for induction. Loss of consciousness is rapid and induction is pleasant, but there is no muscle relaxation and reflexes frequently are not reduced adequately. Repeated administration results in accumulation and prolongs the recovery time. Since these agents have little if any analgesic activity, they are seldom used alone except in brief minor procedures. (From AMA Drug Evaluations Annual, 1994, p174)
A meshlike structure composed of interconnecting nerve cells that are separated at the synaptic junction or joined to one another by cytoplasmic processes. In invertebrates, for example, the nerve net allows nerve impulses to spread over a wide area of the net because synapses can pass information in any direction.
Striped GRAY MATTER and WHITE MATTER consisting of the NEOSTRIATUM and paleostriatum (GLOBUS PALLIDUS). It is located in front of and lateral to the THALAMUS in each cerebral hemisphere. The gray substance is made up of the CAUDATE NUCLEUS and the lentiform nucleus (the latter consisting of the GLOBUS PALLIDUS and PUTAMEN). The WHITE MATTER is the INTERNAL CAPSULE.
A benzodiazepine used as an anti-anxiety agent with few side effects. It also has hypnotic, anticonvulsant, and considerable sedative properties and has been proposed as a preanesthetic agent.
Cell surface proteins that bind glutamate and act through G-proteins to influence second messenger systems. Several types of metabotropic glutamate receptors have been cloned. They differ in pharmacology, distribution, and mechanisms of action.
Several groups of nuclei in the thalamus that serve as the major relay centers for sensory impulses in the brain.
A non-essential amino acid present abundantly throughout the body and is involved in many metabolic processes. It is synthesized from GLUTAMIC ACID and AMMONIA. It is the principal carrier of NITROGEN in the body and is an important energy source for many cells.
The physical activity of a human or an animal as a behavioral phenomenon.
Gated, ion-selective glycoproteins that traverse membranes. The stimulus for ION CHANNEL GATING can be due to a variety of stimuli such as LIGANDS, a TRANSMEMBRANE POTENTIAL DIFFERENCE, mechanical deformation or through INTRACELLULAR SIGNALING PEPTIDES AND PROTEINS.
A region extending from the PONS & MEDULLA OBLONGATA through the MESENCEPHALON, characterized by a diversity of neurons of various sizes and shapes, arranged in different aggregations and enmeshed in a complicated fiber network.
An aquatic genus of the family, Pipidae, occurring in Africa and distinguished by having black horny claws on three inner hind toes.
The black substance in the ventral midbrain or the nucleus of cells containing the black substance. These cells produce DOPAMINE, an important neurotransmitter in regulation of the sensorimotor system and mood. The dark colored MELANIN is a by-product of dopamine synthesis.
Ovoid body resting on the CRIBRIFORM PLATE of the ethmoid bone where the OLFACTORY NERVE terminates. The olfactory bulb contains several types of nerve cells including the mitral cells, on whose DENDRITES the olfactory nerve synapses, forming the olfactory glomeruli. The accessory olfactory bulb, which receives the projection from the VOMERONASAL ORGAN via the vomeronasal nerve, is also included here.
The rate dynamics in chemical or physical systems.
A slowly hydrolyzed muscarinic agonist with no nicotinic effects. Pilocarpine is used as a miotic and in the treatment of glaucoma.
A statistical technique that isolates and assesses the contributions of categorical independent variables to variation in the mean of a continuous dependent variable.
Laboratory mice that have been produced from a genetically manipulated EGG or EMBRYO, MAMMALIAN.
An element in the alkali group of metals with an atomic symbol K, atomic number 19, and atomic weight 39.10. It is the chief cation in the intracellular fluid of muscle and other cells. Potassium ion is a strong electrolyte that plays a significant role in the regulation of fluid volume and maintenance of the WATER-ELECTROLYTE BALANCE.
'Nerve tissue proteins' are specialized proteins found within the nervous system's biological tissue, including neurofilaments, neuronal cytoskeletal proteins, and neural cell adhesion molecules, which facilitate structural support, intracellular communication, and synaptic connectivity essential for proper neurological function.
A species of the family Ranidae which occurs primarily in Europe and is used widely in biomedical research.
Transmitter receptors on or near presynaptic terminals (or varicosities) which are sensitive to the transmitter(s) released by the terminal itself. Receptors for the hormones released by hormone-releasing cells are also included.
Endogenous amino acids released by neurons as excitatory neurotransmitters. Glutamic acid is the most common excitatory neurotransmitter in the brain. Aspartic acid has been regarded as an excitatory transmitter for many years, but the extent of its role as a transmitter is unclear.
Benzocycloheptenes are organic compounds characterized by a seven-membered carbocyclic ring fused with a benzene ring, forming a bicyclic structure, and can be found as core structures in various natural and synthetic bioactive molecules.
The parts of a macromolecule that directly participate in its specific combination with another molecule.
Region of hypothalamus between the ANTERIOR COMMISSURE and OPTIC CHIASM.
The rostral part of the frontal lobe, bounded by the inferior precentral fissure in humans, which receives projection fibers from the MEDIODORSAL NUCLEUS OF THE THALAMUS. The prefrontal cortex receives afferent fibers from numerous structures of the DIENCEPHALON; MESENCEPHALON; and LIMBIC SYSTEM as well as cortical afferents of visual, auditory, and somatic origin.
The part of the brain that connects the CEREBRAL HEMISPHERES with the SPINAL CORD. It consists of the MESENCEPHALON; PONS; and MEDULLA OBLONGATA.
A family of inwardly-rectifying potassium channels that are activated by PERTUSSIS TOXIN sensitive G-PROTEIN-COUPLED RECEPTORS. GIRK potassium channels are primarily activated by the complex of GTP-BINDING PROTEIN BETA SUBUNITS and GTP-BINDING PROTEIN GAMMA SUBUNITS.
A convulsant primarily used in experimental animals. It was formerly used to induce convulsions as a alternative to electroshock therapy.
Saturated derivatives of the steroid pregnane. The 5-beta series includes PROGESTERONE and related hormones; the 5-alpha series includes forms generally excreted in the urine.
Semicarbazides are organic compounds containing a functional group with the structure NH2-NH-CO-NH2, which are commonly used as reagents in chemical reactions to form semicarbazones, and can also be found in some pharmaceuticals and industrial chemicals.

A single hydrophobic residue confers barbiturate sensitivity to gamma-aminobutyric acid type C receptor. (1/856)

Barbiturate sensitivity was imparted to the human rho1 homooligomeric gamma-aminobutyric acid (GABA) receptor channel by mutation of a tryptophan residue at position 328 (Trp328), which is located within the third transmembrane domain. Substitutions of Trp328 with a spectrum of amino acids revealed that nearly all hydrophobic residues produced receptor channels that were both directly activated and modulated by pentobarbital with similar sensitivities. Previous studies with ligand-gated ion channels (including GABA) have demonstrated that even conservative amino acid substitution within the agonist-dependent activation domain (N-terminal extracellular domain) can markedly impair agonist sensitivity. Thus, the lack of significant variation in pentobarbital sensitivity among the Trp328 mutants attests to an intrinsic difference between pentobarbital- and the GABA-dependent activation domain. Compared with the heterooligomeric alphabetagamma receptor channel, the mode of modulation for homooligomeric Trp328 mutants by pentobarbital was more dependent on the GABA concentration, yielding potentiation only at low concentrations of GABA (fractions of their respective EC50 values), yet causing inhibition at higher concentrations. Agonist-related studies have also demonstrated that residue 328 plays an important role in agonist-dependent activation, suggesting a functional interconnection between the GABA and pentobarbital activation domains.  (+info)

Concurrent inhibition and excitation of phrenic motoneurons during inspiration: phase-specific control of excitability. (2/856)

The movements that define behavior are controlled by motoneuron output, which depends on the excitability of motoneurons and the synaptic inputs they receive. Modulation of motoneuron excitability takes place over many time scales. To determine whether motoneuron excitability is specifically modulated during the active versus the quiescent phase of rhythmic behavior, we compared the input-output properties of phrenic motoneurons (PMNs) during inspiratory and expiratory phases of respiration. In neonatal rat brainstem-spinal cord preparations that generate rhythmic respiratory motor outflow, we blocked excitatory inspiratory synaptic drive to PMNs and then examined their phase-dependent responses to superthreshold current pulses. Pulses during inspiration elicited fewer action potentials compared with identical pulses during expiration. This reduced excitability arose from an inspiratory-phase inhibitory input that hyperpolarized PMNs in the absence of excitatory inspiratory inputs. Local application of bicuculline blocked this inhibition as well as the difference between inspiratory and expiratory firing. Correspondingly, bicuculline locally applied to the midcervical spinal cord enhanced fourth cervical nerve (C4) inspiratory burst amplitude. Strychnine had no effect on C4 output. Nicotinic receptor antagonists neither potentiated C4 output nor blocked its potentiation by bicuculline, further indicating that the inhibition is not from recurrent inhibitory pathways. We conclude that it is bulbospinal in origin. These data demonstrate that rapid changes in motoneuron excitability occur during behavior and suggest that integration of overlapping, opposing synaptic inputs to motoneurons is important in controlling motor outflow. Modulation of phasic inhibition may represent a means for regulating the transfer function of PMNs to suit behavioral demands.  (+info)

Inhibition of primate spinothalamic tract neurons by spinal glycine and GABA is modulated by guanosine 3',5'-cyclic monophosphate. (3/856)

Our recent work has suggested that the nitric oxide/guanosine 3', 5'-cyclic monophosphate (NO/cGMP) signal transduction system contributes to central sensitization of spinothalamic tract (STT) neurons in part by influencing the descending inhibition of nociception resulting from stimulation in the periaqueductal gray. This study was designed to examine further whether activation of the NO/cGMP cascade reduces the inhibition of the activity of STT neurons mediated by spinal inhibitory amino acid (IAA) receptors. Responses of STT cells to noxious cutaneous stimuli were inhibited by iontophoresis of glycine and GABA agonists in anesthetized monkeys. Administration of 8-bromoguanosine-3',5'-cyclophosphate sodium (8-bromo-cGMP), a membrane permeable analogue of cGMP, either by microdialysis or by iontophoresis reduced significantly the IAA-induced inhibition of wide dynamic range (WDR) STT cells in the deep layers of the dorsal horn. The reduction in inhibition lasted for up to 1-1.5 h after the cessation of drug infusion. In contrast, IAA-induced inhibition of WDR STT cells in the superficial dorsal horn and high-threshold (HT) cells in superficial or deep layers was not significantly changed during 8-bromo-cGMP infusion. Iontophoresis of 8-bromo-cGMP onto STT cells produced the same actions as produced by microdialysis of this agent, but the effect was not as long-lasting nor as potent. Finally, an attenuation of the IAA receptor-mediated inhibition of STT cells produced by iontophoretic release of a NO donor, 3-morpholinosydnonimine, could be blocked by pretreatment of the spinal cord with a guanylate cyclase inhibitor, 1H-[1,2,4]oxadiazolo[4,3-a]quinoxalin-1-one. These results suggest that an increased spinal cGMP level contributes to the sensitization of WDR STT neurons in the deep dorsal horn in part by down-regulating spinal IAA receptors. However, no evidence is provided in this study that the NO/cGMP cascade regulates IAA receptors on HT and superficial WDR neurons. Combined with the preceding studies, our data support the view that NO and cGMP function in the same signal transduction cascade and play an important role in central sensitization.  (+info)

Synaptogenesis: The MAP location of GABA receptors. (4/856)

Microtubule-associated proteins (MAPs) have been identified as binding partners for ionotropic GABAA and GABAC receptors. These interactions suggest a potential role for MAPs in the cytoskeletal anchoring of receptor-ion channels at specific subcellular sites, such as synapses.  (+info)

Reciprocal synaptic interactions between rod bipolar cells and amacrine cells in the rat retina. (5/856)

Reciprocal synaptic transmission between rod bipolar cells and presumed A17 amacrine cells was studied by whole cell voltage-clamp recording of rod bipolar cells in a rat retinal slice preparation. Depolarization of a rod bipolar cell evoked two identifiable types of Ca2+ current, a T-type current that activated at about -70 mV and a current with L-type pharmacology that activated at about -50 mV. Depolarization to greater than or equal to -50 mV also evoked an increase in the frequency of postsynaptic currents (PSCs). The PSCs reversed at approximately ECl (the chloride equilibrium potential), followed changes in ECl, and were blocked by gamma-aminobutyric acidA (GABAA) and GABAC receptor antagonists and thus were identified as GABAergic inhibitory PSCs (IPSCs). Bipolar cells with cut axons displayed the T-type current but lacked an L-type current and depolarization-evoked IPSCs. Thus L-type Ca2+ channels are placed strategically at the axon terminals to mediate transmitter release from rod bipolar cells. The IPSCs were blocked by the non-N-methyl-D-aspartate (non-NMDA) receptor antagonist 6-cyano-7-nitroquinoxaline-2,3-dione, indicating that non-NMDA receptors mediate the feed-forward bipolar-to-amacrine excitation. The NMDA receptor antagonist 3-((RS)-2-carboxypiperazin-4-yl)-propyl-1-phosphonic acid had no consistent effect on the depolarization-evoked IPSCs, indicating that activation of NMDA receptors is not essential for the feedforward excitation. Tetrodotoxin (a blocker of voltage-gated Na+ channels) reversibly suppressed the reciprocal response in some cells but not in others, indicating that graded potentials are sufficient for transmitter release from A17 amacrine cells, but suggesting that voltage-gated Na+ channels, under some conditions, can contribute to transmitter release.  (+info)

Fast excitatory synaptic transmission mediated by nicotinic acetylcholine receptors in Drosophila neurons. (6/856)

Difficulty in recording from single neurons in vivo has precluded functional analyses of transmission at central synapses in Drosophila, where the neurotransmitters and receptors mediating fast synaptic transmission have yet to be identified. Here we demonstrate that spontaneously active synaptic connections form between cultured neurons prepared from wild-type embryos and provide the first direct evidence that both acetylcholine and GABA mediate fast interneuronal synaptic transmission in Drosophila. The predominant type of fast excitatory transmission between cultured neurons is mediated by nicotinic acetylcholine receptors (nAChRs). Detailed analysis of cholinergic transmission reveals that spontaneous EPSCs (sEPSCs) are composed of both evoked and action potential-independent [miniature EPSC (mEPSC)] components. The mEPSCs are characterized by a broad, positively skewed amplitude histogram in which the variance is likely to reflect differences in the currents induced by single quanta. Biophysical characteristics of the cholinergic mEPSCs include a rapid rise time (0.6 msec) and decay (tau = 2 msec). Regulation of mEPSC frequency by external calcium and cobalt suggests that calcium influx through voltage-gated channels influences the probability of ACh release. In addition, brief depolarization of the cultures with KCl can induce a calcium-dependent increase in sEPSC frequency that persists for up to 3 hr after termination of the stimulus, illustrating one form of plasticity at these cholinergic synapses. These data demonstrate that cultured embryonic neurons, amenable to both genetic and biochemical manipulations, present a unique opportunity to define genes/signal transduction cascades involved in functional regulation of fast excitatory transmission at interneuronal cholinergic synapses in Drosophila.  (+info)

The Caenorhabditis elegans unc-49 locus encodes multiple subunits of a heteromultimeric GABA receptor. (7/856)

Ionotropic GABA receptors generally require the products of three subunit genes. By contrast, the GABA receptor needed for locomotion in Caenorhabditis elegans requires only the unc-49 gene. We cloned unc-49 and demonstrated that it possesses an unusual overlapping gene structure. unc-49 contains a single copy of a GABA receptor N terminus, followed by three tandem copies of a GABA receptor C terminus. Using a single promoter, unc-49 generates three distinct GABAA receptor-like subunits by splicing the N terminus to each of the three C-terminal repeats. This organization suggests that the three UNC-49 subunits (UNC-49A, UNC-49B, and UNC-49C) are coordinately rescued and therefore might coassemble to form a heteromultimeric GABA receptor. Surprisingly, only UNC-49B and UNC-49C are expressed at high levels, whereas UNC-49A expression is barely detectable. Green fluorescent protein-tagged UNC-49B and UNC-49C subunits are coexpressed in muscle cells and are colocalized to synaptic regions. UNC-49B and UNC-49C also coassemble efficiently in Xenopus oocytes and HEK-293 cells to form a heteromeric GABA receptor. Together these data argue that UNC-49B and UNC-49C coassemble at the C. elegans neuromuscular junction. Thus, C. elegans is able to encode a heteromeric GABA receptor with a single locus.  (+info)

Actions of brain-derived neurotrophic factor in slices from rats with spontaneous seizures and mossy fiber sprouting in the dentate gyrus. (8/856)

This study examined the acute actions of brain-derived neurotrophic factor (BDNF) in the rat dentate gyrus after seizures, because previous studies have shown that BDNF has acute effects on dentate granule cell synaptic transmission, and other studies have demonstrated that BDNF expression increases in granule cells after seizures. Pilocarpine-treated rats were studied because they not only have seizures and increased BDNF expression in granule cells, but they also have reorganization of granule cell "mossy fiber" axons. This reorganization, referred to as "sprouting," involves collaterals that grow into novel areas, i.e., the inner molecular layer, where granule cell and interneuron dendrites are located. Thus, this animal model allowed us to address the effects of BDNF in the dentate gyrus after seizures, as well as the actions of BDNF on mossy fiber transmission after reorganization. In slices with sprouting, BDNF bath application enhanced responses recorded in the inner molecular layer to mossy fiber stimulation. Spontaneous bursts of granule cells occurred, and these were apparently generated at the site of the sprouted axon plexus. These effects were not accompanied by major changes in perforant path-evoked responses or paired-pulse inhibition, occurred only after prolonged (30-60 min) exposure to BDNF, and were blocked by K252a. The results suggest a preferential action of BDNF at mossy fiber synapses, even after substantial changes in the dentate gyrus network. Moreover, the results suggest that activation of trkB receptors could contribute to the hyperexcitability observed in animals with sprouting. Because human granule cells also express increased BDNF mRNA after seizures, and sprouting can occur in temporal lobe epileptics, the results may have implications for understanding temporal lobe epilepsy.  (+info)

GABA (gamma-aminobutyric acid) agonists are substances that bind to and activate GABA receptors in the brain, mimicking the actions of GABA, which is the primary inhibitory neurotransmitter in the central nervous system. These agents can produce various effects such as sedation, anxiolysis, muscle relaxation, and anticonvulsant activity by enhancing the inhibitory tone in the brain. They are used clinically to treat conditions such as anxiety disorders, seizures, and muscle spasticity. Examples of GABA agonists include benzodiazepines, barbiturates, and certain non-benzodiazepine hypnotics.

GABA (gamma-aminobutyric acid) antagonists are substances that block the action of GABA, which is the primary inhibitory neurotransmitter in the central nervous system. GABA plays a crucial role in regulating neuronal excitability and reducing the transmission of nerve impulses.

GABA antagonists work by binding to the GABA receptors without activating them, thereby preventing the normal function of GABA and increasing neuronal activity. These agents can cause excitation of the nervous system, leading to various effects depending on the specific type of GABA receptor they target.

GABA antagonists are used in medical treatments for certain conditions, such as sleep disorders, depression, and cognitive enhancement. However, they can also have adverse effects, including anxiety, agitation, seizures, and even neurotoxicity at high doses. Examples of GABA antagonists include picrotoxin, bicuculline, and flumazenil.

GABA (gamma-aminobutyric acid) agents are pharmaceutical drugs that act as agonists at the GABA receptors in the brain. GABA is the primary inhibitory neurotransmitter in the central nervous system, and it plays a crucial role in regulating neuronal excitability.

GABA agents can enhance the activity of GABA by increasing the frequency or duration of GABA-mediated chloride currents at the GABA receptors. These drugs are often used as anticonvulsants, anxiolytics, muscle relaxants, and sedatives due to their ability to reduce neuronal excitability and promote relaxation.

Examples of GABA agents include benzodiazepines, barbiturates, non-benzodiazepine hypnotics, and certain anticonvulsant drugs such as gabapentin and pregabalin. It is important to note that while these drugs can be effective in treating various medical conditions, they also carry the risk of dependence, tolerance, and adverse effects, particularly when used at high doses or for prolonged periods.

Gamma-Aminobutyric Acid (GABA) is a major inhibitory neurotransmitter in the mammalian central nervous system. It plays a crucial role in regulating neuronal excitability and preventing excessive neuronal firing, which helps to maintain neural homeostasis and reduce the risk of seizures. GABA functions by binding to specific receptors (GABA-A, GABA-B, and GABA-C) on the postsynaptic membrane, leading to hyperpolarization of the neuronal membrane and reduced neurotransmitter release from presynaptic terminals.

In addition to its role in the central nervous system, GABA has also been identified as a neurotransmitter in the peripheral nervous system, where it is involved in regulating various physiological processes such as muscle relaxation, hormone secretion, and immune function.

GABA can be synthesized in neurons from glutamate, an excitatory neurotransmitter, through the action of the enzyme glutamic acid decarboxylase (GAD). Once synthesized, GABA is stored in synaptic vesicles and released into the synapse upon neuronal activation. After release, GABA can be taken up by surrounding glial cells or degraded by the enzyme GABA transaminase (GABA-T) into succinic semialdehyde, which is further metabolized to form succinate and enter the Krebs cycle for energy production.

Dysregulation of GABAergic neurotransmission has been implicated in various neurological and psychiatric disorders, including epilepsy, anxiety, depression, and sleep disturbances. Therefore, modulating GABAergic signaling through pharmacological interventions or other therapeutic approaches may offer potential benefits for the treatment of these conditions.

GABA (gamma-aminobutyric acid) modulators are substances that affect the function of GABA, which is the primary inhibitory neurotransmitter in the central nervous system. GABA plays a crucial role in regulating neuronal excitability and reducing the activity of overactive nerve cells.

GABA modulators can either enhance or decrease the activity of GABA receptors, depending on their specific mechanism of action. These substances can be classified into two main categories:

1. Positive allosteric modulators (PAMs): These compounds bind to a site on the GABA receptor that is distinct from the neurotransmitter binding site and enhance the activity of GABA at the receptor, leading to increased inhibitory signaling in the brain. Examples of positive allosteric modulators include benzodiazepines, barbiturates, and certain non-benzodiazepine drugs used for anxiolysis, sedation, and muscle relaxation.
2. Negative allosteric modulators (NAMs): These compounds bind to a site on the GABA receptor that reduces the activity of GABA at the receptor, leading to decreased inhibitory signaling in the brain. Examples of negative allosteric modulators include certain antiepileptic drugs and alcohol, which can reduce the effectiveness of GABA-mediated inhibition and contribute to their proconvulsant effects.

It is important to note that while GABA modulators can have therapeutic benefits in treating various neurological and psychiatric conditions, they can also carry risks for abuse, dependence, and adverse side effects, particularly when used at high doses or over extended periods.

GABA-A receptors are ligand-gated ion channels in the membrane of neuronal cells. They are the primary mediators of fast inhibitory synaptic transmission in the central nervous system. When the neurotransmitter gamma-aminobutyric acid (GABA) binds to these receptors, it opens an ion channel that allows chloride ions to flow into the neuron, resulting in hyperpolarization of the membrane and decreased excitability of the neuron. This inhibitory effect helps to regulate neural activity and maintain a balance between excitation and inhibition in the nervous system. GABA-A receptors are composed of multiple subunits, and the specific combination of subunits can determine the receptor's properties, such as its sensitivity to different drugs or neurotransmitters.

GABA (gamma-aminobutyric acid) is the primary inhibitory neurotransmitter in the mammalian central nervous system. GABA plasma membrane transport proteins, also known as GATs (GABA transporters), are a family of membrane-spanning proteins responsible for the uptake of GABA from the extracellular space into neurons and glial cells.

There are four main subtypes of GATs in mammals, named GAT1, GAT2, GAT3, and Betaine/GABA transporter 1 (BGT1). These transport proteins play a crucial role in terminating the synaptic transmission of GABA and regulating its concentration in the extracellular space. They also help maintain the balance between excitation and inhibition in the central nervous system.

GATs are targets for various pharmacological interventions, as modulation of their activity can affect GABAergic neurotransmission and have therapeutic potential in treating several neurological disorders, such as epilepsy, anxiety, and chronic pain.

GABA-B receptors are a type of G protein-coupled receptor that is activated by the neurotransmitter gamma-aminobutyric acid (GABA). These receptors are found throughout the central nervous system and play a role in regulating neuronal excitability. When GABA binds to GABA-B receptors, it causes a decrease in the release of excitatory neurotransmitters and an increase in the release of inhibitory neurotransmitters, which results in a overall inhibitory effect on neuronal activity. GABA-B receptors are involved in a variety of physiological processes, including the regulation of muscle tone, cardiovascular function, and pain perception. They have also been implicated in the pathophysiology of several neurological and psychiatric disorders, such as epilepsy, anxiety, and addiction.

GABA (gamma-aminobutyric acid) uptake inhibitors are a class of drugs or compounds that block the reuptake of GABA, an inhibitory neurotransmitter in the brain, into the presynaptic neuron. By blocking the reuptake, GABA uptake inhibitors increase the concentration of GABA in the synaptic cleft, which can enhance its inhibitory effects on neural activity. These drugs are sometimes used in the treatment of various neurological and psychiatric conditions, such as anxiety disorders, epilepsy, and spasticity. Examples of GABA uptake inhibitors include tiagabine and vigabatrin.

GABA-A receptor antagonists are pharmacological agents that block the action of gamma-aminobutyric acid (GABA) at GABA-A receptors. GABA is the primary inhibitory neurotransmitter in the central nervous system, and it exerts its effects by binding to GABA-A receptors, which are ligand-gated chloride channels. When GABA binds to these receptors, it opens the chloride channel, leading to an influx of chloride ions into the neuron and hyperpolarization of the membrane, making it less likely to fire.

GABA-A receptor antagonists work by binding to the GABA-A receptor and preventing GABA from binding, thereby blocking the inhibitory effects of GABA. This can lead to increased neuronal excitability and can result in a variety of effects depending on the specific antagonist and the location of the receptors involved.

GABA-A receptor antagonists have been used in research to study the role of GABA in various physiological processes, and some have been investigated as potential therapeutic agents for conditions such as anxiety, depression, and insomnia. However, their use is limited by their potential to cause seizures and other adverse effects due to excessive neuronal excitation. Examples of GABA-A receptor antagonists include picrotoxin, bicuculline, and flumazenil.

GABA-A receptor agonists are substances that bind to and activate GABA-A receptors, which are ligand-gated ion channels found in the central nervous system. GABA (gamma-aminobutyric acid) is the primary inhibitory neurotransmitter in the brain, and its activation via GABA-A receptors results in hyperpolarization of neurons and reduced neuronal excitability.

GABA-A receptor agonists can be classified into two categories: GABAergic compounds and non-GABAergic compounds. GABAergic compounds, such as muscimol and isoguvacine, are structurally similar to GABA and directly activate the receptors. Non-GABAergic compounds, on the other hand, include benzodiazepines, barbiturates, and neurosteroids, which allosterically modulate the receptor's affinity for GABA, thereby enhancing its inhibitory effects.

These agents are used in various clinical settings to treat conditions such as anxiety, insomnia, seizures, and muscle spasticity. However, they can also produce adverse effects, including sedation, cognitive impairment, respiratory depression, and physical dependence, particularly when used at high doses or for prolonged periods.

Baclofen is a muscle relaxant and antispastic medication. It is primarily used to treat spasticity, a common symptom in individuals with spinal cord injuries, multiple sclerosis, cerebral palsy, and other neurological disorders that can cause stiff and rigid muscles.

Baclofen works by reducing the activity of overactive nerves in the spinal cord that are responsible for muscle contractions. It binds to GABA-B receptors in the brain and spinal cord, increasing the inhibitory effects of gamma-aminobutyric acid (GABA), a neurotransmitter that helps regulate communication between nerve cells. This results in decreased muscle spasticity and improved range of motion.

The medication is available as an oral tablet or an injectable solution for intrathecal administration, which involves direct delivery to the spinal cord via a surgically implanted pump. The oral formulation is generally preferred as a first-line treatment due to its non-invasive nature and lower risk of side effects compared to intrathecal administration.

Common side effects of baclofen include drowsiness, weakness, dizziness, headache, and nausea. Intrathecal baclofen may cause more severe side effects, such as seizures, respiratory depression, and allergic reactions. Abrupt discontinuation of the medication can lead to withdrawal symptoms, including hallucinations, confusion, and increased muscle spasticity.

It is essential to consult a healthcare professional for personalized medical advice regarding the use and potential side effects of baclofen.

Muscimol is defined as a cyclic psychoactive ingredient found in certain mushrooms, including Amanita muscaria and Amanita pantherina. It acts as a potent agonist at GABA-A receptors, which are involved in inhibitory neurotransmission in the central nervous system. Muscimol can cause symptoms such as altered consciousness, delirium, hallucinations, and seizures. It is used in research but has no medical applications.

Bicuculline is a pharmacological agent that acts as a competitive antagonist at GABA-A receptors, which are inhibitory neurotransmitter receptors in the central nervous system. By blocking the action of GABA (gamma-aminobutyric acid) at these receptors, bicuculline can increase neuronal excitability and cause convulsions. It is used in research to study the role of GABAergic neurotransmission in various physiological processes and neurological disorders.

Nipecotic acids are a class of compounds that function as GABA transaminase inhibitors. GABA (gamma-aminobutyric acid) is the primary inhibitory neurotransmitter in the central nervous system, and its levels are regulated by enzymes such as GABA transaminase.

Nipecotic acids work by inhibiting this enzyme, leading to an increase in GABA levels in the brain. This can have various effects on the nervous system, including sedative, hypnotic, and anticonvulsant actions. Some nipecotic acid derivatives are used in research as tools for studying the role of GABA in the brain, while others have been investigated for their potential therapeutic uses in treating conditions such as anxiety, insomnia, and epilepsy.

It's important to note that nipecotic acids and their derivatives can have significant side effects and toxicity, and they are not approved for use as medications in most countries. Therefore, they should only be used under the close supervision of a trained medical professional for research purposes.

GABA-B receptor agonists are substances that bind to and activate GABA-B receptors, which are G protein-coupled receptors found in the central nervous system. GABA (gamma-aminobutyric acid) is the primary inhibitory neurotransmitter in the brain, and its activation leads to decreased neuronal excitability.

GABA-B receptor agonists can produce various effects on the body, including sedation, anxiolysis, analgesia, and anticonvulsant activity. Some examples of GABA-B receptor agonists include baclofen, gabapentin, and pregabalin. These drugs are used in the treatment of a variety of medical conditions, such as muscle spasticity, epilepsy, and neuropathic pain.

It's important to note that while GABA-B receptor agonists can have therapeutic effects, they can also produce side effects such as dizziness, weakness, and respiratory depression, especially at high doses or in overdose situations. Therefore, these drugs should be used with caution and under the supervision of a healthcare provider.

Picrotoxin is a toxic, white, crystalline compound that is derived from the seeds of the Asian plant Anamirta cocculus (also known as Colchicum luteum or C. autummale). It is composed of two stereoisomers, picrotin and strychnine, in a 1:2 ratio.

Medically, picrotoxin has been used as an antidote for barbiturate overdose and as a stimulant to the respiratory center in cases of respiratory depression caused by various drugs or conditions. However, its use is limited due to its narrow therapeutic index and potential for causing seizures and other adverse effects.

Picrotoxin works as a non-competitive antagonist at GABA (gamma-aminobutyric acid) receptors in the central nervous system, blocking the inhibitory effects of GABA and increasing neuronal excitability. This property also makes it a convulsant agent and explains its use as a research tool to study seizure mechanisms and as an insecticide.

It is important to note that picrotoxin should only be used under medical supervision, and its handling requires appropriate precautions due to its high toxicity.

I'm sorry for any confusion, but "Phosphinic Acids" is not a recognized medical term. Phosphinic acids are chemical compounds that contain a phosphorus atom bonded to two organic groups and one hydroxyl group, making them a subclass of organophosphorus compounds. They are widely used in the production of various chemicals, but they do not have specific relevance to medical definitions or terminology. If you have any questions related to medicine or health, I'd be happy to try to help answer those!

4-Aminobutyrate transaminase (GABA transaminase or GABA-T) is an enzyme that catalyzes the reversible transfer of an amino group from 4-aminobutyrate (GABA) to 2-oxoglutarate, forming succinic semialdehyde and glutamate. This enzyme plays a crucial role in the metabolism of the major inhibitory neurotransmitter gamma-aminobutyric acid (GABA) in the central nervous system. Inhibition of GABA transaminase is a therapeutic strategy for the treatment of various neurological disorders, such as epilepsy and anxiety, due to its ability to increase GABA levels in the brain.

GABA-B receptor antagonists are pharmacological agents that block the activation of GABA-B receptors, which are G protein-coupled receptors found in the central and peripheral nervous systems. Gamma-aminobutyric acid (GABA) is the primary inhibitory neurotransmitter in the brain, and it exerts its effects by binding to GABA-A and GABA-B receptors.

GABA-B receptor antagonists work by preventing GABA from binding to these receptors, thereby blocking the inhibitory effects of GABA. This can lead to increased neuronal excitability and can have various pharmacological effects depending on the specific receptor subtype and location in the body.

GABA-B receptor antagonists have been investigated for their potential therapeutic use in a variety of neurological and psychiatric disorders, such as epilepsy, depression, anxiety, and substance abuse disorders. However, their clinical use is still not well established due to limited efficacy and potential side effects, including increased anxiety, agitation, and seizures.

Neural inhibition is a process in the nervous system that decreases or prevents the activity of neurons (nerve cells) in order to regulate and control communication within the nervous system. It is a fundamental mechanism that allows for the balance of excitation and inhibition necessary for normal neural function. Inhibitory neurotransmitters, such as GABA (gamma-aminobutyric acid) and glycine, are released from the presynaptic neuron and bind to receptors on the postsynaptic neuron, reducing its likelihood of firing an action potential. This results in a decrease in neural activity and can have various effects depending on the specific neurons and brain regions involved. Neural inhibition is crucial for many functions including motor control, sensory processing, attention, memory, and emotional regulation.

Glutamate decarboxylase (GAD) is an enzyme that plays a crucial role in the synthesis of the neurotransmitter gamma-aminobutyric acid (GABA) in the brain. GABA is an inhibitory neurotransmitter that helps to balance the excitatory effects of glutamate, another neurotransmitter.

Glutamate decarboxylase catalyzes the conversion of glutamate to GABA by removing a carboxyl group from the glutamate molecule. This reaction occurs in two steps, with the enzyme first converting glutamate to glutamic acid semialdehyde and then converting that intermediate product to GABA.

There are two major isoforms of glutamate decarboxylase, GAD65 and GAD67, which differ in their molecular weight, subcellular localization, and function. GAD65 is primarily responsible for the synthesis of GABA in neuronal synapses, while GAD67 is responsible for the synthesis of GABA in the cell body and dendrites of neurons.

Glutamate decarboxylase is an important target for research in neurology and psychiatry because dysregulation of GABAergic neurotransmission has been implicated in a variety of neurological and psychiatric disorders, including epilepsy, anxiety, depression, and schizophrenia.

Neurons, also known as nerve cells or neurocytes, are specialized cells that constitute the basic unit of the nervous system. They are responsible for receiving, processing, and transmitting information and signals within the body. Neurons have three main parts: the dendrites, the cell body (soma), and the axon. The dendrites receive signals from other neurons or sensory receptors, while the axon transmits these signals to other neurons, muscles, or glands. The junction between two neurons is called a synapse, where neurotransmitters are released to transmit the signal across the gap (synaptic cleft) to the next neuron. Neurons vary in size, shape, and structure depending on their function and location within the nervous system.

Inhibitory postsynaptic potentials (IPSPs) are electrical signals that occur in the postsynaptic neuron when an inhibitory neurotransmitter is released from the presynaptic neuron and binds to receptors on the postsynaptic membrane. This binding causes a decrease in the excitability of the postsynaptic neuron, making it less likely to fire an action potential.

IPSPs are typically caused by neurotransmitters such as gamma-aminobutyric acid (GABA) and glycine, which open chloride channels in the postsynaptic membrane. The influx of negatively charged chloride ions into the neuron causes a hyperpolarization of the membrane potential, making it more difficult for the neuron to reach the threshold needed to generate an action potential.

IPSPs play an important role in regulating the activity of neural circuits and controlling the flow of information through the nervous system. By inhibiting the activity of certain neurons, IPSPs can help to sharpen the signals that are transmitted between neurons and prevent unwanted noise or interference from disrupting communication within the circuit.

Patch-clamp techniques are a group of electrophysiological methods used to study ion channels and other electrical properties of cells. These techniques were developed by Erwin Neher and Bert Sakmann, who were awarded the Nobel Prize in Physiology or Medicine in 1991 for their work. The basic principle of patch-clamp techniques involves creating a high resistance seal between a glass micropipette and the cell membrane, allowing for the measurement of current flowing through individual ion channels or groups of channels.

There are several different configurations of patch-clamp techniques, including:

1. Cell-attached configuration: In this configuration, the micropipette is attached to the outer surface of the cell membrane, and the current flowing across a single ion channel can be measured. This configuration allows for the study of the properties of individual channels in their native environment.
2. Whole-cell configuration: Here, the micropipette breaks through the cell membrane, creating a low resistance electrical connection between the pipette and the inside of the cell. This configuration allows for the measurement of the total current flowing across all ion channels in the cell membrane.
3. Inside-out configuration: In this configuration, the micropipette is pulled away from the cell after establishing a seal, resulting in the exposure of the inner surface of the cell membrane to the solution in the pipette. This configuration allows for the study of the properties of ion channels in isolation from other cellular components.
4. Outside-out configuration: Here, the micropipette is pulled away from the cell after establishing a seal, resulting in the exposure of the outer surface of the cell membrane to the solution in the pipette. This configuration allows for the study of the properties of ion channels in their native environment, but with the ability to control the composition of the extracellular solution.

Patch-clamp techniques have been instrumental in advancing our understanding of ion channel function and have contributed to numerous breakthroughs in neuroscience, pharmacology, and physiology.

I apologize for any confusion, but "Pyridazines" is not a medical term. It is a chemical term that refers to a class of heterocyclic organic compounds which contain a six-membered ring with two nitrogen atoms. These types of compounds are often used in the synthesis of various pharmaceuticals and agrochemicals, but "Pyridazines" itself is not a medical concept or diagnosis. If you have any questions related to medicine or health, I would be happy to try to help answer those for you.

Synaptic transmission is the process by which a neuron communicates with another cell, such as another neuron or a muscle cell, across a junction called a synapse. It involves the release of neurotransmitters from the presynaptic terminal of the neuron, which then cross the synaptic cleft and bind to receptors on the postsynaptic cell, leading to changes in the electrical or chemical properties of the target cell. This process is critical for the transmission of signals within the nervous system and for controlling various physiological functions in the body.

Diazepam is a medication from the benzodiazepine class, which typically has calming, sedative, muscle relaxant, and anticonvulsant properties. Its medical uses include the treatment of anxiety disorders, alcohol withdrawal syndrome, end-of-life sedation, seizures, muscle spasms, and as a premedication for medical procedures. Diazepam is available in various forms, such as tablets, oral solution, rectal gel, and injectable solutions. It works by enhancing the effects of a neurotransmitter called gamma-aminobutyric acid (GABA) in the brain, which results in the modulation of nerve impulses in the brain, producing a sedative effect.

It is important to note that diazepam can be habit-forming and has several potential side effects, including drowsiness, dizziness, weakness, and impaired coordination. It should only be used under the supervision of a healthcare professional and according to the prescribed dosage to minimize the risk of adverse effects and dependence.

Vigabatrin is an anticonvulsant medication used to treat certain types of seizures in adults and children. It works by reducing the abnormal excitement in the brain. The medical definition of Vigabatrin is: a irreversible inhibitor of GABA transaminase, which results in increased levels of gamma-aminobutyric acid (GABA) in the central nervous system. This medication is used as an adjunctive treatment for complex partial seizures and is available in oral form for administration.

It's important to note that Vigabatrin can cause serious side effects, including permanent vision loss, and its use should be closely monitored by a healthcare professional. It is also classified as a pregnancy category C medication, which means it may harm an unborn baby and should only be used during pregnancy if the potential benefit justifies the potential risk to the fetus.

Vesicular Inhibitory Amino Acid Transport Proteins (vIAATs) are a type of transport protein responsible for the packaging of inhibitory neurotransmitters, such as gamma-aminobutyric acid (GABA) and glycine, into synaptic vesicles within neurons. These proteins play a crucial role in regulating neurotransmission in the central nervous system by ensuring that these inhibitory neurotransmitters are properly stored and released from presynaptic neurons.

There are two main types of vIAATs, VGAT-1 and VGAT-2, which differ in their distribution and function. VGAT-1 is widely expressed throughout the brain and spinal cord and is responsible for transporting both GABA and glycine into synaptic vesicles. In contrast, VGAT-2 is primarily expressed in the brainstem and is involved in the transport of GABA only.

Defects in vIAAT function have been implicated in several neurological disorders, including epilepsy, anxiety, and movement disorders. Therefore, understanding the structure and function of these proteins is essential for developing new therapeutic strategies to treat these conditions.

Sprague-Dawley rats are a strain of albino laboratory rats that are widely used in scientific research. They were first developed by researchers H.H. Sprague and R.C. Dawley in the early 20th century, and have since become one of the most commonly used rat strains in biomedical research due to their relatively large size, ease of handling, and consistent genetic background.

Sprague-Dawley rats are outbred, which means that they are genetically diverse and do not suffer from the same limitations as inbred strains, which can have reduced fertility and increased susceptibility to certain diseases. They are also characterized by their docile nature and low levels of aggression, making them easier to handle and study than some other rat strains.

These rats are used in a wide variety of research areas, including toxicology, pharmacology, nutrition, cancer, and behavioral studies. Because they are genetically diverse, Sprague-Dawley rats can be used to model a range of human diseases and conditions, making them an important tool in the development of new drugs and therapies.

Isonicotinic acids are a group of chemical compounds that are structurally similar to nicotinic acid (also known as vitamin B3 or niacin). The term "isonicotinic" refers to the fact that these acids have a carboxylic acid group (-COOH) in the same position as the pyridine nitrogen atom in isonicotinic acid, which is a derivative of nicotinic acid.

Isonicotinic acids do not have a specific medical definition, but they may be used in various chemical and pharmaceutical applications. For example, isonicotinic acid hydrazide (also known as isoniazid) is an important anti-tuberculosis drug that has been widely used for many years.

It's worth noting that nicotinic acid and its derivatives have important medical uses as well, particularly in the treatment of pellagra, a disease caused by niacin deficiency. However, isonicotic acids are not typically associated with these medical applications.

Pregnenolone is defined as a neurosteroid, which is a steroid hormone that is produced in the nervous system. It is synthesized from cholesterol and is the precursor to other steroid hormones, including progesterone, cortisol, and the sex hormones (estrogens and androgens). Pregnenolone has been shown to have a number of important functions in the body, including modulation of neurotransmitter systems, regulation of ion channels, and protection of nerve cells from damage. It is thought to play a role in various physiological processes, such as memory, learning, and mood regulation. However, more research is needed to fully understand its mechanisms of action and therapeutic potential.

The hippocampus is a complex, curved formation in the brain that resembles a seahorse (hence its name, from the Greek word "hippos" meaning horse and "kampos" meaning sea monster). It's part of the limbic system and plays crucial roles in the formation of memories, particularly long-term ones.

This region is involved in spatial navigation and cognitive maps, allowing us to recognize locations and remember how to get to them. Additionally, it's one of the first areas affected by Alzheimer's disease, which often results in memory loss as an early symptom.

Anatomically, it consists of two main parts: the Ammon's horn (or cornu ammonis) and the dentate gyrus. These structures are made up of distinct types of neurons that contribute to different aspects of learning and memory.

Glutamic acid is an alpha-amino acid, which is one of the 20 standard amino acids in the genetic code. The systematic name for this amino acid is (2S)-2-Aminopentanedioic acid. Its chemical formula is HO2CCH(NH2)CH2CH2CO2H.

Glutamic acid is a crucial excitatory neurotransmitter in the human brain, and it plays an essential role in learning and memory. It's also involved in the metabolism of sugars and amino acids, the synthesis of proteins, and the removal of waste nitrogen from the body.

Glutamic acid can be found in various foods such as meat, fish, beans, eggs, dairy products, and vegetables. In the human body, glutamic acid can be converted into gamma-aminobutyric acid (GABA), another important neurotransmitter that has a calming effect on the nervous system.

Aminobutyrates are compounds that contain an amino group (-NH2) and a butyric acid group (-CH2-CH2-CH2-COOH). The most common aminobutyrate is gamma-aminobutyric acid (GABA), which is a major inhibitory neurotransmitter in the central nervous system. GABA plays a crucial role in regulating brain excitability and is involved in various physiological processes, including sleep, memory, and anxiety regulation. Abnormalities in GABAergic neurotransmission have been implicated in several neurological and psychiatric disorders, such as epilepsy, anxiety disorders, and chronic pain. Other aminobutyrates may also have important biological functions, but their roles are less well understood than that of GABA.

A synapse is a structure in the nervous system that allows for the transmission of signals from one neuron (nerve cell) to another. It is the point where the axon terminal of one neuron meets the dendrite or cell body of another, and it is here that neurotransmitters are released and received. The synapse includes both the presynaptic and postsynaptic elements, as well as the cleft between them.

At the presynaptic side, an action potential travels down the axon and triggers the release of neurotransmitters into the synaptic cleft through exocytosis. These neurotransmitters then bind to receptors on the postsynaptic side, which can either excite or inhibit the receiving neuron. The strength of the signal between two neurons is determined by the number and efficiency of these synapses.

Synapses play a crucial role in the functioning of the nervous system, allowing for the integration and processing of information from various sources. They are also dynamic structures that can undergo changes in response to experience or injury, which has important implications for learning, memory, and recovery from neurological disorders.

Benzodiazepines are a class of psychoactive drugs that have been widely used for their sedative, hypnotic, anxiolytic, anticonvulsant, and muscle relaxant properties. They act by enhancing the inhibitory effects of gamma-aminobutyric acid (GABA), the major inhibitory neurotransmitter in the central nervous system.

Benzodiazepines are commonly prescribed for the treatment of anxiety disorders, insomnia, seizures, and muscle spasms. They can also be used as premedication before medical procedures to produce sedation, amnesia, and anxiolysis. Some examples of benzodiazepines include diazepam (Valium), alprazolam (Xanax), clonazepam (Klonopin), lorazepam (Ativan), and temazepam (Restoril).

While benzodiazepines are effective in treating various medical conditions, they can also cause physical dependence and withdrawal symptoms. Long-term use of benzodiazepines can lead to tolerance, meaning that higher doses are needed to achieve the same effect. Abrupt discontinuation of benzodiazepines can result in severe withdrawal symptoms, including seizures, hallucinations, and anxiety. Therefore, it is important to taper off benzodiazepines gradually under medical supervision.

Benzodiazepines are classified as Schedule IV controlled substances in the United States due to their potential for abuse and dependence. It is essential to use them only as directed by a healthcare provider and to be aware of their potential risks and benefits.

GABAergic neurons are a type of neuron that releases the neurotransmitter gamma-aminobutyric acid (GABA). GABA is the primary inhibitory neurotransmitter in the mature central nervous system, meaning it functions to decrease the excitability of neurons it acts upon.

GABAergic neurons are widely distributed throughout the brain and spinal cord and play a crucial role in regulating neural activity by balancing excitation and inhibition. They form synapses with various types of neurons, including both excitatory and inhibitory neurons, and their activation can lead to hyperpolarization or decreased firing rates of the target cells.

Dysfunction in GABAergic neurotransmission has been implicated in several neurological and psychiatric disorders, such as epilepsy, anxiety, and sleep disorders.

A protein subunit refers to a distinct and independently folding polypeptide chain that makes up a larger protein complex. Proteins are often composed of multiple subunits, which can be identical or different, that come together to form the functional unit of the protein. These subunits can interact with each other through non-covalent interactions such as hydrogen bonds, ionic bonds, and van der Waals forces, as well as covalent bonds like disulfide bridges. The arrangement and interaction of these subunits contribute to the overall structure and function of the protein.

Organic anion transporters (OATs) are membrane transport proteins that are responsible for the cellular uptake and excretion of various organic anions, such as drugs, toxins, and endogenous metabolites. They are found in various tissues, including the kidney, liver, and brain, where they play important roles in the elimination and detoxification of xenobiotics and endogenous compounds.

In the kidney, OATs are located in the basolateral membrane of renal tubular epithelial cells and mediate the uptake of organic anions from the blood into the cells. From there, the anions can be further transported into the urine by other transporters located in the apical membrane. In the liver, OATs are expressed in the sinusoidal membrane of hepatocytes and facilitate the uptake of organic anions from the blood into the liver cells for metabolism and excretion.

There are several isoforms of OATs that have been identified, each with distinct substrate specificities and tissue distributions. Mutations in OAT genes can lead to various diseases, including renal tubular acidosis, hypercalciuria, and drug toxicity. Therefore, understanding the function and regulation of OATs is important for developing strategies to improve drug delivery and reduce adverse drug reactions.

Interneurons are a type of neuron that is located entirely within the central nervous system (CNS), including the brain and spinal cord. They are called "inter" neurons because they connect and communicate with other nearby neurons, forming complex networks within the CNS. Interneurons receive input from sensory neurons and/or other interneurons and then send output signals to motor neurons or other interneurons.

Interneurons are responsible for processing information and modulating neural circuits in the CNS. They can have either excitatory or inhibitory effects on their target neurons, depending on the type of neurotransmitters they release. Excitatory interneurons release neurotransmitters such as glutamate that increase the likelihood of an action potential in the postsynaptic neuron, while inhibitory interneurons release neurotransmitters such as GABA (gamma-aminobutyric acid) or glycine that decrease the likelihood of an action potential.

Interneurons are diverse and can be classified based on various criteria, including their morphology, electrophysiological properties, neurochemical characteristics, and connectivity patterns. They play crucial roles in many aspects of CNS function, such as sensory processing, motor control, cognition, and emotion regulation. Dysfunction or damage to interneurons has been implicated in various neurological and psychiatric disorders, including epilepsy, Parkinson's disease, schizophrenia, and autism spectrum disorder.

Sodium oxybate is a central nervous system depressant, which is a sodium salt of gamma-hydroxybutyric acid (GHB). It is also known as gamma-hydroxybutyrate monosodium salt or sodium GHB. Sodium oxybate is used in the medical field for the treatment of narcolepsy, a sleep disorder characterized by excessive daytime sleepiness and cataplexy (sudden loss of muscle tone). It is sold under the brand name Xyrem.

Sodium oxybate works by affecting the neurotransmitters in the brain, specifically increasing the levels of gamma-aminobutyric acid (GABA), an inhibitory neurotransmitter that helps regulate sleep and wakefulness. The medication is available only through a restricted distribution program due to its potential for abuse and dependence. It is usually taken at night in two doses, one at bedtime and the other about 2.5 to 4 hours later.

It's important to note that sodium oxybate has a high potential for misuse and addiction, and it should only be used under the close supervision of a healthcare provider.

Flunitrazepam is a benzodiazepine drug, which has sedative, hypnotic, muscle relaxant, and anticonvulsant properties. Its primary use is for the treatment of severe insomnia and occasionally for managing anxiety disorders. It works by enhancing the effects of gamma-aminobutyric acid (GABA), a neurotransmitter in the brain that inhibits the activity of nerve cells and produces a calming effect.

Flunitrazepam is also known by its brand name, Rohypnol, and has gained notoriety for its use as a date-rape drug due to its ability to cause sedation, amnesia, and muscle relaxation at high doses. It is important to note that flunitrazepam is a controlled substance in many countries and its use without a prescription is illegal.

Neurotransmitter uptake inhibitors are a class of drugs that work by blocking the reuptake of neurotransmitters, such as serotonin, norepinephrine, and dopamine, into the presynaptic neuron after they have been released into the synapse. This results in an increased concentration of these neurotransmitters in the synapse, which can enhance their signal transduction and lead to therapeutic effects.

These drugs are commonly used in the treatment of various psychiatric disorders, such as depression, anxiety, and attention deficit hyperactivity disorder (ADHD). They include selective serotonin reuptake inhibitors (SSRIs), serotonin-norepinephrine reuptake inhibitors (SNRIs), and norepinephrine reuptake inhibitors (NRIs).

It's important to note that while neurotransmitter uptake inhibitors can be effective in treating certain conditions, they may also have potential side effects and risks. Therefore, it is essential to use them under the guidance and supervision of a healthcare professional.

Membrane potential is the electrical potential difference across a cell membrane, typically for excitable cells such as nerve and muscle cells. It is the difference in electric charge between the inside and outside of a cell, created by the selective permeability of the cell membrane to different ions. The resting membrane potential of a typical animal cell is around -70 mV, with the interior being negative relative to the exterior. This potential is generated and maintained by the active transport of ions across the membrane, primarily through the action of the sodium-potassium pump. Membrane potentials play a crucial role in many physiological processes, including the transmission of nerve impulses and the contraction of muscle cells.

Strychnine is a highly toxic, colorless, bitter-tasting crystalline alkaloid that is derived from the seeds of the Strychnos nux-vomica tree, native to India and Southeast Asia. It is primarily used in the manufacture of pesticides and rodenticides due to its high toxicity to insects and mammals.

Medically, strychnine has been used in the past as a stimulant and a treatment for various conditions such as asthma, heart failure, and neurological disorders. However, its use in modern medicine is extremely rare due to its narrow therapeutic index and high toxicity.

Strychnine works by blocking inhibitory neurotransmitters in the central nervous system, leading to increased muscle contractions, stiffness, and convulsions. Ingestion of even small amounts can cause severe symptoms such as muscle spasms, rigidity, seizures, and respiratory failure, which can be fatal if left untreated.

It is important to note that strychnine has no legitimate medical use in humans and its possession and use are highly regulated due to its high toxicity and potential for abuse.

Glycine is a simple amino acid that plays a crucial role in the body. According to the medical definition, glycine is an essential component for the synthesis of proteins, peptides, and other biologically important compounds. It is also involved in various metabolic processes, such as the production of creatine, which supports muscle function, and the regulation of neurotransmitters, affecting nerve impulse transmission and brain function. Glycine can be found as a free form in the body and is also present in many dietary proteins.

Neurotransmitter agents are substances that affect the synthesis, storage, release, uptake, degradation, or reuptake of neurotransmitters, which are chemical messengers that transmit signals across a chemical synapse from one neuron to another. These agents can be either agonists, which mimic the action of a neurotransmitter and bind to its receptor, or antagonists, which block the action of a neurotransmitter by binding to its receptor without activating it. They are used in medicine to treat various neurological and psychiatric disorders, such as depression, anxiety, and Parkinson's disease.

Electrophysiology is a branch of medicine that deals with the electrical activities of the body, particularly the heart. In a medical context, electrophysiology studies (EPS) are performed to assess abnormal heart rhythms (arrhythmias) and to evaluate the effectiveness of certain treatments, such as medication or pacemakers.

During an EPS, electrode catheters are inserted into the heart through blood vessels in the groin or neck. These catheters can record the electrical activity of the heart and stimulate it to help identify the source of the arrhythmia. The information gathered during the study can help doctors determine the best course of treatment for each patient.

In addition to cardiac electrophysiology, there are also other subspecialties within electrophysiology, such as neuromuscular electrophysiology, which deals with the electrical activity of the nervous system and muscles.

Flumazenil is a medication that acts as a competitive antagonist at benzodiazepine receptors. It is primarily used in clinical settings to reverse the effects of benzodiazepines, which are commonly prescribed for their sedative, muscle relaxant, and anxiety-reducing properties. Flumazenil can reverse symptoms such as excessive sedation, respiratory depression, and impaired consciousness caused by benzodiazepine overdose or adverse reactions. It is important to note that flumazenil should be administered with caution, as it can precipitate seizures in individuals who are physically dependent on benzodiazepines.

Presynaptic terminals, also known as presynaptic boutons or nerve terminals, refer to the specialized structures located at the end of axons in neurons. These terminals contain numerous small vesicles filled with neurotransmitters, which are chemical messengers that transmit signals between neurons.

When an action potential reaches the presynaptic terminal, it triggers the influx of calcium ions into the terminal, leading to the fusion of the vesicles with the presynaptic membrane and the release of neurotransmitters into the synaptic cleft, a small gap between the presynaptic and postsynaptic terminals.

The released neurotransmitters then bind to receptors on the postsynaptic terminal, leading to the generation of an electrical or chemical signal that can either excite or inhibit the postsynaptic neuron. Presynaptic terminals play a crucial role in regulating synaptic transmission and are targets for various drugs and toxins that modulate neuronal communication.

Crotonates are a group of organic compounds that contain a carboxylic acid functional group (-COOH) attached to a crotyl group, which is a type of alkyl group with the structure -CH=CH-CH\_{2}-. Crotyl groups are derived from crotonic acid or its derivatives.

Crotonates can be found in various natural and synthetic compounds, including some pharmaceuticals, agrochemicals, and other industrial chemicals. They can exist as salts, esters, or other derivatives of crotonic acid.

In medical contexts, crotonates may refer to certain medications or chemical compounds used for research purposes. For example, sodium crotylate is a salt of crotonic acid that has been studied for its potential anti-inflammatory and analgesic effects. However, it is not widely used in clinical practice.

It's worth noting that the term "crotonates" may not have a specific medical definition on its own, as it refers to a broad class of compounds with varying properties and uses.

A dose-response relationship in the context of drugs refers to the changes in the effects or symptoms that occur as the dose of a drug is increased or decreased. Generally, as the dose of a drug is increased, the severity or intensity of its effects also increases. Conversely, as the dose is decreased, the effects of the drug become less severe or may disappear altogether.

The dose-response relationship is an important concept in pharmacology and toxicology because it helps to establish the safe and effective dosage range for a drug. By understanding how changes in the dose of a drug affect its therapeutic and adverse effects, healthcare providers can optimize treatment plans for their patients while minimizing the risk of harm.

The dose-response relationship is typically depicted as a curve that shows the relationship between the dose of a drug and its effect. The shape of the curve may vary depending on the drug and the specific effect being measured. Some drugs may have a steep dose-response curve, meaning that small changes in the dose can result in large differences in the effect. Other drugs may have a more gradual dose-response curve, where larger changes in the dose are needed to produce significant effects.

In addition to helping establish safe and effective dosages, the dose-response relationship is also used to evaluate the potential therapeutic benefits and risks of new drugs during clinical trials. By systematically testing different doses of a drug in controlled studies, researchers can identify the optimal dosage range for the drug and assess its safety and efficacy.

Excitatory postsynaptic potentials (EPSPs) are electrical signals that occur in the dendrites and cell body of a neuron, or nerve cell. They are caused by the activation of excitatory synapses, which are connections between neurons that allow for the transmission of information.

When an action potential, or electrical impulse, reaches the end of an axon, it triggers the release of neurotransmitters into the synaptic cleft, the small gap between the presynaptic and postsynaptic membranes. The excitatory neurotransmitters then bind to receptors on the postsynaptic membrane, causing a local depolarization of the membrane potential. This depolarization is known as an EPSP.

EPSPs are responsible for increasing the likelihood that an action potential will be generated in the postsynaptic neuron. When multiple EPSPs occur simultaneously or in close succession, they can summate and cause a large enough depolarization to trigger an action potential. This allows for the transmission of information from one neuron to another.

It's important to note that there are also inhibitory postsynaptic potentials (IPSPs) which decrease the likelihood that an action potential will be generated in the postsynaptic neuron, by causing a local hyperpolarization of the membrane potential.

"Wistar rats" are a strain of albino rats that are widely used in laboratory research. They were developed at the Wistar Institute in Philadelphia, USA, and were first introduced in 1906. Wistar rats are outbred, which means that they are genetically diverse and do not have a fixed set of genetic characteristics like inbred strains.

Wistar rats are commonly used as animal models in biomedical research because of their size, ease of handling, and relatively low cost. They are used in a wide range of research areas, including toxicology, pharmacology, nutrition, cancer, cardiovascular disease, and behavioral studies. Wistar rats are also used in safety testing of drugs, medical devices, and other products.

Wistar rats are typically larger than many other rat strains, with males weighing between 500-700 grams and females weighing between 250-350 grams. They have a lifespan of approximately 2-3 years. Wistar rats are also known for their docile and friendly nature, making them easy to handle and work with in the laboratory setting.

Glycine receptors (GlyRs) are ligand-gated ion channel proteins that play a crucial role in mediating inhibitory neurotransmission in the central nervous system. They belong to the Cys-loop family of receptors, which also includes GABA(A), nicotinic acetylcholine, and serotonin receptors.

GlyRs are composed of pentameric assemblies of subunits, with four different subunit isoforms (α1, α2, α3, and β) identified in vertebrates. The most common GlyR composition consists of α and β subunits, although homomeric receptors composed solely of α subunits can also be formed.

When glycine binds to the orthosteric site on the extracellular domain of the receptor, it triggers a conformational change that leads to the opening of an ion channel, allowing chloride ions (Cl-) to flow through and hyperpolarize the neuronal membrane. This inhibitory neurotransmission is essential for regulating synaptic excitability, controlling motor function, and modulating sensory processing in the brainstem, spinal cord, and other regions of the central nervous system.

Dysfunction of GlyRs has been implicated in various neurological disorders, including hyperekplexia (startle disease), epilepsy, chronic pain, and neurodevelopmental conditions such as autism spectrum disorder.

Excitatory amino acid antagonists are a class of drugs that block the action of excitatory neurotransmitters, particularly glutamate and aspartate, in the brain. These drugs work by binding to and blocking the receptors for these neurotransmitters, thereby reducing their ability to stimulate neurons and produce an excitatory response.

Excitatory amino acid antagonists have been studied for their potential therapeutic benefits in a variety of neurological conditions, including stroke, epilepsy, traumatic brain injury, and neurodegenerative disorders such as Alzheimer's disease and Parkinson's disease. However, their use is limited by the fact that blocking excitatory neurotransmission can also have negative effects on cognitive function and memory.

There are several types of excitatory amino acid receptors, including N-methyl-D-aspartate (NMDA), alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA), and kainite receptors. Different excitatory amino acid antagonists may target one or more of these receptor subtypes, depending on their specific mechanism of action.

Examples of excitatory amino acid antagonists include ketamine, memantine, and dextromethorphan. These drugs have been used in clinical practice for various indications, such as anesthesia, sedation, and treatment of neurological disorders. However, their use must be carefully monitored due to potential side effects and risks associated with blocking excitatory neurotransmission.

Convulsants are substances or agents that can cause seizures or convulsions. These can be medications, toxins, or illnesses that lower the seizure threshold and lead to abnormal electrical activity in the brain, resulting in uncontrolled muscle contractions and relaxation. Examples of convulsants include bromides, strychnine, organophosphate pesticides, certain antibiotics (such as penicillin or cephalosporins), and alcohol withdrawal. It is important to note that some medications used to treat seizures can also have convulsant properties at higher doses or in overdose situations.

I'm sorry for any confusion, but "Glycine Agents" is not a widely recognized or established term in medical or scientific communities. Glycine is an amino acid that serves as a neurotransmitter and has various other functions in the body. However, I'm not aware of any specific agents or medications that are referred to as "Glycine Agents."

If you have more context or information about where you encountered this term, I might be able to provide a more accurate and helpful response.

Chlorides are simple inorganic ions consisting of a single chlorine atom bonded to a single charged hydrogen ion (H+). Chloride is the most abundant anion (negatively charged ion) in the extracellular fluid in the human body. The normal range for chloride concentration in the blood is typically between 96-106 milliequivalents per liter (mEq/L).

Chlorides play a crucial role in maintaining electrical neutrality, acid-base balance, and osmotic pressure in the body. They are also essential for various physiological processes such as nerve impulse transmission, maintenance of membrane potentials, and digestion (as hydrochloric acid in the stomach).

Chloride levels can be affected by several factors, including diet, hydration status, kidney function, and certain medical conditions. Increased or decreased chloride levels can indicate various disorders, such as dehydration, kidney disease, Addison's disease, or diabetes insipidus. Therefore, monitoring chloride levels is essential for assessing a person's overall health and diagnosing potential medical issues.

Electric stimulation, also known as electrical nerve stimulation or neuromuscular electrical stimulation, is a therapeutic treatment that uses low-voltage electrical currents to stimulate nerves and muscles. It is often used to help manage pain, promote healing, and improve muscle strength and mobility. The electrical impulses can be delivered through electrodes placed on the skin or directly implanted into the body.

In a medical context, electric stimulation may be used for various purposes such as:

1. Pain management: Electric stimulation can help to block pain signals from reaching the brain and promote the release of endorphins, which are natural painkillers produced by the body.
2. Muscle rehabilitation: Electric stimulation can help to strengthen muscles that have become weak due to injury, illness, or surgery. It can also help to prevent muscle atrophy and improve range of motion.
3. Wound healing: Electric stimulation can promote tissue growth and help to speed up the healing process in wounds, ulcers, and other types of injuries.
4. Urinary incontinence: Electric stimulation can be used to strengthen the muscles that control urination and reduce symptoms of urinary incontinence.
5. Migraine prevention: Electric stimulation can be used as a preventive treatment for migraines by applying electrical impulses to specific nerves in the head and neck.

It is important to note that electric stimulation should only be administered under the guidance of a qualified healthcare professional, as improper use can cause harm or discomfort.

An action potential is a brief electrical signal that travels along the membrane of a nerve cell (neuron) or muscle cell. It is initiated by a rapid, localized change in the permeability of the cell membrane to specific ions, such as sodium and potassium, resulting in a rapid influx of sodium ions and a subsequent efflux of potassium ions. This ion movement causes a brief reversal of the electrical potential across the membrane, which is known as depolarization. The action potential then propagates along the cell membrane as a wave, allowing the electrical signal to be transmitted over long distances within the body. Action potentials play a crucial role in the communication and functioning of the nervous system and muscle tissue.

"Newborn animals" refers to the very young offspring of animals that have recently been born. In medical terminology, newborns are often referred to as "neonates," and they are classified as such from birth until about 28 days of age. During this time period, newborn animals are particularly vulnerable and require close monitoring and care to ensure their survival and healthy development.

The specific needs of newborn animals can vary widely depending on the species, but generally, they require warmth, nutrition, hydration, and protection from harm. In many cases, newborns are unable to regulate their own body temperature or feed themselves, so they rely heavily on their mothers for care and support.

In medical settings, newborn animals may be examined and treated by veterinarians to ensure that they are healthy and receiving the care they need. This can include providing medical interventions such as feeding tubes, antibiotics, or other treatments as needed to address any health issues that arise. Overall, the care and support of newborn animals is an important aspect of animal medicine and conservation efforts.

3-Mercaptopropionic acid is an organic compound with the formula CH3SHCO2H. It is a colorless liquid that is used as a building block in the synthesis of various pharmaceuticals and industrial chemicals. The compound is characterized by the presence of a thiol (also called a mercaptan) group, which consists of a sulfur atom bonded to a hydrogen atom (-SH). This functional group makes 3-mercaptopropionic acid a strong smelling, acidic compound that can react with various substances.

In the medical field, 3-mercaptopropionic acid is not used directly as a drug or therapeutic agent. However, it may be employed in the synthesis of certain medications or as a reagent in diagnostic tests. For instance, it has been used to prepare radiopharmaceuticals for imaging and detecting brain tumors.

It is important to note that 3-mercaptopropionic acid can have adverse health effects if not handled properly. It can cause skin and eye irritation, and prolonged exposure may lead to more severe health issues. Therefore, appropriate safety measures should be taken when working with this compound in a laboratory or industrial setting.

Pyramidal cells, also known as pyramidal neurons, are a type of multipolar neuron found in the cerebral cortex and hippocampus of the brain. They have a characteristic triangular or pyramid-like shape with a single apical dendrite that extends from the apex of the cell body towards the pial surface, and multiple basal dendrites that branch out from the base of the cell body.

Pyramidal cells are excitatory neurons that play a crucial role in information processing and transmission within the brain. They receive inputs from various sources, including other neurons and sensory receptors, and generate action potentials that are transmitted to other neurons through their axons. The apical dendrite of pyramidal cells receives inputs from distant cortical areas, while the basal dendrites receive inputs from local circuits.

Pyramidal cells are named after their pyramid-like shape and are among the largest neurons in the brain. They are involved in various cognitive functions, including learning, memory, attention, and perception. Dysfunction of pyramidal cells has been implicated in several neurological disorders, such as Alzheimer's disease, epilepsy, and schizophrenia.

The cerebral cortex is the outermost layer of the brain, characterized by its intricate folded structure and wrinkled appearance. It is a region of great importance as it plays a key role in higher cognitive functions such as perception, consciousness, thought, memory, language, and attention. The cerebral cortex is divided into two hemispheres, each containing four lobes: the frontal, parietal, temporal, and occipital lobes. These areas are responsible for different functions, with some regions specializing in sensory processing while others are involved in motor control or associative functions. The cerebral cortex is composed of gray matter, which contains neuronal cell bodies, and is covered by a layer of white matter that consists mainly of myelinated nerve fibers.

"Xenopus laevis" is not a medical term itself, but it refers to a specific species of African clawed frog that is often used in scientific research, including biomedical and developmental studies. Therefore, its relevance to medicine comes from its role as a model organism in laboratories.

In a broader sense, Xenopus laevis has contributed significantly to various medical discoveries, such as the understanding of embryonic development, cell cycle regulation, and genetic research. For instance, the Nobel Prize in Physiology or Medicine was awarded in 1963 to John R. B. Gurdon and Sir Michael J. Bishop for their discoveries concerning the genetic mechanisms of organism development using Xenopus laevis as a model system.

I'm sorry for any confusion, but "Pregnanediones" is not a recognized term in medical terminology or pharmacology. It seems that the term may be a combination of "pregnan" (a root word related to steroid hormones produced by the ovaries and testes) and "dione" (a suffix used in chemistry to denote a ketone with two carbonyl groups). However, without a clear context or a specific chemical structure, it's not possible to provide an accurate definition or description.

If you have any more information about the term or if you meant something different, please let me know and I will do my best to help you.

Carbolines are a type of chemical compound that contain a carbazole or dibenzopyrrole structure. These compounds have a variety of uses, including as pharmaceuticals and dyes. Some carbolines have been studied for their potential medicinal properties, such as their ability to act as antioxidants or to inhibit the growth of certain types of cells. However, it is important to note that many carbolines are also known to be toxic and can cause harm if ingested or otherwise introduced into the body. As with any chemical compound, it is essential to use caution when handling carbolines and to follow all safety guidelines to minimize the risk of exposure.

6-Cyano-7-nitroquinoxaline-2,3-dione is a chemical compound that is commonly used in research and scientific studies. It is a member of the quinoxaline family of compounds, which are aromatic heterocyclic organic compounds containing two nitrogen atoms.

The 6-Cyano-7-nitroquinoxaline-2,3-dione compound has several notable features, including:

* A quinoxaline ring structure, which is made up of two benzene rings fused to a pyrazine ring.
* A cyano group (-CN) at the 6th position of the quinoxaline ring.
* A nitro group (-NO2) at the 7th position of the quinoxaline ring.
* Two carbonyl groups (=O) at the 2nd and 3rd positions of the quinoxaline ring.

This compound is known to have various biological activities, such as antimicrobial, antifungal, and anticancer properties. However, its use in medical treatments is not widespread due to potential toxicity and lack of comprehensive studies on its safety and efficacy. As with any chemical compound, it should be handled with care and used only under appropriate laboratory conditions.

The cerebellum is a part of the brain that lies behind the brainstem and is involved in the regulation of motor movements, balance, and coordination. It contains two hemispheres and a central portion called the vermis. The cerebellum receives input from sensory systems and other areas of the brain and spinal cord and sends output to motor areas of the brain. Damage to the cerebellum can result in problems with movement, balance, and coordination.

Etomidate is a intravenous anesthetic medication used for the induction of general anesthesia. It provides a rapid and smooth induction with minimal cardiovascular effects, making it a popular choice in patients with hemodynamic instability. Etomidate also has antiseizure properties. However, its use is associated with adrenal suppression, which can lead to complications such as hypotension and impaired stress response. Therefore, its use is generally avoided in critically ill or septic patients.

The medical definition of 'Etomidate' is:

A carboxylated imidazole derivative that is used as an intravenous anesthetic for the induction of general anesthesia. It has a rapid onset of action and minimal cardiovascular effects, making it useful in patients with hemodynamic instability. Etomidate also has antiseizure properties. However, its use is associated with adrenal suppression, which can lead to complications such as hypotension and impaired stress response. Therefore, its use is generally avoided in critically ill or septic patients.

Anti-anxiety agents, also known as anxiolytics, are a class of medications used to manage symptoms of anxiety disorders. These drugs work by reducing the abnormal excitement in the brain and promoting relaxation and calmness. They include several types of medications such as benzodiazepines, azapirone, antihistamines, and beta-blockers.

Benzodiazepines are the most commonly prescribed anti-anxiety agents. They work by enhancing the inhibitory effects of a neurotransmitter called gamma-aminobutyric acid (GABA) in the brain, which results in sedative, hypnotic, anxiolytic, anticonvulsant, and muscle relaxant properties. Examples of benzodiazepines include diazepam (Valium), alprazolam (Xanax), lorazepam (Ativan), and clonazepam (Klonopin).

Azapirones are a newer class of anti-anxiety agents that act on serotonin receptors in the brain. Buspirone (Buspar) is an example of this type of medication, which has fewer side effects and less potential for abuse compared to benzodiazepines.

Antihistamines are medications that are primarily used to treat allergies but can also have anti-anxiety effects due to their sedative properties. Examples include hydroxyzine (Vistaril, Atarax) and diphenhydramine (Benadryl).

Beta-blockers are mainly used to treat high blood pressure and heart conditions but can also help manage symptoms of anxiety such as rapid heartbeat, tremors, and sweating. Propranolol (Inderal) is an example of a beta-blocker used for this purpose.

It's important to note that anti-anxiety agents should be used under the guidance of a healthcare professional, as they can have side effects and potential for dependence or addiction. Additionally, these medications are often used in combination with psychotherapy and lifestyle modifications to manage anxiety disorders effectively.

Organophosphorus compounds are a class of chemical substances that contain phosphorus bonded to organic compounds. They are used in various applications, including as plasticizers, flame retardants, pesticides (insecticides, herbicides, and nerve gases), and solvents. In medicine, they are also used in the treatment of certain conditions such as glaucoma. However, organophosphorus compounds can be toxic to humans and animals, particularly those that affect the nervous system by inhibiting acetylcholinesterase, an enzyme that breaks down the neurotransmitter acetylcholine. Exposure to these compounds can cause symptoms such as nausea, vomiting, muscle weakness, and in severe cases, respiratory failure and death.

Sodium-potassium-chloride symporters, also known as sodium-potassium-chloride cotransporters or NKCCs, are a type of membrane transport protein that facilitates the movement of ions across the cell membrane. Specifically, they mediate the simultaneous transport of sodium (Na+), potassium (K+), and chloride (Cl-) ions into cells.

Sodium-potassium-chloride symporter inhibitors are pharmacological agents that block the activity of these transporters, thereby preventing the uptake of these ions into cells. These drugs have been used in various clinical settings to treat or manage conditions such as hypertension, edema, and certain types of epilepsy.

Examples of sodium-potassium-chloride symporter inhibitors include loop diuretics such as furosemide, bumetanide, and torasemide, which target the NKCC2 transporter in the thick ascending limb of the loop of Henle in the kidney. By blocking this transporter, these drugs increase sodium and water excretion, reducing blood volume and lowering blood pressure.

It's worth noting that while "sodium-potassium-chloride symporter inhibitors" is a valid term, it may be less commonly used than more specific terms such as "loop diuretics."

Ethanol is the medical term for pure alcohol, which is a colorless, clear, volatile, flammable liquid with a characteristic odor and burning taste. It is the type of alcohol that is found in alcoholic beverages and is produced by the fermentation of sugars by yeasts.

In the medical field, ethanol is used as an antiseptic and disinfectant, and it is also used as a solvent for various medicinal preparations. It has central nervous system depressant properties and is sometimes used as a sedative or to induce sleep. However, excessive consumption of ethanol can lead to alcohol intoxication, which can cause a range of negative health effects, including impaired judgment, coordination, and memory, as well as an increased risk of accidents, injuries, and chronic diseases such as liver disease and addiction.

Solute Carrier Family 12, Member 2 (SLC12A2) is a gene that encodes for a protein called the potassium-chloride cotransporter type 2 (KCC2). This protein is a member of the solute carrier family, which are membrane transport proteins that move various molecules across cell membranes. KCC2 is specifically responsible for the active transport of chloride and potassium ions out of neurons in the brain and spinal cord.

KCC2 plays a crucial role in maintaining the proper balance of ions within neurons, which is essential for normal electrical signaling and communication between nerve cells. Mutations in the SLC12A2 gene have been associated with several neurological disorders, including epilepsy, infantile spasms, and intellectual disability.

Isoxazoles are not a medical term, but a chemical compound. They are organic compounds containing a five-membered ring consisting of one nitrogen atom, one oxygen atom, and three carbon atoms. Isoxazoles have various applications in the pharmaceutical industry as they can be used to synthesize different drugs. Some isoxazole derivatives have been studied for their potential medicinal properties, such as anti-inflammatory, analgesic, and antipyretic effects. However, isoxazoles themselves are not a medical diagnosis or treatment.

Presynaptic receptors are a type of neuroreceptor located on the presynaptic membrane of a neuron, which is the side that releases neurotransmitters. These receptors can be activated by neurotransmitters or other signaling molecules released from the postsynaptic neuron or from other nearby cells.

When activated, presynaptic receptors can modulate the release of neurotransmitters from the presynaptic neuron. They can have either an inhibitory or excitatory effect on neurotransmitter release, depending on the type of receptor and the signaling molecule that binds to it.

For example, activation of certain presynaptic receptors can decrease the amount of calcium that enters the presynaptic terminal, which in turn reduces the amount of neurotransmitter released into the synapse. Other presynaptic receptors, when activated, can increase the release of neurotransmitters.

Presynaptic receptors play an important role in regulating neuronal communication and are involved in various physiological processes, including learning, memory, and pain perception. They are also targeted by certain drugs used to treat neurological and psychiatric disorders.

Membrane transport proteins are specialized biological molecules, specifically integral membrane proteins, that facilitate the movement of various substances across the lipid bilayer of cell membranes. They are responsible for the selective and regulated transport of ions, sugars, amino acids, nucleotides, and other molecules into and out of cells, as well as within different cellular compartments. These proteins can be categorized into two main types: channels and carriers (or pumps). Channels provide a passive transport mechanism, allowing ions or small molecules to move down their electrochemical gradient, while carriers actively transport substances against their concentration gradient, requiring energy usually in the form of ATP. Membrane transport proteins play a crucial role in maintaining cell homeostasis, signaling processes, and many other physiological functions.

The brain is the central organ of the nervous system, responsible for receiving and processing sensory information, regulating vital functions, and controlling behavior, movement, and cognition. It is divided into several distinct regions, each with specific functions:

1. Cerebrum: The largest part of the brain, responsible for higher cognitive functions such as thinking, learning, memory, language, and perception. It is divided into two hemispheres, each controlling the opposite side of the body.
2. Cerebellum: Located at the back of the brain, it is responsible for coordinating muscle movements, maintaining balance, and fine-tuning motor skills.
3. Brainstem: Connects the cerebrum and cerebellum to the spinal cord, controlling vital functions such as breathing, heart rate, and blood pressure. It also serves as a relay center for sensory information and motor commands between the brain and the rest of the body.
4. Diencephalon: A region that includes the thalamus (a major sensory relay station) and hypothalamus (regulates hormones, temperature, hunger, thirst, and sleep).
5. Limbic system: A group of structures involved in emotional processing, memory formation, and motivation, including the hippocampus, amygdala, and cingulate gyrus.

The brain is composed of billions of interconnected neurons that communicate through electrical and chemical signals. It is protected by the skull and surrounded by three layers of membranes called meninges, as well as cerebrospinal fluid that provides cushioning and nutrients.

Anticonvulsants are a class of drugs used primarily to treat seizure disorders, also known as epilepsy. These medications work by reducing the abnormal electrical activity in the brain that leads to seizures. In addition to their use in treating epilepsy, anticonvulsants are sometimes also prescribed for other conditions, such as neuropathic pain, bipolar disorder, and migraine headaches.

Anticonvulsants can work in different ways to reduce seizure activity. Some medications, such as phenytoin and carbamazepine, work by blocking sodium channels in the brain, which helps to stabilize nerve cell membranes and prevent excessive electrical activity. Other medications, such as valproic acid and gabapentin, increase the levels of a neurotransmitter called gamma-aminobutyric acid (GABA) in the brain, which has a calming effect on nerve cells and helps to reduce seizure activity.

While anticonvulsants are generally effective at reducing seizure frequency and severity, they can also have side effects, such as dizziness, drowsiness, and gastrointestinal symptoms. In some cases, these side effects may be managed by adjusting the dosage or switching to a different medication. It is important for individuals taking anticonvulsants to work closely with their healthcare provider to monitor their response to the medication and make any necessary adjustments.

An oocyte, also known as an egg cell or female gamete, is a large specialized cell found in the ovary of female organisms. It contains half the number of chromosomes as a normal diploid cell, as it is the product of meiotic division. Oocytes are surrounded by follicle cells and are responsible for the production of female offspring upon fertilization with sperm. The term "oocyte" specifically refers to the immature egg cell before it reaches full maturity and is ready for fertilization, at which point it is referred to as an ovum or egg.

Evoked potentials (EPs) are medical tests that measure the electrical activity in the brain or spinal cord in response to specific sensory stimuli, such as sight, sound, or touch. These tests are often used to help diagnose and monitor conditions that affect the nervous system, such as multiple sclerosis, brainstem tumors, and spinal cord injuries.

There are several types of EPs, including:

1. Visual Evoked Potentials (VEPs): These are used to assess the function of the visual pathway from the eyes to the back of the brain. A patient is typically asked to look at a patterned image or flashing light while electrodes placed on the scalp record the electrical responses.
2. Brainstem Auditory Evoked Potentials (BAEPs): These are used to evaluate the function of the auditory nerve and brainstem. Clicking sounds are presented to one or both ears, and electrodes placed on the scalp measure the response.
3. Somatosensory Evoked Potentials (SSEPs): These are used to assess the function of the peripheral nerves and spinal cord. Small electrical shocks are applied to a nerve at the wrist or ankle, and electrodes placed on the scalp record the response as it travels up the spinal cord to the brain.
4. Motor Evoked Potentials (MEPs): These are used to assess the function of the motor pathways in the brain and spinal cord. A magnetic or electrical stimulus is applied to the brain or spinal cord, and electrodes placed on a muscle measure the response as it travels down the motor pathway.

EPs can help identify abnormalities in the nervous system that may not be apparent through other diagnostic tests, such as imaging studies or clinical examinations. They are generally safe, non-invasive procedures with few risks or side effects.

Tetrodotoxin (TTX) is a potent neurotoxin that is primarily found in certain species of pufferfish, blue-ringed octopuses, and other marine animals. It blocks voltage-gated sodium channels in nerve cell membranes, leading to muscle paralysis and potentially respiratory failure. TTX has no known antidote, and medical treatment focuses on supportive care for symptoms. Exposure can occur through ingestion, inhalation, or skin absorption, depending on the route of toxicity.

Chlordiazepoxide is a medication that belongs to a class of drugs known as benzodiazepines. It is primarily used to treat anxiety disorders, but can also be used for the short-term relief of symptoms related to alcohol withdrawal and muscle spasms. Chlordiazepoxide works by enhancing the activity of gamma-aminobutyric acid (GABA), a neurotransmitter that inhibits nerve impulses in the brain, resulting in sedative, hypnotic, anxiolytic, anticonvulsant, and muscle relaxant properties.

The medication is available in both immediate-release and extended-release forms, and is typically taken orally. Common side effects of chlordiazepoxide include dizziness, drowsiness, and impaired coordination. More serious side effects can include memory problems, confusion, and difficulty breathing. Chlordiazepoxide can also be habit-forming, so it is important to use the medication only as directed by a healthcare provider.

It's important to note that chlordiazepoxide can interact with other medications, including certain antidepressants, opioids, and sedatives, so it's essential to inform your doctor about all the medications you are taking before starting chlordiazepoxide. Additionally, this medication should not be used during pregnancy or while breastfeeding, as it can cause harm to the developing fetus or newborn baby.

"Cells, cultured" is a medical term that refers to cells that have been removed from an organism and grown in controlled laboratory conditions outside of the body. This process is called cell culture and it allows scientists to study cells in a more controlled and accessible environment than they would have inside the body. Cultured cells can be derived from a variety of sources, including tissues, organs, or fluids from humans, animals, or cell lines that have been previously established in the laboratory.

Cell culture involves several steps, including isolation of the cells from the tissue, purification and characterization of the cells, and maintenance of the cells in appropriate growth conditions. The cells are typically grown in specialized media that contain nutrients, growth factors, and other components necessary for their survival and proliferation. Cultured cells can be used for a variety of purposes, including basic research, drug development and testing, and production of biological products such as vaccines and gene therapies.

It is important to note that cultured cells may behave differently than they do in the body, and results obtained from cell culture studies may not always translate directly to human physiology or disease. Therefore, it is essential to validate findings from cell culture experiments using additional models and ultimately in clinical trials involving human subjects.

Taurine is an organic compound that is widely distributed in animal tissues. It is a conditionally essential amino acid, meaning it can be synthesized by the human body under normal circumstances, but there may be increased requirements during certain periods such as infancy, infection, or illness. Taurine plays important roles in various physiological functions, including bile salt formation, membrane stabilization, neuromodulation, and antioxidation. It is particularly abundant in the brain, heart, retina, and skeletal muscles. In the human body, taurine is synthesized from the amino acids cysteine and methionine with the aid of vitamin B6.

Taurine can also be found in certain foods like meat, fish, and dairy products, as well as in energy drinks, where it is often added as a supplement for its potential performance-enhancing effects. However, there is ongoing debate about the safety and efficacy of taurine supplementation in healthy individuals.

Anisoles are organic compounds that consist of a phenyl ring (a benzene ring with a hydroxyl group replaced by a hydrogen atom) attached to a methoxy group (-O-CH3). The molecular formula for anisole is C6H5OCH3. Anisoles are aromatic ethers and can be found in various natural sources, including anise plants and some essential oils. They have a wide range of applications, including as solvents, flavoring agents, and intermediates in the synthesis of other chemicals.

Synaptosomes are subcellular structures that can be isolated from the brain tissue. They are formed during the fractionation process of brain homogenates and consist of intact presynaptic terminals, including the synaptic vesicles, mitochondria, and cytoskeletal elements. Synaptosomes are often used in neuroscience research to study the biochemical properties and functions of neuronal synapses, such as neurotransmitter release, uptake, and metabolism.

Microinjection is a medical technique that involves the use of a fine, precise needle to inject small amounts of liquid or chemicals into microscopic structures, cells, or tissues. This procedure is often used in research settings to introduce specific substances into individual cells for study purposes, such as introducing DNA or RNA into cell nuclei to manipulate gene expression.

In clinical settings, microinjections may be used in various medical and cosmetic procedures, including:

1. Intracytoplasmic Sperm Injection (ICSI): A type of assisted reproductive technology where a single sperm is injected directly into an egg to increase the chances of fertilization during in vitro fertilization (IVF) treatments.
2. Botulinum Toxin Injections: Microinjections of botulinum toxin (Botox, Dysport, or Xeomin) are used for cosmetic purposes to reduce wrinkles and fine lines by temporarily paralyzing the muscles responsible for their formation. They can also be used medically to treat various neuromuscular disorders, such as migraines, muscle spasticity, and excessive sweating (hyperhidrosis).
3. Drug Delivery: Microinjections may be used to deliver drugs directly into specific tissues or organs, bypassing the systemic circulation and potentially reducing side effects. This technique can be particularly useful in treating localized pain, delivering growth factors for tissue regeneration, or administering chemotherapy agents directly into tumors.
4. Gene Therapy: Microinjections of genetic material (DNA or RNA) can be used to introduce therapeutic genes into cells to treat various genetic disorders or diseases, such as cystic fibrosis, hemophilia, or cancer.

Overall, microinjection is a highly specialized and precise technique that allows for the targeted delivery of substances into small structures, cells, or tissues, with potential applications in research, medical diagnostics, and therapeutic interventions.

Iontophoresis is a medical technique in which a mild electrical current is used to deliver medications through the skin. This process enhances the absorption of medication into the body, allowing it to reach deeper tissues that may not be accessible through topical applications alone. Iontophoresis is often used for local treatment of conditions such as inflammation, pain, or spasms, and is particularly useful in treating conditions affecting the hands and feet, like hyperhidrosis (excessive sweating). The medications used in iontophoresis are typically anti-inflammatory drugs, anesthetics, or corticosteroids.

A seizure is an uncontrolled, abnormal firing of neurons (brain cells) that can cause various symptoms such as convulsions, loss of consciousness, altered awareness, or changes in behavior. Seizures can be caused by a variety of factors including epilepsy, brain injury, infection, toxic substances, or genetic disorders. They can also occur without any identifiable cause, known as idiopathic seizures. Seizures are a medical emergency and require immediate attention.

Succinate-semialdehyde dehydrogenase (SSDH) is an enzyme involved in the metabolism of the neurotransmitter gamma-aminobutyric acid (GABA). Specifically, SSDH catalyzes the conversion of succinic semialdehyde to succinate in the final step of the GABA degradation pathway. This enzyme plays a critical role in maintaining the balance of GABA levels in the brain and is therefore essential for normal neurological function. Deficiencies or mutations in SSDH can lead to neurological disorders, including developmental delays, intellectual disability, and seizures.

Oximes are a class of chemical compounds that contain the functional group =N-O-, where two organic groups are attached to the nitrogen atom. In a clinical context, oximes are used as antidotes for nerve agent and pesticide poisoning. The most commonly used oxime in medicine is pralidoxime (2-PAM), which is used to reactivate acetylcholinesterase that has been inhibited by organophosphorus compounds, such as nerve agents and certain pesticides. These compounds work by forming a bond with the phosphoryl group of the inhibited enzyme, allowing for its reactivation and restoration of normal neuromuscular function.

Beta-alanine is a non-essential amino acid, which means that it is not required in the diet because the body can produce it from other amino acids. It is produced in the liver and is also found in some foods such as meat, poultry, and fish.

Beta-alanine plays a role in the production of carnosine, a dipeptide molecule that helps to regulate muscle pH and improve muscle function during high-intensity exercise. When muscles contract during intense exercise, they produce hydrogen ions, which can cause the muscle pH to decrease (become more acidic), leading to fatigue and reduced muscle function. Carnosine acts as a buffer against this acidity, helping to maintain optimal muscle pH levels and improve performance during high-intensity exercise.

Beta-alanine supplements have been shown to increase carnosine levels in muscles, which may lead to improved athletic performance, particularly in activities that require short bursts of intense effort, such as weightlifting or sprinting. However, more research is needed to fully understand the effects and potential benefits of beta-alanine supplementation.

It's important to note that while beta-alanine supplements are generally considered safe for most people, they can cause a tingling sensation in the skin (paresthesia) when taken in high doses. This is a harmless side effect and typically subsides within an hour or so of taking the supplement.

Central Nervous System (CNS) depressants are a class of drugs that slow down the activity of the CNS, leading to decreased arousal and decreased level of consciousness. They work by increasing the inhibitory effects of the neurotransmitter gamma-aminobutyric acid (GABA) in the brain, which results in sedation, relaxation, reduced anxiety, and in some cases, respiratory depression.

Examples of CNS depressants include benzodiazepines, barbiturates, non-benzodiazepine hypnotics, and certain types of pain medications such as opioids. These drugs are often used medically to treat conditions such as anxiety, insomnia, seizures, and chronic pain, but they can also be misused or abused for their sedative effects.

It is important to use CNS depressants only under the supervision of a healthcare provider, as they can have serious side effects, including addiction, tolerance, and withdrawal symptoms. Overdose of CNS depressants can lead to coma, respiratory failure, and even death.

The neocortex, also known as the isocortex, is the most recently evolved and outermost layer of the cerebral cortex in mammalian brains. It plays a crucial role in higher cognitive functions such as sensory perception, spatial reasoning, conscious thought, language, and memory. The neocortex is characterized by its six-layered structure and is divided into several functional regions, including the primary motor, somatosensory, and visual cortices. It is highly expanded in humans and other primates, reflecting our advanced cognitive abilities compared to other animals.

Dendrites are the branched projections of a neuron that receive and process signals from other neurons. They are typically short and highly branching, increasing the surface area for receiving incoming signals. Dendrites are covered in small protrusions called dendritic spines, which can form connections with the axon terminals of other neurons through chemical synapses. The structure and function of dendrites play a critical role in the integration and processing of information in the nervous system.

Pentylenetetrazole (PTZ) is not primarily considered a medical treatment, but rather a research compound used in neuroscience and neurology to study seizure activity and chemically induce seizures in animals for experimental purposes. It is classified as a proconvulsant agent. Medically, it has been used in the past as a medication to treat epilepsy, but its use is now largely historical due to the availability of safer and more effective anticonvulsant drugs.

In a medical or scientific context, Pentylenetetrazole can be defined as:

A chemical compound with the formula C6H5N5O2, which is used in research to investigate seizure activity and induce convulsions in animals. It acts as a non-competitive GABAA receptor antagonist and can lower the seizure threshold. Historically, it has been used as a medication to treat epilepsy, but its use for this purpose is now limited due to the development of safer and more effective anticonvulsant drugs.

The Globus Pallidus is a structure in the brain that is part of the basal ganglia, a group of nuclei associated with movement control and other functions. It has two main subdivisions: the external (GPe) and internal (GPi) segments. The GPe receives input from the striatum and sends inhibitory projections to the subthalamic nucleus, while the GPi sends inhibitory projections to the thalamus, which in turn projects to the cerebral cortex. These connections allow for the regulation of motor activity, with abnormal functioning of the Globus Pallidus being implicated in various movement disorders such as Parkinson's disease and Huntington's disease.

Hypnotics and sedatives are classes of medications that have depressant effects on the central nervous system, leading to sedation (calming or inducing sleep), reduction in anxiety, and in some cases, decreased awareness or memory. These agents work by affecting the neurotransmitter GABA (gamma-aminobutyric acid) in the brain, which results in inhibitory effects on neuronal activity.

Hypnotics are primarily used for the treatment of insomnia and other sleep disorders, while sedatives are often prescribed to manage anxiety or to produce a calming effect before medical procedures. Some medications can function as both hypnotics and sedatives, depending on the dosage and specific formulation. Common examples of these medications include benzodiazepines (such as diazepam and lorazepam), non-benzodiazepine hypnotics (such as zolpidem and eszopiclone), barbiturates, and certain antihistamines.

It is essential to use these medications under the guidance of a healthcare professional, as they can have potential side effects, such as drowsiness, dizziness, confusion, and impaired coordination. Additionally, long-term use or high doses may lead to tolerance, dependence, and withdrawal symptoms upon discontinuation.

Allylglycine is not a medical term, but it is a chemical compound used in organic synthesis. It is an amino acid with the formula CH2=CH-CH2-CONH-CH2-COOH. Allylglycine is not naturally occurring and is typically produced in the laboratory for use as a building block in the synthesis of other compounds.

In the context of medicine, allylglycine may be used in research or in the development of new drugs, but it is not a medication or treatment that is used directly in patients.

A drug interaction is the effect of combining two or more drugs, or a drug and another substance (such as food or alcohol), which can alter the effectiveness or side effects of one or both of the substances. These interactions can be categorized as follows:

1. Pharmacodynamic interactions: These occur when two or more drugs act on the same target organ or receptor, leading to an additive, synergistic, or antagonistic effect. For example, taking a sedative and an antihistamine together can result in increased drowsiness due to their combined depressant effects on the central nervous system.
2. Pharmacokinetic interactions: These occur when one drug affects the absorption, distribution, metabolism, or excretion of another drug. For example, taking certain antibiotics with grapefruit juice can increase the concentration of the antibiotic in the bloodstream, leading to potential toxicity.
3. Food-drug interactions: Some drugs may interact with specific foods, affecting their absorption, metabolism, or excretion. An example is the interaction between warfarin (a blood thinner) and green leafy vegetables, which can increase the risk of bleeding due to enhanced vitamin K absorption from the vegetables.
4. Drug-herb interactions: Some herbal supplements may interact with medications, leading to altered drug levels or increased side effects. For instance, St. John's Wort can decrease the effectiveness of certain antidepressants and oral contraceptives by inducing their metabolism.
5. Drug-alcohol interactions: Alcohol can interact with various medications, causing additive sedative effects, impaired judgment, or increased risk of liver damage. For example, combining alcohol with benzodiazepines or opioids can lead to dangerous levels of sedation and respiratory depression.

It is essential for healthcare providers and patients to be aware of potential drug interactions to minimize adverse effects and optimize treatment outcomes.

Aminocaproates are a group of chemical compounds that contain an amino group and a carboxylic acid group, as well as a straight or branched alkyl chain with 6-10 carbon atoms. They are often used in medical settings as anti-fibrinolytic agents, which means they help to prevent the breakdown of blood clots.

One example of an aminocaproate is epsilon-aminocaproic acid (EACA), which is a synthetic analogue of the amino acid lysine. EACA works by inhibiting the activation of plasminogen to plasmin, which is an enzyme that breaks down blood clots. By doing so, EACA can help to reduce bleeding and improve clot stability in certain medical conditions, such as hemophilia or following surgery.

Other aminocaproates include tranexamic acid (TXA) and 4-aminoethylbenzoic acid (AEBA), which also have anti-fibrinolytic properties and are used in similar clinical settings. However, it's important to note that these medications can increase the risk of thrombosis (blood clots) if not used properly, so they should only be administered under the close supervision of a healthcare provider.

Chloride channels are membrane proteins that form hydrophilic pores or gaps, allowing the selective passage of chloride ions (Cl-) across the lipid bilayer of cell membranes. They play crucial roles in various physiological processes, including regulation of neuronal excitability, maintenance of resting membrane potential, fluid and electrolyte transport, and pH and volume regulation of cells.

Chloride channels can be categorized into several groups based on their structure, function, and mechanism of activation. Some of the major classes include:

1. Voltage-gated chloride channels (ClC): These channels are activated by changes in membrane potential and have a variety of functions, such as regulating neuronal excitability and transepithelial transport.
2. Ligand-gated chloride channels: These channels are activated by the binding of specific ligands or messenger molecules, like GABA (gamma-aminobutyric acid) or glycine, and are involved in neurotransmission and neuromodulation.
3. Cystic fibrosis transmembrane conductance regulator (CFTR): This is a chloride channel primarily located in the apical membrane of epithelial cells, responsible for secreting chloride ions and water to maintain proper hydration and mucociliary clearance in various organs, including the lungs and pancreas.
4. Calcium-activated chloride channels (CaCCs): These channels are activated by increased intracellular calcium concentrations and participate in various physiological processes, such as smooth muscle contraction, neurotransmitter release, and cell volume regulation.
5. Swelling-activated chloride channels (ClSwells): Also known as volume-regulated anion channels (VRACs), these channels are activated by cell swelling or osmotic stress and help regulate cell volume and ionic homeostasis.

Dysfunction of chloride channels has been implicated in various human diseases, such as cystic fibrosis, myotonia congenita, epilepsy, and certain forms of cancer.

Anesthetics are medications that are used to block or reduce feelings of pain and sensation, either locally in a specific area of the body or generally throughout the body. They work by depressing the nervous system, interrupting the communication between nerves and the brain. Anesthetics can be administered through various routes such as injection, inhalation, or topical application, depending on the type and the desired effect. There are several classes of anesthetics, including:

1. Local anesthetics: These numb a specific area of the body and are commonly used during minor surgical procedures, dental work, or to relieve pain from injuries. Examples include lidocaine, prilocaine, and bupivacaine.
2. Regional anesthetics: These block nerve impulses in a larger area of the body, such as an arm or leg, and can be used for more extensive surgical procedures. They are often administered through a catheter to provide continuous pain relief over a longer period. Examples include spinal anesthesia, epidural anesthesia, and peripheral nerve blocks.
3. General anesthetics: These cause a state of unconsciousness and are used for major surgical procedures or when the patient needs to be completely immobile during a procedure. They can be administered through inhalation or injection and affect the entire body. Examples include propofol, sevoflurane, and isoflurane.

Anesthetics are typically safe when used appropriately and under medical supervision. However, they can have side effects such as drowsiness, nausea, and respiratory depression. Proper dosing and monitoring by a healthcare professional are essential to minimize the risks associated with anesthesia.

Synaptic potentials refer to the electrical signals generated at the synapse, which is the junction where two neurons (or a neuron and another type of cell) meet and communicate with each other. These electrical signals are responsible for transmitting information from one neuron to another and play a crucial role in neural communication and information processing in the nervous system.

There are two main types of synaptic potentials: excitatory postsynaptic potentials (EPSPs) and inhibitory postsynaptic potentials (IPSPs). EPSPs are generated when the neurotransmitter released from the presynaptic neuron binds to receptors on the postsynaptic neuron, causing an influx of positively charged ions (such as sodium) into the cell. This results in a depolarization of the membrane potential and makes it more likely that the postsynaptic neuron will generate an action potential.

In contrast, IPSPs are generated when the neurotransmitter binds to receptors that cause an influx of negatively charged ions (such as chloride) into the cell or an efflux of positively charged ions (such as potassium) out of the cell. This results in a hyperpolarization of the membrane potential and makes it less likely that the postsynaptic neuron will generate an action potential.

The summation of multiple synaptic potentials can lead to the generation of an action potential, which is then transmitted down the axon to other neurons or target cells. The strength and duration of synaptic potentials can be modulated by various factors, including the amount and type of neurotransmitter released, the number and location of receptors on the postsynaptic membrane, and the presence of modulatory molecules such as neuromodulators and second messengers.

Microdialysis is a minimally invasive technique used in clinical and research settings to continuously monitor the concentration of various chemicals, such as neurotransmitters, drugs, or metabolites, in biological fluids (e.g., extracellular fluid of tissues, blood, or cerebrospinal fluid). This method involves inserting a small, flexible catheter with a semipermeable membrane into the region of interest. A physiological solution is continuously perfused through the catheter, allowing molecules to diffuse across the membrane based on their concentration gradient. The dialysate that exits the catheter is then collected and analyzed for target compounds using various analytical techniques (e.g., high-performance liquid chromatography, mass spectrometry).

In summary, microdialysis is a valuable tool for monitoring real-time changes in chemical concentrations within biological systems, enabling better understanding of physiological processes or pharmacokinetic properties of drugs.

The retina is the innermost, light-sensitive layer of tissue in the eye of many vertebrates and some cephalopods. It receives light that has been focused by the cornea and lens, converts it into neural signals, and sends these to the brain via the optic nerve. The retina contains several types of photoreceptor cells including rods (which handle vision in low light) and cones (which are active in bright light and are capable of color vision).

In medical terms, any pathological changes or diseases affecting the retinal structure and function can lead to visual impairment or blindness. Examples include age-related macular degeneration, diabetic retinopathy, retinal detachment, and retinitis pigmentosa among others.

Allosteric regulation is a process that describes the way in which the binding of a molecule (known as a ligand) to an enzyme or protein at one site affects the ability of another molecule to bind to a different site on the same enzyme or protein. This interaction can either enhance (positive allosteric regulation) or inhibit (negative allosteric regulation) the activity of the enzyme or protein, depending on the nature of the ligand and its effect on the shape and/or conformation of the enzyme or protein.

In an allosteric regulatory system, the binding of the first molecule to the enzyme or protein causes a conformational change in the protein structure that alters the affinity of the second site for its ligand. This can result in changes in the activity of the enzyme or protein, allowing for fine-tuning of biochemical pathways and regulatory processes within cells.

Allosteric regulation is a fundamental mechanism in many biological systems, including metabolic pathways, signal transduction cascades, and gene expression networks. Understanding allosteric regulation can provide valuable insights into the mechanisms underlying various physiological and pathological processes, and can inform the development of novel therapeutic strategies for the treatment of disease.

Retinal bipolar cells are a type of neuron located in the inner nuclear layer of the retina, an light-sensitive tissue that lines the interior of the eye. These cells play a crucial role in the visual system by transmitting visual signals from photoreceptors (rods and cones) to ganglion cells, which then relay this information to the brain via the optic nerve.

Bipolar cells have two processes or "arms" that connect to either photoreceptors or ganglion cells: one process receives input from photoreceptors and the other transmits output to ganglion cells. They are called "bipolar" because of this dual connection. These cells can be classified into different types based on their morphology, neurotransmitter usage, and synaptic connections with photoreceptors and ganglion cells.

There are two primary types of retinal bipolar cells: rod bipolar cells and cone bipolar cells. Rod bipolar cells mainly transmit signals from rod photoreceptors, which are responsible for low-light vision, while cone bipolar cells connect to cone photoreceptors that handle color vision and high visual acuity in bright light conditions.

Retinal bipolar cells help process and encode visual information based on contrast, spatial patterns, and temporal changes in light intensity. Their output contributes significantly to the formation of visual perceptions such as brightness, contrast, and motion detection. Dysfunction or damage to retinal bipolar cells can lead to various visual impairments and diseases, including some forms of vision loss.

Organ culture techniques refer to the methods used to maintain or grow intact organs or pieces of organs under controlled conditions in vitro, while preserving their structural and functional characteristics. These techniques are widely used in biomedical research to study organ physiology, pathophysiology, drug development, and toxicity testing.

Organ culture can be performed using a variety of methods, including:

1. Static organ culture: In this method, the organs or tissue pieces are placed on a porous support in a culture dish and maintained in a nutrient-rich medium. The medium is replaced periodically to ensure adequate nutrition and removal of waste products.
2. Perfusion organ culture: This method involves perfusing the organ with nutrient-rich media, allowing for better distribution of nutrients and oxygen throughout the tissue. This technique is particularly useful for studying larger organs such as the liver or kidney.
3. Microfluidic organ culture: In this approach, microfluidic devices are used to create a controlled microenvironment for organ cultures. These devices allow for precise control over the flow of nutrients and waste products, as well as the application of mechanical forces.

Organ culture techniques can be used to study various aspects of organ function, including metabolism, secretion, and response to drugs or toxins. Additionally, these methods can be used to generate three-dimensional tissue models that better recapitulate the structure and function of intact organs compared to traditional two-dimensional cell cultures.

Excitatory amino acid agonists are substances that bind to and activate excitatory amino acid receptors, leading to an increase in the excitation or activation of neurons. The most common excitatory amino acids in the central nervous system are glutamate and aspartate.

Agonists of excitatory amino acid receptors can be divided into two main categories: ionotropic and metabotropic. Ionotropic receptors, such as N-methyl-D-aspartate (NMDA), α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA), and kainite receptors, are ligand-gated ion channels that directly mediate fast excitatory synaptic transmission. Metabotropic receptors, on the other hand, are G protein-coupled receptors that modulate synaptic activity through second messenger systems.

Excitatory amino acid agonists have been implicated in various physiological and pathophysiological processes, including learning and memory, neurodevelopment, and neurodegenerative disorders such as stroke, epilepsy, and Alzheimer's disease. They are also used in research to study the functions of excitatory amino acid receptors and their roles in neuronal signaling. However, due to their potential neurotoxic effects, the therapeutic use of excitatory amino acid agonists is limited.

Dopamine is a type of neurotransmitter, which is a chemical messenger that transmits signals in the brain and nervous system. It plays several important roles in the body, including:

* Regulation of movement and coordination
* Modulation of mood and motivation
* Control of the reward and pleasure centers of the brain
* Regulation of muscle tone
* Involvement in memory and attention

Dopamine is produced in several areas of the brain, including the substantia nigra and the ventral tegmental area. It is released by neurons (nerve cells) and binds to specific receptors on other neurons, where it can either excite or inhibit their activity.

Abnormalities in dopamine signaling have been implicated in several neurological and psychiatric conditions, including Parkinson's disease, schizophrenia, and addiction.

The Ventral Tegmental Area (VTA) is a collection of neurons located in the midbrain that is part of the dopamine system. It is specifically known as the A10 group and is the largest source of dopaminergic neurons in the brain. These neurons project to various regions, including the prefrontal cortex, amygdala, hippocampus, and nucleus accumbens, and are involved in reward, motivation, addiction, and various cognitive functions. The VTA also contains GABAergic and glutamatergic neurons that modulate dopamine release and have various other functions.

Parvalbumins are a group of calcium-binding proteins that are primarily found in muscle and nerve tissues. They belong to the EF-hand superfamily, which is characterized by a specific structure containing helix-loop-helix motifs that bind calcium ions. Parvalbumins have a high affinity for calcium and play an essential role in regulating intracellular calcium concentrations during muscle contraction and nerve impulse transmission.

In muscle tissue, parvalbumins are found in fast-twitch fibers and help to facilitate rapid relaxation after muscle contraction by binding calcium ions and removing them from the cytoplasm. In nerve tissue, parvalbumins are expressed in inhibitory interneurons and modulate neuronal excitability by regulating intracellular calcium concentrations during synaptic transmission.

Parvalbumins have also been identified as potential allergens in certain foods, such as fish and shellfish, and may cause allergic reactions in sensitive individuals.

Kainic acid is not a medical term per se, but it is a compound that has been widely used in scientific research, particularly in neuroscience. It is a type of excitatory amino acid that acts as an agonist at certain types of receptors in the brain, specifically the AMPA and kainate receptors.

Kainic acid is often used in research to study the effects of excitotoxicity, which is a process that occurs when nerve cells are exposed to excessive amounts of glutamate or other excitatory neurotransmitters, leading to cell damage or death. Kainic acid can induce seizures and other neurological symptoms in animals, making it a valuable tool for studying epilepsy and related disorders.

While kainic acid itself is not a medical treatment or diagnosis, understanding its effects on the brain has contributed to our knowledge of neurological diseases and potential targets for therapy.

Barbiturates are a class of drugs that act as central nervous system depressants, which means they slow down the activity of the brain and nerves. They were commonly used in the past to treat conditions such as anxiety, insomnia, and seizures, but their use has declined due to the risk of addiction, abuse, and serious side effects. Barbiturates can also be used for surgical anesthesia and as a treatment for barbiturate or pentobarbital overdose.

Barbiturates work by enhancing the activity of the neurotransmitter gamma-aminobutyric acid (GABA) in the brain, which results in sedation, hypnosis, and anticonvulsant effects. However, at higher doses, barbiturates can cause respiratory depression, coma, and even death.

Some examples of barbiturates include pentobarbital, phenobarbital, secobarbital, and amobarbital. These drugs are usually available in the form of tablets, capsules, or injectable solutions. It is important to note that barbiturates should only be used under the supervision of a healthcare professional, as they carry a high risk of dependence and abuse.

The spinal cord is a major part of the nervous system, extending from the brainstem and continuing down to the lower back. It is a slender, tubular bundle of nerve fibers (axons) and support cells (glial cells) that carries signals between the brain and the rest of the body. The spinal cord primarily serves as a conduit for motor information, which travels from the brain to the muscles, and sensory information, which travels from the body to the brain. It also contains neurons that can independently process and respond to information within the spinal cord without direct input from the brain.

The spinal cord is protected by the bony vertebral column (spine) and is divided into 31 segments: 8 cervical, 12 thoracic, 5 lumbar, 5 sacral, and 1 coccygeal. Each segment corresponds to a specific region of the body and gives rise to pairs of spinal nerves that exit through the intervertebral foramina at each level.

The spinal cord is responsible for several vital functions, including:

1. Reflexes: Simple reflex actions, such as the withdrawal reflex when touching a hot surface, are mediated by the spinal cord without involving the brain.
2. Muscle control: The spinal cord carries motor signals from the brain to the muscles, enabling voluntary movement and muscle tone regulation.
3. Sensory perception: The spinal cord transmits sensory information, such as touch, temperature, pain, and vibration, from the body to the brain for processing and awareness.
4. Autonomic functions: The sympathetic and parasympathetic divisions of the autonomic nervous system originate in the thoracolumbar and sacral regions of the spinal cord, respectively, controlling involuntary physiological responses like heart rate, blood pressure, digestion, and respiration.

Damage to the spinal cord can result in various degrees of paralysis or loss of sensation below the level of injury, depending on the severity and location of the damage.

2-Amino-5-phosphonovalerate (APV) is a neurotransmitter receptor antagonist that is used in research to study the N-methyl-D-aspartate (NMDA) subtype of glutamate receptors. These receptors are involved in various physiological processes, including learning and memory, and are also implicated in a number of neurological disorders. APV works by binding to the NMDA receptor and blocking its activity, which allows researchers to study the role of these receptors in different biological processes. It is not used as a therapeutic drug in humans.

Ion channel gating refers to the process by which ion channels in cell membranes open and close in response to various stimuli, allowing ions such as sodium, potassium, and calcium to flow into or out of the cell. This movement of ions is crucial for many physiological processes, including the generation and transmission of electrical signals in nerve cells, muscle contraction, and the regulation of hormone secretion.

Ion channel gating can be regulated by various factors, including voltage changes across the membrane (voltage-gated channels), ligand binding (ligand-gated channels), mechanical stress (mechanosensitive channels), or other intracellular signals (second messenger-gated channels). The opening and closing of ion channels are highly regulated and coordinated processes that play a critical role in maintaining the proper functioning of cells and organ systems.

'Animal behavior' refers to the actions or responses of animals to various stimuli, including their interactions with the environment and other individuals. It is the study of the actions of animals, whether they are instinctual, learned, or a combination of both. Animal behavior includes communication, mating, foraging, predator avoidance, and social organization, among other things. The scientific study of animal behavior is called ethology. This field seeks to understand the evolutionary basis for behaviors as well as their physiological and psychological mechanisms.

Electrophysiological phenomena refer to the electrical properties and activities of biological tissues, cells, or organ systems, particularly in relation to nerve and muscle function. These phenomena can be studied using various techniques such as electrocardiography (ECG), electromyography (EMG), and electroencephalography (EEG).

In the context of cardiology, electrophysiological phenomena are often used to describe the electrical activity of the heart. The ECG is a non-invasive test that measures the electrical activity of the heart as it contracts and relaxes. By analyzing the patterns of electrical activity, doctors can diagnose various heart conditions such as arrhythmias, myocardial infarction, and electrolyte imbalances.

In neurology, electrophysiological phenomena are used to study the electrical activity of the brain. The EEG is a non-invasive test that measures the electrical activity of the brain through sensors placed on the scalp. By analyzing the patterns of electrical activity, doctors can diagnose various neurological conditions such as epilepsy, sleep disorders, and brain injuries.

Overall, electrophysiological phenomena are an important tool in medical diagnostics and research, providing valuable insights into the function of various organ systems.

General anesthetics are a type of medication used to render a person unconscious and insensible to pain during surgical procedures. They work by depressing the central nervous system, affecting the brain's ability to process information and transmit signals, including those related to pain and muscle movement. General anesthesia involves a combination of intravenous (IV) drugs and inhaled gases that produce a state of controlled unconsciousness, amnesia, analgesia, and immobility.

General anesthetics can be classified into several categories based on their chemical structure and mechanism of action, including:

1. Inhalation anesthetics: These are volatile liquids or gases that are vaporized and inhaled through a breathing circuit. Examples include sevoflurane, desflurane, isoflurane, and nitrous oxide.
2. Intravenous anesthetics: These are drugs that are administered directly into the bloodstream through an IV line. Examples include propofol, etomidate, and ketamine.
3. Dissociative anesthetics: These are drugs that produce a state of dissociation between the thalamus and the cerebral cortex, resulting in altered consciousness, analgesia, and amnesia. Ketamine is a commonly used example.
4. Neurodegenerative anesthetics: These are drugs that cause degeneration of neurons in specific areas of the brain, leading to loss of consciousness. Examples include barbiturates such as thiopental and methohexital.

The choice of general anesthetic depends on several factors, including the patient's medical history, the type and duration of surgery, and the anesthesiologist's preference. The administration of general anesthetics requires careful monitoring and management by a trained anesthesia provider to ensure the patient's safety and comfort throughout the procedure.

Quinoxalines are not a medical term, but rather an organic chemical compound. They are a class of heterocyclic aromatic compounds made up of a benzene ring fused to a pyrazine ring. Quinoxalines have no specific medical relevance, but some of their derivatives have been synthesized and used in medicinal chemistry as antibacterial, antifungal, and antiviral agents. They are also used in the production of dyes and pigments.

C57BL/6 (C57 Black 6) is an inbred strain of laboratory mouse that is widely used in biomedical research. The term "inbred" refers to a strain of animals where matings have been carried out between siblings or other closely related individuals for many generations, resulting in a population that is highly homozygous at most genetic loci.

The C57BL/6 strain was established in 1920 by crossing a female mouse from the dilute brown (DBA) strain with a male mouse from the black strain. The resulting offspring were then interbred for many generations to create the inbred C57BL/6 strain.

C57BL/6 mice are known for their robust health, longevity, and ease of handling, making them a popular choice for researchers. They have been used in a wide range of biomedical research areas, including studies of cancer, immunology, neuroscience, cardiovascular disease, and metabolism.

One of the most notable features of the C57BL/6 strain is its sensitivity to certain genetic modifications, such as the introduction of mutations that lead to obesity or impaired glucose tolerance. This has made it a valuable tool for studying the genetic basis of complex diseases and traits.

Overall, the C57BL/6 inbred mouse strain is an important model organism in biomedical research, providing a valuable resource for understanding the genetic and molecular mechanisms underlying human health and disease.

Epilepsy is a chronic neurological disorder characterized by recurrent, unprovoked seizures. These seizures are caused by abnormal electrical activity in the brain, which can result in a wide range of symptoms, including convulsions, loss of consciousness, and altered sensations or behaviors. Epilepsy can have many different causes, including genetic factors, brain injury, infection, or stroke. In some cases, the cause may be unknown.

There are many different types of seizures that can occur in people with epilepsy, and the specific type of seizure will depend on the location and extent of the abnormal electrical activity in the brain. Some people may experience only one type of seizure, while others may have several different types. Seizures can vary in frequency, from a few per year to dozens or even hundreds per day.

Epilepsy is typically diagnosed based on the patient's history of recurrent seizures and the results of an electroencephalogram (EEG), which measures the electrical activity in the brain. Imaging tests such as MRI or CT scans may also be used to help identify any structural abnormalities in the brain that may be contributing to the seizures.

While there is no cure for epilepsy, it can often be effectively managed with medication. In some cases, surgery may be recommended to remove the area of the brain responsible for the seizures. With proper treatment and management, many people with epilepsy are able to lead normal, productive lives.

Carrier proteins, also known as transport proteins, are a type of protein that facilitates the movement of molecules across cell membranes. They are responsible for the selective and active transport of ions, sugars, amino acids, and other molecules from one side of the membrane to the other, against their concentration gradient. This process requires energy, usually in the form of ATP (adenosine triphosphate).

Carrier proteins have a specific binding site for the molecule they transport, and undergo conformational changes upon binding, which allows them to move the molecule across the membrane. Once the molecule has been transported, the carrier protein returns to its original conformation, ready to bind and transport another molecule.

Carrier proteins play a crucial role in maintaining the balance of ions and other molecules inside and outside of cells, and are essential for many physiological processes, including nerve impulse transmission, muscle contraction, and nutrient uptake.

Amacrine cells are a type of neuron found in the inner nuclear layer of the retina, a light-sensitive tissue located at the back of the eye. These interneurons derive their name from the Greek word "amakrin," meaning "short-tailed," due to their short or absent axons.

Amacrine cells play a crucial role in processing and transmitting visual information within the retina. They receive input from bipolar cells, another type of retinal neuron, and synapse onto ganglion cells, which transmit visual signals to the brain via the optic nerve.

There are more than 30 different types of amacrine cells identified based on their morphology, neurotransmitter expression, and synaptic connections. These diverse cells contribute to various retinal functions, such as motion detection, contrast enhancement, direction selectivity, and spatial and temporal processing of visual signals.

Some amacrine cells release the neurotransmitter gamma-aminobutyric acid (GABA), which inhibits the activity of target neurons, while others use excitatory neurotransmitters like acetylcholine or glutamate. The intricate interplay between these various types of amacrine cells and other retinal neurons enables the retina to perform complex computations on visual information before it is relayed to the brain.

Immunohistochemistry (IHC) is a technique used in pathology and laboratory medicine to identify specific proteins or antigens in tissue sections. It combines the principles of immunology and histology to detect the presence and location of these target molecules within cells and tissues. This technique utilizes antibodies that are specific to the protein or antigen of interest, which are then tagged with a detection system such as a chromogen or fluorophore. The stained tissue sections can be examined under a microscope, allowing for the visualization and analysis of the distribution and expression patterns of the target molecule in the context of the tissue architecture. Immunohistochemistry is widely used in diagnostic pathology to help identify various diseases, including cancer, infectious diseases, and immune-mediated disorders.

Nerve endings, also known as terminal branches or sensory receptors, are the specialized structures present at the termination point of nerve fibers (axons) that transmit electrical signals to and from the central nervous system (CNS). They primarily function in detecting changes in the external environment or internal body conditions and converting them into electrical impulses.

There are several types of nerve endings, including:

1. Free Nerve Endings: These are unencapsulated nerve endings that respond to various stimuli like temperature, pain, and touch. They are widely distributed throughout the body, especially in the skin, mucous membranes, and visceral organs.

2. Encapsulated Nerve Endings: These are wrapped by specialized connective tissue sheaths, which can modify their sensitivity to specific stimuli. Examples include Pacinian corpuscles (responsible for detecting deep pressure and vibration), Meissner's corpuscles (for light touch), Ruffini endings (for stretch and pressure), and Merkel cells (for sustained touch).

3. Specialised Nerve Endings: These are nerve endings that respond to specific stimuli, such as auditory, visual, olfactory, gustatory, and vestibular information. They include hair cells in the inner ear, photoreceptors in the retina, taste buds in the tongue, and olfactory receptors in the nasal cavity.

Nerve endings play a crucial role in relaying sensory information to the CNS for processing and initiating appropriate responses, such as reflex actions or conscious perception of the environment.

Bicyclo compounds, heterocyclic, refer to a class of organic compounds that contain two rings in their structure, at least one of which is a heterocycle. A heterocycle is a cyclic compound containing atoms of at least two different elements as part of the ring structure. The term "bicyclo" indicates that there are two rings present in the molecule, with at least one common atom between them.

These compounds have significant importance in medicinal chemistry and pharmacology due to their unique structures and properties. They can be found in various natural products and are also synthesized for use as drugs, agrochemicals, and other chemical applications. The heterocyclic rings often contain nitrogen, oxygen, or sulfur atoms, which can interact with biological targets, such as enzymes and receptors, leading to pharmacological activity.

Examples of bicyclo compounds, heterocyclic, include quinolone antibiotics (e.g., ciprofloxacin), benzodiazepines (e.g., diazepam), and camptothecin-derived topoisomerase inhibitors (e.g., irinotecan). These compounds exhibit diverse biological activities, such as antibacterial, antifungal, antiviral, anxiolytic, and anticancer properties.

Glutamates are the salt or ester forms of glutamic acid, which is a naturally occurring amino acid and the most abundant excitatory neurotransmitter in the central nervous system. Glutamate plays a crucial role in various brain functions, such as learning, memory, and cognition. However, excessive levels of glutamate can lead to neuronal damage or death, contributing to several neurological disorders, including stroke, epilepsy, and neurodegenerative diseases like Alzheimer's and Parkinson's.

Glutamates are also commonly found in food as a natural flavor enhancer, often listed under the name monosodium glutamate (MSG). While MSG has been extensively studied, its safety remains a topic of debate, with some individuals reporting adverse reactions after consuming foods containing this additive.

N-Methyl-D-Aspartate (NMDA) receptors are a type of ionotropic glutamate receptor, which are found in the membranes of excitatory neurons in the central nervous system. They play a crucial role in synaptic plasticity, learning, and memory processes. NMDA receptors are ligand-gated channels that are permeable to calcium ions (Ca2+) and other cations.

NMDA receptors are composed of four subunits, which can be a combination of NR1, NR2A-D, and NR3A-B subunits. The binding of the neurotransmitter glutamate to the NR2 subunit and glycine to the NR1 subunit leads to the opening of the ion channel and the influx of Ca2+ ions.

NMDA receptors have a unique property in that they require both agonist binding and membrane depolarization for full activation, making them sensitive to changes in the electrical activity of the neuron. This property allows NMDA receptors to act as coincidence detectors, playing a critical role in synaptic plasticity and learning.

Abnormal functioning of NMDA receptors has been implicated in various neurological disorders, including Alzheimer's disease, Parkinson's disease, epilepsy, and chronic pain. Therefore, NMDA receptors are a common target for drug development in the treatment of these conditions.

Calcium is an essential mineral that is vital for various physiological processes in the human body. The medical definition of calcium is as follows:

Calcium (Ca2+) is a crucial cation and the most abundant mineral in the human body, with approximately 99% of it found in bones and teeth. It plays a vital role in maintaining structural integrity, nerve impulse transmission, muscle contraction, hormonal secretion, blood coagulation, and enzyme activation.

Calcium homeostasis is tightly regulated through the interplay of several hormones, including parathyroid hormone (PTH), calcitonin, and vitamin D. Dietary calcium intake, absorption, and excretion are also critical factors in maintaining optimal calcium levels in the body.

Hypocalcemia refers to low serum calcium levels, while hypercalcemia indicates high serum calcium levels. Both conditions can have detrimental effects on various organ systems and require medical intervention to correct.

The dentate gyrus is a region of the brain that is located in the hippocampal formation, which is a part of the limbic system and plays a crucial role in learning, memory, and spatial navigation. It is characterized by the presence of densely packed granule cells, which are a type of neuron. The dentate gyrus is involved in the formation of new memories and the integration of information from different brain regions. It is also one of the few areas of the adult brain where new neurons can be generated throughout life, a process known as neurogenesis. Damage to the dentate gyrus has been linked to memory impairments, cognitive decline, and neurological disorders such as Alzheimer's disease and epilepsy.

The CA1 region, also known as the cornu ammonis 1 region, is a subfield located in the hippocampus, a complex brain structure that plays a crucial role in learning and memory. The hippocampus is divided into several subregions, including the CA fields (CA1, CA2, CA3, and CA4).

The CA1 region is situated in the hippocampal formation's hippocampus proper and is characterized by its distinct neuronal architecture. It contains densely packed pyramidal cells, which are the primary excitatory neurons in this area. These pyramidal cells receive input from various sources, including the entorhinal cortex, another crucial region for memory functions.

The CA1 region plays a significant role in spatial memory and contextual learning. It is particularly vulnerable to damage and degeneration in several neurological conditions, such as Alzheimer's disease, epilepsy, and ischemic injuries. The selective loss of CA1 pyramidal cells is one of the earliest signs of Alzheimer's disease, which contributes to memory impairments observed in this disorder.

Neural pathways, also known as nerve tracts or fasciculi, refer to the highly organized and specialized routes through which nerve impulses travel within the nervous system. These pathways are formed by groups of neurons (nerve cells) that are connected in a series, creating a continuous communication network for electrical signals to transmit information between different regions of the brain, spinal cord, and peripheral nerves.

Neural pathways can be classified into two main types: sensory (afferent) and motor (efferent). Sensory neural pathways carry sensory information from various receptors in the body (such as those for touch, temperature, pain, and vision) to the brain for processing. Motor neural pathways, on the other hand, transmit signals from the brain to the muscles and glands, controlling movements and other effector functions.

The formation of these neural pathways is crucial for normal nervous system function, as it enables efficient communication between different parts of the body and allows for complex behaviors, cognitive processes, and adaptive responses to internal and external stimuli.

Electric conductivity, also known as electrical conductance, is a measure of a material's ability to allow the flow of electric current through it. It is usually measured in units of Siemens per meter (S/m) or ohm-meters (Ω-m).

In medical terms, electric conductivity can refer to the body's ability to conduct electrical signals, which is important for various physiological processes such as nerve impulse transmission and muscle contraction. Abnormalities in electrical conductivity can be associated with various medical conditions, including neurological disorders and heart diseases.

For example, in electrocardiography (ECG), the electric conductivity of the heart is measured to assess its electrical activity and identify any abnormalities that may indicate heart disease. Similarly, in electromyography (EMG), the electric conductivity of muscles is measured to diagnose neuromuscular disorders.

Miniature postsynaptic potentials (mPSPs) are small electrical signals that occur in the postsynaptic neuron at a chemical synapse. They are caused by the random release of a single vesicle of neurotransmitters from the presynaptic neuron, even when there is no action potential or nerve impulse.

mPSPs are typically too small to trigger an action potential on their own, but they can contribute to the overall excitability of the postsynaptic neuron and influence its likelihood of firing an action potential in response to subsequent stimuli. The amplitude of mPSPs is influenced by several factors, including the number and location of receptors on the postsynaptic membrane, the concentration of neurotransmitters released, and the distance between the presynaptic and postsynaptic neurons.

mPSPs are an important tool for studying synaptic transmission and plasticity, as they provide a way to measure the strength and reliability of individual synapses in isolation from other inputs. They have also been implicated in various physiological processes, such as learning and memory, and may play a role in neurological disorders that affect synaptic function.

Clonazepam is a medication that belongs to a class of drugs called benzodiazepines. It is primarily used to treat seizure disorders, panic attacks, and anxiety. Clonazepam works by increasing the activity of gamma-aminobutyric acid (GABA), a neurotransmitter in the brain that has a calming effect on the nervous system.

The medication comes in tablet or orally disintegrating tablet form and is typically taken two to three times per day. Common side effects of clonazepam include dizziness, drowsiness, and coordination problems. It can also cause memory problems, mental confusion, and depression.

Like all benzodiazepines, clonazepam has the potential for abuse and addiction, so it should be used with caution and only under the supervision of a healthcare provider. It is important to follow the dosage instructions carefully and not to stop taking the medication suddenly, as this can lead to withdrawal symptoms.

It's important to note that while I strive to provide accurate information, this definition is intended to be a general overview and should not replace professional medical advice. Always consult with a healthcare provider for medical advice.

Glutamate receptors are a type of neuroreceptor in the central nervous system that bind to the neurotransmitter glutamate. They play a crucial role in excitatory synaptic transmission, plasticity, and neuronal development. There are several types of glutamate receptors, including ionotropic and metabotropic receptors, which can be further divided into subclasses based on their pharmacological properties and molecular structure.

Ionotropic glutamate receptors, also known as iGluRs, are ligand-gated ion channels that directly mediate fast synaptic transmission. They include N-methyl-D-aspartate (NMDA) receptors, α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptors, and kainite receptors.

Metabotropic glutamate receptors, also known as mGluRs, are G protein-coupled receptors that modulate synaptic transmission through second messenger systems. They include eight subtypes (mGluR1-8) that are classified into three groups based on their sequence homology, pharmacological properties, and signal transduction mechanisms.

Glutamate receptors have been implicated in various physiological processes, including learning and memory, motor control, sensory perception, and emotional regulation. Dysfunction of glutamate receptors has also been associated with several neurological disorders, such as epilepsy, Alzheimer's disease, Parkinson's disease, and psychiatric conditions like schizophrenia and depression.

Purkinje cells are a type of neuron located in the cerebellar cortex, which is the outer layer of the cerebellum, a part of the brain that plays a crucial role in motor control and coordination. These cells have large branching dendrites and receive input from many other neurons, particularly granule cells. The axons of Purkinje cells form the principal output pathway of the cerebellar cortex, synapsing with deep cerebellar nuclei. They are named after Johannes Evangelista Purkinje, a Czech physiologist who first described them in 1837.

Dieldrin is a chlorinated hydrocarbon insecticide that was widely used in the past for agricultural and household pest control. It is a white, odorless, crystalline solid that is insoluble in water but soluble in organic solvents. Dieldrin has high toxicity to both insects and mammals, including humans. It can cause a range of harmful health effects, such as seizures, damage to the nervous system, and liver and kidney damage. Dieldrin was banned for most uses in the United States in 1974 due to its persistence in the environment and potential to accumulate in the food chain. It is now classified as a persistent organic pollutant (POP) and is regulated under international treaties.

Propofol is a short-acting medication that is primarily used for the induction and maintenance of general anesthesia during procedures such as surgery. It belongs to a class of drugs called hypnotics or sedatives, which work by depressing the central nervous system to produce a calming effect. Propofol can also be used for sedation in mechanically ventilated patients in intensive care units and for procedural sedation in various diagnostic and therapeutic procedures outside the operating room.

The medical definition of Propofol is:
A rapid-onset, short-duration intravenous anesthetic agent that produces a hypnotic effect and is used for induction and maintenance of general anesthesia, sedation in mechanically ventilated patients, and procedural sedation. It acts by enhancing the inhibitory effects of gamma-aminobutyric acid (GABA) in the brain, leading to a decrease in neuronal activity and a reduction in consciousness. Propofol has a rapid clearance and distribution, allowing for quick recovery after discontinuation of its administration.

Synaptic membranes, also known as presynaptic and postsynaptic membranes, are specialized structures in neurons where synaptic transmission occurs. The presynaptic membrane is the portion of the neuron's membrane where neurotransmitters are released into the synaptic cleft, a small gap between two neurons. The postsynaptic membrane, on the other hand, is the portion of the neighboring neuron's membrane that contains receptors for the neurotransmitters released by the presynaptic neuron. Together, these structures facilitate the transmission of electrical signals from one neuron to another through the release and binding of chemical messengers.

I'm sorry for any confusion, but "Goldfish" is not a term used in medical definitions. Goldfish are small domesticated fish that are often kept as pets. They belong to the family Cyprinidae and the genus Carassius. The most common species of goldfish is Carassius auratus. If you have any questions about goldfish or their care, I might be able to help with some general information, but for specific medical concerns, it would be best to consult a veterinarian.

A symporter is a type of transmembrane protein that functions to transport two or more molecules or ions across a biological membrane in the same direction, simultaneously. This process is called co-transport and it is driven by the concentration gradient of one of the substrates, which is usually an ion such as sodium (Na+) or proton (H+).

Symporters are classified based on the type of energy that drives the transport process. Primary active transporters, such as symporters, use the energy from ATP hydrolysis or from the electrochemical gradient of ions to move substrates against their concentration gradient. In contrast, secondary active transporters use the energy stored in an existing electrochemical gradient of one substrate to drive the transport of another substrate against its own concentration gradient.

Symporters play important roles in various physiological processes, including nutrient uptake, neurotransmitter reuptake, and ion homeostasis. For example, the sodium-glucose transporter (SGLT) is a symporter that co-transports glucose and sodium ions across the intestinal epithelium and the renal proximal tubule, contributing to glucose absorption and regulation of blood glucose levels. Similarly, the dopamine transporter (DAT) is a symporter that co-transports dopamine and sodium ions back into presynaptic neurons, terminating the action of dopamine in the synapse.

Neurotransmitter receptors are specialized protein molecules found on the surface of neurons and other cells in the body. They play a crucial role in chemical communication within the nervous system by binding to specific neurotransmitters, which are chemicals that transmit signals across the synapse (the tiny gap between two neurons).

When a neurotransmitter binds to its corresponding receptor, it triggers a series of biochemical events that can either excite or inhibit the activity of the target neuron. This interaction helps regulate various physiological processes, including mood, cognition, movement, and sensation.

Neurotransmitter receptors can be classified into two main categories based on their mechanism of action: ionotropic and metabotropic receptors. Ionotropic receptors are ligand-gated ion channels that directly allow ions to flow through the cell membrane upon neurotransmitter binding, leading to rapid changes in neuronal excitability. In contrast, metabotropic receptors are linked to G proteins and second messenger systems, which modulate various intracellular signaling pathways more slowly.

Examples of neurotransmitters include glutamate, GABA (gamma-aminobutyric acid), dopamine, serotonin, acetylcholine, and norepinephrine, among others. Each neurotransmitter has its specific receptor types, which may have distinct functions and distributions within the nervous system. Understanding the roles of these receptors and their interactions with neurotransmitters is essential for developing therapeutic strategies to treat various neurological and psychiatric disorders.

The amygdala is an almond-shaped group of nuclei located deep within the temporal lobe of the brain, specifically in the anterior portion of the temporal lobes and near the hippocampus. It forms a key component of the limbic system and plays a crucial role in processing emotions, particularly fear and anxiety. The amygdala is involved in the integration of sensory information with emotional responses, memory formation, and decision-making processes.

In response to emotionally charged stimuli, the amygdala can modulate various physiological functions, such as heart rate, blood pressure, and stress hormone release, via its connections to the hypothalamus and brainstem. Additionally, it contributes to social behaviors, including recognizing emotional facial expressions and responding appropriately to social cues. Dysfunctions in amygdala function have been implicated in several psychiatric and neurological conditions, such as anxiety disorders, depression, post-traumatic stress disorder (PTSD), and autism spectrum disorder (ASD).

N-Methyl-D-Aspartate (NMDA) is not a medication but a type of receptor, specifically a glutamate receptor, found in the post-synaptic membrane in the central nervous system. Glutamate is a major excitatory neurotransmitter in the brain. NMDA receptors are involved in various functions such as synaptic plasticity, learning, and memory. They also play a role in certain neurological disorders like epilepsy, neurodegenerative diseases, and chronic pain.

NMDA receptors are named after N-Methyl-D-Aspartate, a synthetic analog of the amino acid aspartic acid, which is a selective agonist for this type of receptor. An agonist is a substance that binds to a receptor and causes a response similar to that of the natural ligand (in this case, glutamate).

Benzylamines are a class of organic compounds that consist of a benzene ring attached to an amine group. The amine group (-NH2) can be primary, secondary, or tertiary, depending on the number of hydrogen atoms bonded to the nitrogen atom. Benzylamines are used in the synthesis of various pharmaceuticals, agrochemicals, and other organic compounds. They have a variety of biological activities and can act as central nervous system depressants, local anesthetics, and muscle relaxants. However, some benzylamines can also be toxic or carcinogenic, so they must be handled with care.

The hypothalamus is a small, vital region of the brain that lies just below the thalamus and forms part of the limbic system. It plays a crucial role in many important functions including:

1. Regulation of body temperature, hunger, thirst, fatigue, sleep, and circadian rhythms.
2. Production and regulation of hormones through its connection with the pituitary gland (the hypophysis). It controls the release of various hormones by producing releasing and inhibiting factors that regulate the anterior pituitary's function.
3. Emotional responses, behavior, and memory formation through its connections with the limbic system structures like the amygdala and hippocampus.
4. Autonomic nervous system regulation, which controls involuntary physiological functions such as heart rate, blood pressure, and digestion.
5. Regulation of the immune system by interacting with the autonomic nervous system.

Damage to the hypothalamus can lead to various disorders like diabetes insipidus, growth hormone deficiency, altered temperature regulation, sleep disturbances, and emotional or behavioral changes.

Sodium-Potassium-Chloride Symporters are membrane transport proteins that facilitate the active transport of sodium, potassium, and chloride ions across the cell membrane. These symporters use the energy derived from the concentration gradient of sodium ions to co-transport potassium and chloride ions into or out of the cell. This process helps maintain electrolyte balance, regulate cell volume, and facilitate various physiological functions such as nerve impulse transmission and kidney function. An example of a Sodium-Potassium-Chloride Symporter is the NKCC1 (Na-K-2Cl cotransporter).

Membrane proteins are a type of protein that are embedded in the lipid bilayer of biological membranes, such as the plasma membrane of cells or the inner membrane of mitochondria. These proteins play crucial roles in various cellular processes, including:

1. Cell-cell recognition and signaling
2. Transport of molecules across the membrane (selective permeability)
3. Enzymatic reactions at the membrane surface
4. Energy transduction and conversion
5. Mechanosensation and signal transduction

Membrane proteins can be classified into two main categories: integral membrane proteins, which are permanently associated with the lipid bilayer, and peripheral membrane proteins, which are temporarily or loosely attached to the membrane surface. Integral membrane proteins can further be divided into three subcategories based on their topology:

1. Transmembrane proteins, which span the entire width of the lipid bilayer with one or more alpha-helices or beta-barrels.
2. Lipid-anchored proteins, which are covalently attached to lipids in the membrane via a glycosylphosphatidylinositol (GPI) anchor or other lipid modifications.
3. Monotopic proteins, which are partially embedded in the membrane and have one or more domains exposed to either side of the bilayer.

Membrane proteins are essential for maintaining cellular homeostasis and are targets for various therapeutic interventions, including drug development and gene therapy. However, their structural complexity and hydrophobicity make them challenging to study using traditional biochemical methods, requiring specialized techniques such as X-ray crystallography, nuclear magnetic resonance (NMR) spectroscopy, and single-particle cryo-electron microscopy (cryo-EM).

Gramicidin is not a medical condition but rather an antibiotic substance that is used in medical treatments.

Here's the scientific and pharmacological definition:

Gramicidin is a narrow-spectrum, cationic antimicrobial peptide derived from gram-positive bacteria of the genus Bacillus. It is an ionophore that selectively binds to monovalent cations, forming channels in lipid bilayers and causing disruption of bacterial cell membranes, leading to bacterial lysis and death. Gramicidin D, a mixture of at least four different gramicidins (A, B, C, and D), is commonly used in topical formulations for the treatment of skin and eye infections due to its potent antimicrobial activity against many gram-positive and some gram-negative bacteria. However, it has limited systemic use due to its potential toxicity to mammalian cells.

Sodium channel blockers are a class of medications that work by blocking sodium channels in the heart, which prevents the rapid influx of sodium ions into the cells during depolarization. This action slows down the rate of impulse generation and propagation in the heart, which in turn decreases the heart rate and prolongs the refractory period.

Sodium channel blockers are primarily used to treat cardiac arrhythmias, including atrial fibrillation, atrial flutter, and ventricular tachycardia. They may also be used to treat certain types of neuropathic pain. Examples of sodium channel blockers include Class I antiarrhythmics such as flecainide, propafenone, lidocaine, and mexiletine.

It's important to note that sodium channel blockers can have potential side effects, including proarrhythmia (i.e., the development of new arrhythmias or worsening of existing ones), negative inotropy (decreased contractility of the heart muscle), and cardiac conduction abnormalities. Therefore, these medications should be used with caution and under the close supervision of a healthcare provider.

A "knockout" mouse is a genetically engineered mouse in which one or more genes have been deleted or "knocked out" using molecular biology techniques. This allows researchers to study the function of specific genes and their role in various biological processes, as well as potential associations with human diseases. The mice are generated by introducing targeted DNA modifications into embryonic stem cells, which are then used to create a live animal. Knockout mice have been widely used in biomedical research to investigate gene function, disease mechanisms, and potential therapeutic targets.

Neuronal plasticity, also known as neuroplasticity or neural plasticity, refers to the ability of the brain and nervous system to change and adapt as a result of experience, learning, injury, or disease. This can involve changes in the structure, organization, and function of neurons (nerve cells) and their connections (synapses) in the central and peripheral nervous systems.

Neuronal plasticity can take many forms, including:

* Synaptic plasticity: Changes in the strength or efficiency of synaptic connections between neurons. This can involve the formation, elimination, or modification of synapses.
* Neural circuit plasticity: Changes in the organization and connectivity of neural circuits, which are networks of interconnected neurons that process information.
* Structural plasticity: Changes in the physical structure of neurons, such as the growth or retraction of dendrites (branches that receive input from other neurons) or axons (projections that transmit signals to other neurons).
* Functional plasticity: Changes in the physiological properties of neurons, such as their excitability, responsiveness, or sensitivity to stimuli.

Neuronal plasticity is a fundamental property of the nervous system and plays a crucial role in many aspects of brain function, including learning, memory, perception, and cognition. It also contributes to the brain's ability to recover from injury or disease, such as stroke or traumatic brain injury.

In the field of medicine, "time factors" refer to the duration of symptoms or time elapsed since the onset of a medical condition, which can have significant implications for diagnosis and treatment. Understanding time factors is crucial in determining the progression of a disease, evaluating the effectiveness of treatments, and making critical decisions regarding patient care.

For example, in stroke management, "time is brain," meaning that rapid intervention within a specific time frame (usually within 4.5 hours) is essential to administering tissue plasminogen activator (tPA), a clot-busting drug that can minimize brain damage and improve patient outcomes. Similarly, in trauma care, the "golden hour" concept emphasizes the importance of providing definitive care within the first 60 minutes after injury to increase survival rates and reduce morbidity.

Time factors also play a role in monitoring the progression of chronic conditions like diabetes or heart disease, where regular follow-ups and assessments help determine appropriate treatment adjustments and prevent complications. In infectious diseases, time factors are crucial for initiating antibiotic therapy and identifying potential outbreaks to control their spread.

Overall, "time factors" encompass the significance of recognizing and acting promptly in various medical scenarios to optimize patient outcomes and provide effective care.

Neutral amino acids are a type of amino acids that are characterized by the presence of a neutral side chain in their chemical structure. In other words, the side chain of these amino acids does not contain any ionizable groups, such as carboxyl or amino groups, which can give rise to positive or negative charges.

There are nine neutral amino acids in total, and they include:

1. Alanine (Ala) - has a methyl group (-CH3) as its side chain
2. Glycine (Gly) - has a hydrogen atom (-H) as its side chain
3. Valine (Val) - has an isopropyl group (-CH(CH3)2) as its side chain
4. Leucine (Leu) - has a branched alkyl group (-CH2CH(CH3)2) as its side chain
5. Isoleucine (Ile) - has a sec-butyl group (-CH(CH3)(CH2CH3)) as its side chain
6. Proline (Pro) - has a cyclic structure containing a secondary amino group (-NH-) as its side chain
7. Phenylalanine (Phe) - has an aromatic ring with a methyl group (-CH3) attached to it as its side chain
8. Tryptophan (Trp) - has an indole ring as its side chain
9. Methionine (Met) - has a sulfur-containing alkyl group (-CH2CH2SH) as its side chain

Neutral amino acids play important roles in various biological processes, such as protein synthesis, metabolism, and signaling pathways. They are also essential components of many dietary proteins and are required for the growth, development, and maintenance of tissues and organs in the body.

The medulla oblongata is a part of the brainstem that is located in the posterior portion of the brainstem and continues with the spinal cord. It plays a vital role in controlling several critical bodily functions, such as breathing, heart rate, and blood pressure. The medulla oblongata also contains nerve pathways that transmit sensory information from the body to the brain and motor commands from the brain to the muscles. Additionally, it is responsible for reflexes such as vomiting, swallowing, coughing, and sneezing.

Bumetanide is a loop diuretic medication that is primarily used to treat fluid buildup and swelling caused by various medical conditions, such as heart failure, liver cirrhosis, and kidney disease. It works by increasing the excretion of salt and water from the body through urination.

The increased urine output helps reduce the amount of fluid in the body, which can help alleviate symptoms such as shortness of breath, weight gain, and swelling in the legs, ankles, and feet. Bumetanide is a potent diuretic and should be used under the close supervision of a healthcare provider to monitor its effects on the body's electrolyte balance and fluid levels.

Like other loop diuretics, bumetanide can cause side effects such as dehydration, electrolyte imbalances, hearing loss, and kidney damage if used inappropriately or in excessive doses. It is important to follow the prescribed dosage regimen and inform your healthcare provider of any changes in your health status while taking this medication.

Neurological models are simplified representations or simulations of various aspects of the nervous system, including its structure, function, and processes. These models can be theoretical, computational, or physical and are used to understand, explain, and predict neurological phenomena. They may focus on specific neurological diseases, disorders, or functions, such as memory, learning, or movement. The goal of these models is to provide insights into the complex workings of the nervous system that cannot be easily observed or understood through direct examination alone.

Cyclohexanecarboxylic acids are a type of organic compound that consists of a cyclohexane ring, which is a six-carbon saturated hydrocarbon, substituted with a carboxylic acid group (-COOH). This group contains a carbon atom double bonded to an oxygen atom and single bonded to a hydroxyl group (-OH).

The cyclohexane ring can be in various forms, including the chair, boat, or twist-boat conformations, depending on the orientation of its constituent atoms. The carboxylic acid group can ionize to form a carboxylate anion, which is negatively charged and has a deprotonated hydroxyl group.

Cyclohexanecarboxylic acids have various applications in industry and research, including as intermediates in the synthesis of other chemicals, solvents, and pharmaceuticals. They can also be found naturally in some plants and microorganisms.

Absence epilepsy is a type of epilepsy characterized by recurrent brief episodes of "absences," or staring spells, that can last from a few seconds to several minutes. These episodes are often accompanied by subtle body movements such as lip smacking or eyelid flutters. Absence epilepsy is most commonly diagnosed in children and adolescents, and it is more common in girls than boys.

The seizures in absence epilepsy are caused by abnormal electrical activity in the brain, specifically in a part of the brain called the cortex. These abnormal electrical discharges occur in a pattern that involves both sides of the brain simultaneously. This differs from other types of epilepsy, which may involve only one side of the brain or specific areas within a single hemisphere.

Absence seizures are typically brief and do not cause confusion or disorientation after they end. However, if they occur frequently, they can interfere with learning and social development. In some cases, absence epilepsy may be associated with other types of seizures, such as generalized tonic-clonic (grand mal) seizures or myoclonic jerks.

The diagnosis of absence epilepsy is usually made based on the characteristic symptoms and the results of an electroencephalogram (EEG), which can detect the abnormal electrical activity in the brain during a seizure. Treatment typically involves medication to control the seizures, such as ethosuximide or valproic acid. In some cases, a ketogenic diet may also be recommended as an alternative treatment option.

"Long-Evans" is a strain of laboratory rats commonly used in scientific research. They are named after their developers, the scientists Long and Evans. This strain is albino, with a brownish-black hood over their eyes and ears, and they have an agouti (salt-and-pepper) color on their backs. They are often used as a model organism due to their size, ease of handling, and genetic similarity to humans. However, I couldn't find any specific medical definition related to "Long-Evans rats" as they are not a medical condition or disease.

Brain chemistry refers to the chemical processes that occur within the brain, particularly those involving neurotransmitters, neuromodulators, and neuropeptides. These chemicals are responsible for transmitting signals between neurons (nerve cells) in the brain, allowing for various cognitive, emotional, and physical functions.

Neurotransmitters are chemical messengers that transmit signals across the synapse (the tiny gap between two neurons). Examples of neurotransmitters include dopamine, serotonin, norepinephrine, GABA (gamma-aminobutyric acid), and glutamate. Each neurotransmitter has a specific role in brain function, such as regulating mood, motivation, attention, memory, and movement.

Neuromodulators are chemicals that modify the effects of neurotransmitters on neurons. They can enhance or inhibit the transmission of signals between neurons, thereby modulating brain activity. Examples of neuromodulators include acetylcholine, histamine, and substance P.

Neuropeptides are small protein-like molecules that act as neurotransmitters or neuromodulators. They play a role in various physiological functions, such as pain perception, stress response, and reward processing. Examples of neuropeptides include endorphins, enkephalins, and oxytocin.

Abnormalities in brain chemistry can lead to various neurological and psychiatric conditions, such as depression, anxiety disorders, schizophrenia, Parkinson's disease, and Alzheimer's disease. Understanding brain chemistry is crucial for developing effective treatments for these conditions.

The solitary nucleus, also known as the nucleus solitarius, is a collection of neurons located in the medulla oblongata region of the brainstem. It plays a crucial role in the processing and integration of sensory information, particularly taste and visceral afferent fibers from internal organs. The solitary nucleus receives inputs from various cranial nerves, including the glossopharyngeal (cranial nerve IX) and vagus nerves (cranial nerve X), and is involved in reflex responses related to swallowing, vomiting, and cardiovascular regulation.

Intravenous anesthetics are a type of medication that is administered directly into a vein to cause a loss of consciousness and provide analgesia (pain relief) during medical procedures. They work by depressing the central nervous system, inhibiting nerve impulse transmission and ultimately preventing the patient from feeling pain or discomfort during surgery or other invasive procedures.

There are several different types of intravenous anesthetics, each with its own specific properties and uses. Some common examples include propofol, etomidate, ketamine, and barbiturates. These drugs may be used alone or in combination with other medications to provide a safe and effective level of anesthesia for the patient.

The choice of intravenous anesthetic depends on several factors, including the patient's medical history, the type and duration of the procedure, and the desired depth and duration of anesthesia. Anesthesiologists must carefully consider these factors when selecting an appropriate medication regimen for each individual patient.

While intravenous anesthetics are generally safe and effective, they can have side effects and risks, such as respiratory depression, hypotension, and allergic reactions. Anesthesia providers must closely monitor patients during and after the administration of these medications to ensure their safety and well-being.

A nerve net, also known as a neural net or neuronal network, is not a medical term per se, but rather a concept in neuroscience and artificial intelligence (AI). It refers to a complex network of interconnected neurons that process and transmit information. In the context of the human body, the nervous system can be thought of as a type of nerve net, with the brain and spinal cord serving as the central processing unit and peripheral nerves carrying signals to and from various parts of the body.

In the field of AI, artificial neural networks are computational models inspired by the structure and function of biological nerve nets. These models consist of interconnected nodes or "neurons" that process information and learn patterns through a process of training and adaptation. They have been used in a variety of applications, including image recognition, natural language processing, and machine learning.

The corpus striatum is a part of the brain that plays a crucial role in movement, learning, and cognition. It consists of two structures called the caudate nucleus and the putamen, which are surrounded by the external and internal segments of the globus pallidus. Together, these structures form the basal ganglia, a group of interconnected neurons that help regulate voluntary movement.

The corpus striatum receives input from various parts of the brain, including the cerebral cortex, thalamus, and other brainstem nuclei. It processes this information and sends output to the globus pallidus and substantia nigra, which then project to the thalamus and back to the cerebral cortex. This feedback loop helps coordinate and fine-tune movements, allowing for smooth and coordinated actions.

Damage to the corpus striatum can result in movement disorders such as Parkinson's disease, Huntington's disease, and dystonia. These conditions are characterized by abnormal involuntary movements, muscle stiffness, and difficulty initiating or controlling voluntary movements.

Lorazepam is a medication that belongs to a class of drugs known as benzodiazepines. Medically, it is defined as a prescription drug used for the treatment of anxiety disorders, short-term relief of symptoms of anxiety or anxiety associated with depressive symptoms. It can also be used for the treatment of insomnia, seizure disorders, and alcohol withdrawal. Lorazepam works by affecting chemicals in the brain that may become unbalanced and cause anxiety or other symptoms.

It is important to note that lorazepam can be habit-forming and should only be used under the supervision of a healthcare provider. Misuse of this medication can lead to serious risks, including addiction, overdose, or death.

Metabotropic glutamate receptors (mGluRs) are a type of G protein-coupled receptor (GPCR) that are activated by the neurotransmitter glutamate, which is the primary excitatory neurotransmitter in the central nervous system. There are eight different subtypes of mGluRs, labeled mGluR1 through mGluR8, which are classified into three groups (Group I, II, and III) based on their sequence homology, downstream signaling pathways, and pharmacological properties.

Group I mGluRs include mGluR1 and mGluR5, which are primarily located postsynaptically in the central nervous system. Activation of Group I mGluRs leads to increased intracellular calcium levels and activation of protein kinases, which can modulate synaptic transmission and plasticity.

Group II mGluRs include mGluR2 and mGluR3, which are primarily located presynaptically in the central nervous system. Activation of Group II mGluRs inhibits adenylyl cyclase activity and reduces neurotransmitter release.

Group III mGluRs include mGluR4, mGluR6, mGluR7, and mGluR8, which are also primarily located presynaptically in the central nervous system. Activation of Group III mGluRs inhibits adenylyl cyclase activity and voltage-gated calcium channels, reducing neurotransmitter release.

Overall, metabotropic glutamate receptors play important roles in modulating synaptic transmission and plasticity, and have been implicated in various neurological disorders, including epilepsy, pain, anxiety, depression, and neurodegenerative diseases.

Thalamic nuclei refer to specific groupings of neurons within the thalamus, a key relay station in the brain that receives sensory information from various parts of the body and transmits it to the cerebral cortex for processing. The thalamus is divided into several distinct nuclei, each with its own unique functions and connections. These nuclei can be broadly categorized into three groups:

1. Sensory relay nuclei: These nuclei receive sensory information from different modalities such as vision, audition, touch, and taste, and project this information to specific areas of the cerebral cortex for further processing. Examples include the lateral geniculate nucleus (vision), medial geniculate nucleus (audition), and ventral posterior nucleus (touch and taste).
2. Association nuclei: These nuclei are involved in higher-order cognitive functions, such as attention, memory, and executive control. They receive inputs from various cortical areas and project back to those same areas, forming closed loops that facilitate information processing and integration. Examples include the mediodorsal nucleus and pulvinar.
3. Motor relay nuclei: These nuclei are involved in motor control and coordination. They receive inputs from the cerebral cortex and basal ganglia and project to the brainstem and spinal cord, helping to regulate movement and posture. Examples include the ventral anterior and ventral lateral nuclei.

Overall, thalamic nuclei play a crucial role in integrating sensory, motor, and cognitive information, allowing for adaptive behavior and conscious experience.

Glutamine is defined as a conditionally essential amino acid in humans, which means that it can be produced by the body under normal circumstances, but may become essential during certain conditions such as stress, illness, or injury. It is the most abundant free amino acid found in the blood and in the muscles of the body.

Glutamine plays a crucial role in various biological processes, including protein synthesis, energy production, and acid-base balance. It serves as an important fuel source for cells in the intestines, immune system, and skeletal muscles. Glutamine has also been shown to have potential benefits in wound healing, gut function, and immunity, particularly during times of physiological stress or illness.

In summary, glutamine is a vital amino acid that plays a critical role in maintaining the health and function of various tissues and organs in the body.

"Motor activity" is a general term used in the field of medicine and neuroscience to refer to any kind of physical movement or action that is generated by the body's motor system. The motor system includes the brain, spinal cord, nerves, and muscles that work together to produce movements such as walking, talking, reaching for an object, or even subtle actions like moving your eyes.

Motor activity can be voluntary, meaning it is initiated intentionally by the individual, or involuntary, meaning it is triggered automatically by the nervous system without conscious control. Examples of voluntary motor activity include deliberately lifting your arm or kicking a ball, while examples of involuntary motor activity include heartbeat, digestion, and reflex actions like jerking your hand away from a hot stove.

Abnormalities in motor activity can be a sign of neurological or muscular disorders, such as Parkinson's disease, cerebral palsy, or multiple sclerosis. Assessment of motor activity is often used in the diagnosis and treatment of these conditions.

Ion channels are specialized transmembrane proteins that form hydrophilic pores or gaps in the lipid bilayer of cell membranes. They regulate the movement of ions (such as sodium, potassium, calcium, and chloride) across the cell membrane by allowing these charged particles to pass through selectively in response to various stimuli, including voltage changes, ligand binding, mechanical stress, or temperature changes. This ion movement is essential for many physiological processes, including electrical signaling, neurotransmission, muscle contraction, and maintenance of resting membrane potential. Ion channels can be categorized based on their activation mechanisms, ion selectivity, and structural features. Dysfunction of ion channels can lead to various diseases, making them important targets for drug development.

The reticular formation is not a single structure but rather a complex network of interconnected neurons located in the brainstem, extending from the medulla oblongata through the pons and mesencephalon (midbrain) up to the diencephalon (thalamus and hypothalamus). It forms part of the reticular activating system, which is involved in regulating arousal, awareness, and sleep-wake cycles.

The reticular formation plays a crucial role in various functions such as:

1. Modulation of sensory input: The neurons in the reticular formation receive inputs from all senses (visual, auditory, tactile, etc.) and help filter and prioritize this information before it reaches higher cognitive areas.

2. Control of motor function: The reticular formation contributes to the regulation of muscle tone, posture, and locomotion by modulating the activity of motor neurons in the spinal cord.

3. Regulation of autonomic functions: The reticular formation is involved in controlling heart rate, blood pressure, respiration, and other visceral functions through its connections with the autonomic nervous system.

4. Consciousness and arousal: The ascending reticular activating system (ARAS) originates from the reticular formation and projects to the thalamus and cerebral cortex, where it helps maintain wakefulness and arousal. Damage to the ARAS can lead to coma or other states of altered consciousness.

5. Sleep-wake cycle regulation: The reticular formation contains cells that release neurotransmitters like histamine, serotonin, and orexin/hypocretin, which are essential for sleep-wake regulation. Dysfunction in these circuits has been implicated in various sleep disorders, such as narcolepsy and insomnia.

"Xenopus" is not a medical term, but it is a genus of highly invasive aquatic frogs native to sub-Saharan Africa. They are often used in scientific research, particularly in developmental biology and genetics. The most commonly studied species is Xenopus laevis, also known as the African clawed frog.

In a medical context, Xenopus might be mentioned when discussing their use in research or as a model organism to study various biological processes or diseases.

The Substantia Nigra is a region in the midbrain that plays a crucial role in movement control and reward processing. It is composed of two parts: the pars compacta and the pars reticulata. The pars compacta contains dopamine-producing neurons, whose loss or degeneration is associated with Parkinson's disease, leading to motor symptoms such as tremors, rigidity, and bradykinesia.

In summary, Substantia Nigra is a brain structure that contains dopamine-producing cells and is involved in movement control and reward processing. Its dysfunction or degeneration can lead to neurological disorders like Parkinson's disease.

The olfactory bulb is the primary center for the sense of smell in the brain. It's a structure located in the frontal part of the brain, specifically in the anterior cranial fossa, and is connected to the nasal cavity through tiny holes called the cribriform plates. The olfactory bulb receives signals from olfactory receptors in the nose that detect different smells, processes this information, and then sends it to other areas of the brain for further interpretation and perception of smell.

In the context of medicine and pharmacology, "kinetics" refers to the study of how a drug moves throughout the body, including its absorption, distribution, metabolism, and excretion (often abbreviated as ADME). This field is called "pharmacokinetics."

1. Absorption: This is the process of a drug moving from its site of administration into the bloodstream. Factors such as the route of administration (e.g., oral, intravenous, etc.), formulation, and individual physiological differences can affect absorption.

2. Distribution: Once a drug is in the bloodstream, it gets distributed throughout the body to various tissues and organs. This process is influenced by factors like blood flow, protein binding, and lipid solubility of the drug.

3. Metabolism: Drugs are often chemically modified in the body, typically in the liver, through processes known as metabolism. These changes can lead to the formation of active or inactive metabolites, which may then be further distributed, excreted, or undergo additional metabolic transformations.

4. Excretion: This is the process by which drugs and their metabolites are eliminated from the body, primarily through the kidneys (urine) and the liver (bile).

Understanding the kinetics of a drug is crucial for determining its optimal dosing regimen, potential interactions with other medications or foods, and any necessary adjustments for special populations like pediatric or geriatric patients, or those with impaired renal or hepatic function.

Pilocarpine is a cholinergic agonist, which means it stimulates the parasympathetic nervous system by binding to muscarinic receptors. It is primarily used in the treatment of dry mouth (xerostomia) caused by radiation therapy or Sjögren's syndrome, as well as in the management of glaucoma due to its ability to construct the pupils and reduce intraocular pressure. Pilocarpine can also be used to treat certain cardiovascular conditions and chronic bronchitis. It is available in various forms, including tablets, ophthalmic solutions, and topical gels.

Analysis of Variance (ANOVA) is a statistical technique used to compare the means of two or more groups and determine whether there are any significant differences between them. It is a way to analyze the variance in a dataset to determine whether the variability between groups is greater than the variability within groups, which can indicate that the groups are significantly different from one another.

ANOVA is based on the concept of partitioning the total variance in a dataset into two components: variance due to differences between group means (also known as "between-group variance") and variance due to differences within each group (also known as "within-group variance"). By comparing these two sources of variance, ANOVA can help researchers determine whether any observed differences between groups are statistically significant, or whether they could have occurred by chance.

ANOVA is a widely used technique in many areas of research, including biology, psychology, engineering, and business. It is often used to compare the means of two or more experimental groups, such as a treatment group and a control group, to determine whether the treatment had a significant effect. ANOVA can also be used to compare the means of different populations or subgroups within a population, to identify any differences that may exist between them.

Transgenic mice are genetically modified rodents that have incorporated foreign DNA (exogenous DNA) into their own genome. This is typically done through the use of recombinant DNA technology, where a specific gene or genetic sequence of interest is isolated and then introduced into the mouse embryo. The resulting transgenic mice can then express the protein encoded by the foreign gene, allowing researchers to study its function in a living organism.

The process of creating transgenic mice usually involves microinjecting the exogenous DNA into the pronucleus of a fertilized egg, which is then implanted into a surrogate mother. The offspring that result from this procedure are screened for the presence of the foreign DNA, and those that carry the desired genetic modification are used to establish a transgenic mouse line.

Transgenic mice have been widely used in biomedical research to model human diseases, study gene function, and test new therapies. They provide a valuable tool for understanding complex biological processes and developing new treatments for a variety of medical conditions.

Potassium is a essential mineral and an important electrolyte that is widely distributed in the human body. The majority of potassium in the body (approximately 98%) is found within cells, with the remaining 2% present in blood serum and other bodily fluids. Potassium plays a crucial role in various physiological processes, including:

1. Regulation of fluid balance and maintenance of normal blood pressure through its effects on vascular tone and sodium excretion.
2. Facilitation of nerve impulse transmission and muscle contraction by participating in the generation and propagation of action potentials.
3. Protein synthesis, enzyme activation, and glycogen metabolism.
4. Regulation of acid-base balance through its role in buffering systems.

The normal serum potassium concentration ranges from 3.5 to 5.0 mEq/L (milliequivalents per liter) or mmol/L (millimoles per liter). Potassium levels outside this range can have significant clinical consequences, with both hypokalemia (low potassium levels) and hyperkalemia (high potassium levels) potentially leading to serious complications such as cardiac arrhythmias, muscle weakness, and respiratory failure.

Potassium is primarily obtained through the diet, with rich sources including fruits (e.g., bananas, oranges, and apricots), vegetables (e.g., leafy greens, potatoes, and tomatoes), legumes, nuts, dairy products, and meat. In cases of deficiency or increased needs, potassium supplements may be recommended under the guidance of a healthcare professional.

Nerve tissue proteins are specialized proteins found in the nervous system that provide structural and functional support to nerve cells, also known as neurons. These proteins include:

1. Neurofilaments: These are type IV intermediate filaments that provide structural support to neurons and help maintain their shape and size. They are composed of three subunits - NFL (light), NFM (medium), and NFH (heavy).

2. Neuronal Cytoskeletal Proteins: These include tubulins, actins, and spectrins that provide structural support to the neuronal cytoskeleton and help maintain its integrity.

3. Neurotransmitter Receptors: These are specialized proteins located on the postsynaptic membrane of neurons that bind neurotransmitters released by presynaptic neurons, triggering a response in the target cell.

4. Ion Channels: These are transmembrane proteins that regulate the flow of ions across the neuronal membrane and play a crucial role in generating and transmitting electrical signals in neurons.

5. Signaling Proteins: These include enzymes, receptors, and adaptor proteins that mediate intracellular signaling pathways involved in neuronal development, differentiation, survival, and death.

6. Adhesion Proteins: These are cell surface proteins that mediate cell-cell and cell-matrix interactions, playing a crucial role in the formation and maintenance of neural circuits.

7. Extracellular Matrix Proteins: These include proteoglycans, laminins, and collagens that provide structural support to nerve tissue and regulate neuronal migration, differentiation, and survival.

"Rana ridibunda" is the scientific name for the European green frog or marsh frog. It's a species of true frog that is native to parts of Europe and Asia. These frogs are typically green in color, but they can also be brown or gray. They have smooth skin and long, powerful legs that they use to jump long distances. They are semiaquatic animals, living near bodies of water such as ponds, lakes, and rivers.

It is worth noting that the common name for this species may vary based on the region and the specific population of frogs being referred to. In some areas, they may be commonly called "green frogs" or "marsh frogs," while in other regions, these names may refer to different species entirely.

Autoreceptors are a type of receptor found on the surface of neurons or other cells that are activated by neurotransmitters (chemical messengers) released by the same cell that is expressing the autoreceptor. In other words, they are receptors that a neuron has for its own neurotransmitter.

Autoreceptors play an important role in regulating the release of neurotransmitters from the presynaptic terminal (the end of the neuron that releases the neurotransmitter). When a neurotransmitter binds to its autoreceptor, it can inhibit or excite the further release of that same neurotransmitter. This negative feedback mechanism helps maintain a balance in the concentration of neurotransmitters in the synaptic cleft (the space between two neurons where neurotransmission occurs).

Examples of autoreceptors include dopamine D2 receptors on dopaminergic neurons, serotonin 5-HT1A receptors on serotonergic neurons, and acetylcholine M2 receptors on cholinergic neurons. Dysregulation of autoreceptor function has been implicated in various neurological and psychiatric disorders.

Excitatory amino acids (EAAs) are a type of neurotransmitter, which are chemical messengers that transmit signals in the brain and nervous system. The most important excitatory amino acids in the central nervous system are glutamate and aspartate. These neurotransmitters play crucial roles in various physiological functions such as learning, memory, and synaptic plasticity. However, excessive or prolonged activation of EAA receptors can lead to neuronal damage or death, which is thought to contribute to several neurological disorders, including stroke, epilepsy, and neurodegenerative diseases.

Benzocycloheptenes are organic compounds that contain a benzene fused to a seven-membered carbocycle. In other words, it is a chemical structure consisting of a benzene ring (a cyclic compound made up of six carbon atoms joined by alternating double bonds) attached to a seven-membered saturated or unsaturated ring.

These compounds are found in various natural and synthetic substances and can have a range of biological activities. Some benzocycloheptenes have been studied for their potential medicinal properties, such as anti-inflammatory, antiviral, and anticancer effects. However, more research is needed to fully understand the therapeutic potential and safety of these compounds.

In the context of medical and biological sciences, a "binding site" refers to a specific location on a protein, molecule, or cell where another molecule can attach or bind. This binding interaction can lead to various functional changes in the original protein or molecule. The other molecule that binds to the binding site is often referred to as a ligand, which can be a small molecule, ion, or even another protein.

The binding between a ligand and its target binding site can be specific and selective, meaning that only certain ligands can bind to particular binding sites with high affinity. This specificity plays a crucial role in various biological processes, such as signal transduction, enzyme catalysis, or drug action.

In the case of drug development, understanding the location and properties of binding sites on target proteins is essential for designing drugs that can selectively bind to these sites and modulate protein function. This knowledge can help create more effective and safer therapeutic options for various diseases.

The preoptic area (POA) is a region within the anterior hypothalamus of the brain. It is named for its location near the optic chiasm, where the optic nerves cross. The preoptic area is involved in various functions, including body temperature regulation, sexual behavior, and sleep-wake regulation.

The preoptic area contains several groups of neurons that are sensitive to changes in temperature and are responsible for generating heat through shivering or non-shivering thermogenesis. It also contains neurons that release inhibitory neurotransmitters such as GABA and galanin, which help regulate arousal and sleep.

Additionally, the preoptic area has been implicated in the regulation of sexual behavior, particularly in males. Certain populations of neurons within the preoptic area are involved in the expression of male sexual behavior, such as mounting and intromission.

Overall, the preoptic area is a critical region for the regulation of various physiological and behavioral functions, making it an important area of study in neuroscience research.

The prefrontal cortex is the anterior (frontal) part of the frontal lobe in the brain, involved in higher-order cognitive processes such as planning complex cognitive behavior, personality expression, decision making, and moderating social behavior. It also plays a significant role in working memory and executive functions. The prefrontal cortex is divided into several subregions, each associated with specific cognitive and emotional functions. Damage to the prefrontal cortex can result in various impairments, including difficulties with planning, decision making, and social behavior regulation.

The brainstem is the lower part of the brain that connects to the spinal cord. It consists of the midbrain, pons, and medulla oblongata. The brainstem controls many vital functions such as heart rate, breathing, and blood pressure. It also serves as a relay center for sensory and motor information between the cerebral cortex and the rest of the body. Additionally, several cranial nerves originate from the brainstem, including those that control eye movements, facial movements, and hearing.

G protein-coupled inwardly-rectifying potassium channels (GIRK channels) are a type of potassium channel that are activated by G proteins, which are molecules that help transmit signals within cells. These channels are characterized by their ability to allow potassium ions to flow into the cell more easily than they allow potassium ions to flow out of the cell, hence the term "inwardly-rectifying."

GIRK channels play a role in regulating various physiological processes, including neurotransmission, heart rate, and insulin secretion. They are activated by several different G proteins, including those that are activated by certain neurotransmitters and hormones. When these G proteins bind to the channel, they cause it to open, allowing potassium ions to flow into the cell. This can have various effects on the cell, depending on the type of cell and the specific signals being transmitted.

GIRK channels are composed of four subunits, each of which contains a pore through which potassium ions can pass. These subunits can be made up of different types of proteins, and the specific combination of subunits in a channel can affect its properties and regulation. Mutations in genes that encode GIRK channel subunits have been linked to various diseases, including certain forms of epilepsy and cardiac arrhythmias.

Flurothyl, also known as Nelson's fluid or induction agent, is a chemical compound with the formula C5H4F6O. It is a colorless liquid that is volatile and has a sweetish odor. In medicine, it was historically used as a rapid-acting inhalational general anesthetic, but its use has been largely discontinued due to safety concerns, including the risk of seizures and cardiac arrest. Flurothyl works by sensitizing the brain to carbon dioxide, leading to a loss of consciousness. It is still used in research settings to study seizure disorders and anesthetic mechanisms.

Pregnanes are a class of steroid hormones and steroids that contain a pregnane nucleus, which is a steroid core with a carbon skeleton consisting of 21 carbons. This structure includes four fused rings, labeled A through D, and is derived from cholesterol.

Pregnanes are important precursors for the synthesis of various steroid hormones in the body, including progesterone, which plays a crucial role in maintaining pregnancy and regulating the menstrual cycle. Other examples of pregnanes include cortisol, a stress hormone produced by the adrenal gland, and aldosterone, a hormone that helps regulate electrolyte balance and blood pressure.

It's worth noting that pregnanes can also refer to synthetic compounds that contain this steroid nucleus and are used in various medical and research contexts.

Semicarbazides are organic compounds that contain the functional group -NH-CO-NH-NH2. They are derivatives of hydrazine and carbamic acid, with the general structure (CH3)NHCSNH2. Semicarbazides are widely used in the synthesis of various chemical compounds, including heterocyclic compounds, pharmaceuticals, and agrochemicals.

In a medical context, semicarbazides themselves do not have any therapeutic use. However, they can be used in the preparation of certain drugs or drug intermediates. For example, semicarbazones, which are derivatives of semicarbazides, can be used to synthesize some antituberculosis drugs.

It is worth noting that semicarbazides and their derivatives have been found to have mutagenic and carcinogenic properties in some studies. Therefore, they should be handled with care in laboratory settings, and exposure should be minimized to reduce potential health risks.

Signal transduction is the process by which a cell converts an extracellular signal, such as a hormone or neurotransmitter, into an intracellular response. This involves a series of molecular events that transmit the signal from the cell surface to the interior of the cell, ultimately resulting in changes in gene expression, protein activity, or metabolism.

The process typically begins with the binding of the extracellular signal to a receptor located on the cell membrane. This binding event activates the receptor, which then triggers a cascade of intracellular signaling molecules, such as second messengers, protein kinases, and ion channels. These molecules amplify and propagate the signal, ultimately leading to the activation or inhibition of specific cellular responses.

Signal transduction pathways are highly regulated and can be modulated by various factors, including other signaling molecules, post-translational modifications, and feedback mechanisms. Dysregulation of these pathways has been implicated in a variety of diseases, including cancer, diabetes, and neurological disorders.

Amino acids are organic compounds that serve as the building blocks of proteins. They consist of a central carbon atom, also known as the alpha carbon, which is bonded to an amino group (-NH2), a carboxyl group (-COOH), a hydrogen atom (H), and a variable side chain (R group). The R group can be composed of various combinations of atoms such as hydrogen, oxygen, sulfur, nitrogen, and carbon, which determine the unique properties of each amino acid.

There are 20 standard amino acids that are encoded by the genetic code and incorporated into proteins during translation. These include:

1. Alanine (Ala)
2. Arginine (Arg)
3. Asparagine (Asn)
4. Aspartic acid (Asp)
5. Cysteine (Cys)
6. Glutamine (Gln)
7. Glutamic acid (Glu)
8. Glycine (Gly)
9. Histidine (His)
10. Isoleucine (Ile)
11. Leucine (Leu)
12. Lysine (Lys)
13. Methionine (Met)
14. Phenylalanine (Phe)
15. Proline (Pro)
16. Serine (Ser)
17. Threonine (Thr)
18. Tryptophan (Trp)
19. Tyrosine (Tyr)
20. Valine (Val)

Additionally, there are several non-standard or modified amino acids that can be incorporated into proteins through post-translational modifications, such as hydroxylation, methylation, and phosphorylation. These modifications expand the functional diversity of proteins and play crucial roles in various cellular processes.

Amino acids are essential for numerous biological functions, including protein synthesis, enzyme catalysis, neurotransmitter production, energy metabolism, and immune response regulation. Some amino acids can be synthesized by the human body (non-essential), while others must be obtained through dietary sources (essential).

Mossy fibers in the hippocampus are a type of axon that originates from granule cells located in the dentate gyrus, which is the first part of the hippocampus. These fibers have a distinctive appearance and earn their name from the numerous small branches or "spines" that cover their surface, giving them a bushy or "mossy" appearance.

Mossy fibers form excitatory synapses with pyramidal cells in the CA3 region of the hippocampus, which is involved in memory and spatial navigation. These synapses are unique because they have a high degree of plasticity, meaning that they can change their strength in response to experience or learning. This plasticity is thought to be important for the formation and storage of memories.

Mossy fibers also release neurotransmitters such as glutamate and contribute to the regulation of hippocampal excitability. Dysfunction in mossy fiber function has been implicated in several neurological disorders, including epilepsy and Alzheimer's disease.

Serotonin, also known as 5-hydroxytryptamine (5-HT), is a monoamine neurotransmitter that is found primarily in the gastrointestinal (GI) tract, blood platelets, and the central nervous system (CNS) of humans and other animals. It is produced by the conversion of the amino acid tryptophan to 5-hydroxytryptophan (5-HTP), and then to serotonin.

In the CNS, serotonin plays a role in regulating mood, appetite, sleep, memory, learning, and behavior, among other functions. It also acts as a vasoconstrictor, helping to regulate blood flow and blood pressure. In the GI tract, it is involved in peristalsis, the contraction and relaxation of muscles that moves food through the digestive system.

Serotonin is synthesized and stored in serotonergic neurons, which are nerve cells that use serotonin as their primary neurotransmitter. These neurons are found throughout the brain and spinal cord, and they communicate with other neurons by releasing serotonin into the synapse, the small gap between two neurons.

Abnormal levels of serotonin have been linked to a variety of disorders, including depression, anxiety, schizophrenia, and migraines. Medications that affect serotonin levels, such as selective serotonin reuptake inhibitors (SSRIs), are commonly used to treat these conditions.

Messenger RNA (mRNA) is a type of RNA (ribonucleic acid) that carries genetic information copied from DNA in the form of a series of three-base code "words," each of which specifies a particular amino acid. This information is used by the cell's machinery to construct proteins, a process known as translation. After being transcribed from DNA, mRNA travels out of the nucleus to the ribosomes in the cytoplasm where protein synthesis occurs. Once the protein has been synthesized, the mRNA may be degraded and recycled. Post-transcriptional modifications can also occur to mRNA, such as alternative splicing and addition of a 5' cap and a poly(A) tail, which can affect its stability, localization, and translation efficiency.

Status epilepticus is a serious and life-threatening medical condition characterized by an ongoing seizure activity or a series of seizures without full recovery of consciousness between them, lasting for 30 minutes or more. It is a neurological emergency that requires immediate medical attention to prevent potential complications such as brain damage, respiratory failure, or even death.

The condition can occur in people with a history of epilepsy or seizure disorders, as well as those without any prior history of seizures. The underlying causes of status epilepticus can vary and may include infection, trauma, stroke, metabolic imbalances, toxins, or other medical conditions that affect the brain's normal functioning. Prompt diagnosis and treatment are crucial to prevent long-term neurological damage and improve outcomes in patients with this condition.

Furosemide is a loop diuretic medication that is primarily used to treat edema (fluid retention) associated with various medical conditions such as heart failure, liver cirrhosis, and kidney disease. It works by inhibiting the sodium-potassium-chloride cotransporter in the ascending loop of Henle in the kidneys, thereby promoting the excretion of water, sodium, and chloride ions. This increased urine output helps reduce fluid accumulation in the body and lower blood pressure.

Furosemide is also known by its brand names Lasix and Frusid. It can be administered orally or intravenously, depending on the patient's condition and the desired rate of diuresis. Common side effects include dehydration, electrolyte imbalances, hearing loss (in high doses), and increased blood sugar levels.

It is essential to monitor kidney function, electrolyte levels, and fluid balance while using furosemide to minimize potential adverse effects and ensure appropriate treatment.

Neuroglia, also known as glial cells or simply glia, are non-neuronal cells that provide support and protection for neurons in the nervous system. They maintain homeostasis, form myelin sheaths around nerve fibers, and provide structural support. They also play a role in the immune response of the central nervous system. Some types of neuroglia include astrocytes, oligodendrocytes, microglia, and ependymal cells.

"Inbred strains of rats" are genetically identical rodents that have been produced through many generations of brother-sister mating. This results in a high degree of homozygosity, where the genes at any particular locus in the genome are identical in all members of the strain.

Inbred strains of rats are widely used in biomedical research because they provide a consistent and reproducible genetic background for studying various biological phenomena, including the effects of drugs, environmental factors, and genetic mutations on health and disease. Additionally, inbred strains can be used to create genetically modified models of human diseases by introducing specific mutations into their genomes.

Some commonly used inbred strains of rats include the Wistar Kyoto (WKY), Sprague-Dawley (SD), and Fischer 344 (F344) rat strains. Each strain has its own unique genetic characteristics, making them suitable for different types of research.

Posterior horn cells refer to the neurons located in the posterior (or dorsal) horn of the gray matter in the spinal cord. These cells are primarily responsible for receiving and processing sensory information from peripheral nerves, particularly related to touch, pressure, pain, and temperature. The axons of these cells form the ascending tracts that carry this information to the brain for further processing. It's worth noting that damage to posterior horn cells can result in various sensory deficits, such as those seen in certain neurological conditions.

A cell line is a culture of cells that are grown in a laboratory for use in research. These cells are usually taken from a single cell or group of cells, and they are able to divide and grow continuously in the lab. Cell lines can come from many different sources, including animals, plants, and humans. They are often used in scientific research to study cellular processes, disease mechanisms, and to test new drugs or treatments. Some common types of human cell lines include HeLa cells (which come from a cancer patient named Henrietta Lacks), HEK293 cells (which come from embryonic kidney cells), and HUVEC cells (which come from umbilical vein endothelial cells). It is important to note that cell lines are not the same as primary cells, which are cells that are taken directly from a living organism and have not been grown in the lab.

Midazolam is a medication from the class of drugs known as benzodiazepines. It works by enhancing the effect of a neurotransmitter called gamma-aminobutyric acid (GABA), which has a calming effect on the brain and nervous system. Midazolam is often used for its sedative, hypnotic, anxiolytic, anticonvulsant, and muscle relaxant properties.

Medically, midazolam is used for various purposes, including:

1. Preoperative medication (sedation before surgery)
2. Procedural sedation (for minor surgical or diagnostic procedures)
3. Treatment of seizures (status epilepticus)
4. Sedation in critically ill patients
5. As an adjunct to anesthesia during surgeries
6. Treatment of alcohol withdrawal symptoms
7. To induce amnesia for certain medical or dental procedures

Midazolam is available in various forms, such as tablets, intravenous (IV) solutions, and intranasal sprays. It has a rapid onset of action and a short duration, making it suitable for brief, intermittent procedures. However, midazolam can cause side effects like drowsiness, confusion, respiratory depression, and memory impairment. Therefore, its use should be carefully monitored by healthcare professionals.

Vesicular Glutamate Transport Protein 2 (VGLUT2) is a type of protein responsible for transporting the neurotransmitter glutamate from the cytoplasm into synaptic vesicles within neurons. This protein is specifically located in the presynaptic terminals and plays a crucial role in the packaging, storage, and release of glutamate, which is the primary excitatory neurotransmitter in the central nervous system.

Glutamate is involved in various physiological functions, such as learning, memory, and synaptic plasticity. Dysfunction of VGLUT2 has been implicated in several neurological disorders, including epilepsy, chronic pain, and neurodevelopmental conditions like autism and schizophrenia.

Chlormethiazole is a sedative and anticonvulsant drug, which is primarily used in the treatment of symptoms associated with alcohol withdrawal, such as agitation, tremors, and seizures. It belongs to the class of drugs known as thiazoles and exerts its therapeutic effects by acting on the central nervous system (CNS).

The chemical formula for Chlormethiazole is C4H5ClN2S. It has a white to off-white crystalline appearance and is soluble in water, alcohol, and chloroform. In addition to its use as a sedative and anticonvulsant, Chlormethiazole has also been used in the treatment of anxiety, insomnia, and various other neurological disorders.

It's important to note that Chlormethiazole can be habit-forming and should only be used under the close supervision of a healthcare professional. Additionally, it may interact with other medications and medical conditions, so it's essential to discuss any potential risks and benefits with a doctor before using this medication.

The periaqueductal gray (PAG) is a region in the midbrain, surrounding the cerebral aqueduct (a narrow channel connecting the third and fourth ventricles within the brain). It is a column of neurons that plays a crucial role in the modulation of pain perception, cardiorespiratory regulation, and defensive behaviors. The PAG is involved in the descending pain modulatory system, where it receives input from various emotional and cognitive areas and sends output to the rostral ventromedial medulla, which in turn regulates nociceptive processing at the spinal cord level. Additionally, the PAG is implicated in the regulation of fear, anxiety, and stress responses, as well as sexual behavior and reward processing.

The pons is a part of the brainstem that lies between the medulla oblongata and the midbrain. Its name comes from the Latin word "ponte" which means "bridge," as it serves to connect these two regions of the brainstem. The pons contains several important structures, including nerve fibers that carry signals between the cerebellum (the part of the brain responsible for coordinating muscle movements) and the rest of the nervous system. It also contains nuclei (clusters of neurons) that help regulate various functions such as respiration, sleep, and facial movements.

Electroencephalography (EEG) is a medical procedure that records electrical activity in the brain. It uses small, metal discs called electrodes, which are attached to the scalp with paste or a specialized cap. These electrodes detect tiny electrical charges that result from the activity of brain cells, and the EEG machine then amplifies and records these signals.

EEG is used to diagnose various conditions related to the brain, such as seizures, sleep disorders, head injuries, infections, and degenerative diseases like Alzheimer's or Parkinson's. It can also be used during surgery to monitor brain activity and ensure that surgical procedures do not interfere with vital functions.

EEG is a safe and non-invasive procedure that typically takes about 30 minutes to an hour to complete, although longer recordings may be necessary in some cases. Patients are usually asked to relax and remain still during the test, as movement can affect the quality of the recording.

Animal disease models are specialized animals, typically rodents such as mice or rats, that have been genetically engineered or exposed to certain conditions to develop symptoms and physiological changes similar to those seen in human diseases. These models are used in medical research to study the pathophysiology of diseases, identify potential therapeutic targets, test drug efficacy and safety, and understand disease mechanisms.

The genetic modifications can include knockout or knock-in mutations, transgenic expression of specific genes, or RNA interference techniques. The animals may also be exposed to environmental factors such as chemicals, radiation, or infectious agents to induce the disease state.

Examples of animal disease models include:

1. Mouse models of cancer: Genetically engineered mice that develop various types of tumors, allowing researchers to study cancer initiation, progression, and metastasis.
2. Alzheimer's disease models: Transgenic mice expressing mutant human genes associated with Alzheimer's disease, which exhibit amyloid plaque formation and cognitive decline.
3. Diabetes models: Obese and diabetic mouse strains like the NOD (non-obese diabetic) or db/db mice, used to study the development of type 1 and type 2 diabetes, respectively.
4. Cardiovascular disease models: Atherosclerosis-prone mice, such as ApoE-deficient or LDLR-deficient mice, that develop plaque buildup in their arteries when fed a high-fat diet.
5. Inflammatory bowel disease models: Mice with genetic mutations affecting intestinal barrier function and immune response, such as IL-10 knockout or SAMP1/YitFc mice, which develop colitis.

Animal disease models are essential tools in preclinical research, but it is important to recognize their limitations. Differences between species can affect the translatability of results from animal studies to human patients. Therefore, researchers must carefully consider the choice of model and interpret findings cautiously when applying them to human diseases.

I must clarify that the term "Guinea Pigs" is not typically used in medical definitions. However, in colloquial or informal language, it may refer to people who are used as the first to try out a new medical treatment or drug. This is known as being a "test subject" or "in a clinical trial."

In the field of scientific research, particularly in studies involving animals, guinea pigs are small rodents that are often used as experimental subjects due to their size, cost-effectiveness, and ease of handling. They are not actually pigs from Guinea, despite their name's origins being unclear. However, they do not exactly fit the description of being used in human medical experiments.

The Paraventricular Hypothalamic Nucleus (PVN) is a nucleus in the hypothalamus, which is a part of the brain that regulates various autonomic functions and homeostatic processes. The PVN plays a crucial role in the regulation of neuroendocrine and autonomic responses to stress, as well as the control of fluid and electrolyte balance, cardiovascular function, and energy balance.

The PVN is composed of several subdivisions, including the magnocellular and parvocellular divisions. The magnocellular neurons produce and release two neuropeptides, oxytocin and vasopressin (also known as antidiuretic hormone), into the circulation via the posterior pituitary gland. These neuropeptides play important roles in social behavior, reproduction, and fluid balance.

The parvocellular neurons, on the other hand, project to various brain regions and the pituitary gland, where they release neurotransmitters and neuropeptides that regulate the hypothalamic-pituitary-adrenal (HPA) axis, which is responsible for the stress response. The PVN also contains neurons that produce corticotropin-releasing hormone (CRH), a key neurotransmitter involved in the regulation of the HPA axis and the stress response.

Overall, the Paraventricular Hypothalamic Nucleus is an essential component of the brain's regulatory systems that help maintain homeostasis and respond to stressors. Dysfunction of the PVN has been implicated in various pathological conditions, including hypertension, obesity, and mood disorders.

A cannabinoid receptor, CB1, is a G protein-coupled receptor that is primarily found in the brain and central nervous system. It is one of the two main types of cannabinoid receptors, the other being CB2, and is activated by the endocannabinoid anandamide and the phytocannabinoid Delta-9-tetrahydrocannabinol (THC), which is the primary psychoactive component of cannabis. The activation of CB1 receptors is responsible for many of the psychological effects of cannabis, including euphoria, altered sensory perception, and memory impairment. CB1 receptors are also found in peripheral tissues, such as the adipose tissue, liver, and muscles, where they play a role in regulating energy metabolism, appetite, and pain perception.

Synaptic vesicles are tiny membrane-enclosed sacs within the presynaptic terminal of a neuron, containing neurotransmitters. They play a crucial role in the process of neurotransmission, which is the transmission of signals between nerve cells. When an action potential reaches the presynaptic terminal, it triggers the fusion of synaptic vesicles with the plasma membrane, releasing neurotransmitters into the synaptic cleft. These neurotransmitters can then bind to receptors on the postsynaptic neuron and trigger a response. After release, synaptic vesicles are recycled through endocytosis, allowing them to be refilled with neurotransmitters and used again in subsequent rounds of neurotransmission.

AMPA (α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid) receptors are ligand-gated ion channels found in the postsynaptic membrane of excitatory synapses in the central nervous system. They play a crucial role in fast synaptic transmission and are responsible for the majority of the fast excitatory postsynaptic currents (EPSCs) in the brain.

AMPA receptors are tetramers composed of four subunits, which can be any combination of GluA1-4 (previously known as GluR1-4). When the neurotransmitter glutamate binds to the AMPA receptor, it causes a conformational change that opens the ion channel, allowing the flow of sodium and potassium ions. This leads to depolarization of the postsynaptic membrane and the generation of an action potential if the depolarization is sufficient.

In addition to their role in synaptic transmission, AMPA receptors are also involved in synaptic plasticity, which is the ability of synapses to strengthen or weaken over time in response to changes in activity. This process is thought to underlie learning and memory.

Zinc is an essential mineral that is vital for the functioning of over 300 enzymes and involved in various biological processes in the human body, including protein synthesis, DNA synthesis, immune function, wound healing, and cell division. It is a component of many proteins and participates in the maintenance of structural integrity and functionality of proteins. Zinc also plays a crucial role in maintaining the sense of taste and smell.

The recommended daily intake of zinc varies depending on age, sex, and life stage. Good dietary sources of zinc include red meat, poultry, seafood, beans, nuts, dairy products, and fortified cereals. Zinc deficiency can lead to various health problems, including impaired immune function, growth retardation, and developmental delays in children. On the other hand, excessive intake of zinc can also have adverse effects on health, such as nausea, vomiting, and impaired immune function.

Temporal lobe epilepsy (TLE) is a type of focal (localized) epilepsy that originates from the temporal lobes of the brain. The temporal lobes are located on each side of the brain and are involved in processing sensory information, memory, and emotion. TLE is characterized by recurrent seizures that originate from one or both temporal lobes.

The symptoms of TLE can vary depending on the specific area of the temporal lobe that is affected. However, common symptoms include auras (sensory or emotional experiences that occur before a seizure), strange smells or tastes, lip-smacking or chewing movements, and memory problems. Some people with TLE may also experience automatisms (involuntary movements such as picking at clothes or fumbling with objects) during their seizures.

Treatment for TLE typically involves medication to control seizures, although surgery may be recommended in some cases. The goal of treatment is to reduce the frequency and severity of seizures and improve quality of life.

Aminooxyacetic acid (AOAA) is a chemical compound that is an irreversible inhibitor of pyridoxal phosphate-dependent enzymes. Pyridoxal phosphate is a cofactor involved in several important biochemical reactions, including the transamination of amino acids. By inhibiting these enzymes, AOAA can alter the normal metabolism of amino acids and other related compounds in the body.

AOAA has been studied for its potential therapeutic uses, such as in the treatment of neurodegenerative disorders like Huntington's disease and epilepsy. However, more research is needed to fully understand its mechanisms of action and potential side effects before it can be used as a routine therapy.

It is important to note that AOAA is not a naturally occurring substance in the human body and should only be used under medical supervision.

Autoradiography is a medical imaging technique used to visualize and localize the distribution of radioactively labeled compounds within tissues or organisms. In this process, the subject is first exposed to a radioactive tracer that binds to specific molecules or structures of interest. The tissue is then placed in close contact with a radiation-sensitive film or detector, such as X-ray film or an imaging plate.

As the radioactive atoms decay, they emit particles (such as beta particles) that interact with the film or detector, causing chemical changes and leaving behind a visible image of the distribution of the labeled compound. The resulting autoradiogram provides information about the location, quantity, and sometimes even the identity of the molecules or structures that have taken up the radioactive tracer.

Autoradiography has been widely used in various fields of biology and medical research, including pharmacology, neuroscience, genetics, and cell biology, to study processes such as protein-DNA interactions, gene expression, drug metabolism, and neuronal connectivity. However, due to the use of radioactive materials and potential hazards associated with them, this technique has been gradually replaced by non-radioactive alternatives like fluorescence in situ hybridization (FISH) or immunofluorescence techniques.

Astrocytes are a type of star-shaped glial cell found in the central nervous system (CNS), including the brain and spinal cord. They play crucial roles in supporting and maintaining the health and function of neurons, which are the primary cells responsible for transmitting information in the CNS.

Some of the essential functions of astrocytes include:

1. Supporting neuronal structure and function: Astrocytes provide structural support to neurons by ensheathing them and maintaining the integrity of the blood-brain barrier, which helps regulate the entry and exit of substances into the CNS.
2. Regulating neurotransmitter levels: Astrocytes help control the levels of neurotransmitters in the synaptic cleft (the space between two neurons) by taking up excess neurotransmitters and breaking them down, thus preventing excessive or prolonged activation of neuronal receptors.
3. Providing nutrients to neurons: Astrocytes help supply energy metabolites, such as lactate, to neurons, which are essential for their survival and function.
4. Modulating synaptic activity: Through the release of various signaling molecules, astrocytes can modulate synaptic strength and plasticity, contributing to learning and memory processes.
5. Participating in immune responses: Astrocytes can respond to CNS injuries or infections by releasing pro-inflammatory cytokines and chemokines, which help recruit immune cells to the site of injury or infection.
6. Promoting neuronal survival and repair: In response to injury or disease, astrocytes can become reactive and undergo morphological changes that aid in forming a glial scar, which helps contain damage and promote tissue repair. Additionally, they release growth factors and other molecules that support the survival and regeneration of injured neurons.

Dysfunction or damage to astrocytes has been implicated in several neurological disorders, including Alzheimer's disease, Parkinson's disease, amyotrophic lateral sclerosis (ALS), and multiple sclerosis (MS).

Ataxia is a medical term that refers to a group of disorders affecting coordination, balance, and speech. It is characterized by a lack of muscle control during voluntary movements, causing unsteady or awkward movements, and often accompanied by tremors. Ataxia can affect various parts of the body, such as the limbs, trunk, eyes, and speech muscles. The condition can be congenital or acquired, and it can result from damage to the cerebellum, spinal cord, or sensory nerves. There are several types of ataxia, including hereditary ataxias, degenerative ataxias, cerebellar ataxias, and acquired ataxias, each with its own specific causes, symptoms, and prognosis. Treatment for ataxia typically focuses on managing symptoms and improving quality of life, as there is no cure for most forms of the disorder.

Glycine is an important amino acid that plays a role in various physiological processes in the human body. Plasma membrane transport proteins are specialized molecules found in the cell membrane that facilitate the movement of specific molecules, such as ions or neurotransmitters like glycine, into and out of cells.

Glycine plasma membrane transport proteins specifically regulate the transcellular movement of glycine across the plasma membrane. These transport proteins belong to a family of solute carriers (SLC) known as the glycine transporters (GlyTs). There are two main isoforms, GlyT1 and GlyT2, which differ in their distribution, function, and regulation.

GlyT1 is widely expressed throughout the central nervous system and plays a crucial role in terminating glycinergic neurotransmission by rapidly removing glycine from the synaptic cleft. This isoform is also involved in regulating extracellular glycine concentrations in various tissues, including the brainstem, spinal cord, and retina.

GlyT2, on the other hand, is primarily localized to presynaptic terminals of glycinergic neurons, where it functions as a vesicular glycine transporter (VGT). Its primary role is to transport glycine into synaptic vesicles for subsequent release into the synapse during neurotransmission.

Dysfunction in glycine plasma membrane transport proteins has been implicated in several neurological disorders, such as hyperekplexia (startle disease) and certain forms of epilepsy. In these cases, impaired glycinergic neurotransmission can lead to motor and cognitive deficits, highlighting the importance of proper glycine transport protein function for normal physiological processes.

Triazolam is a short-acting benzodiazepine drug, which is primarily used for the treatment of insomnia. It works by increasing the activity of gamma-aminobutyric acid (GABA), a neurotransmitter that inhibits the activity of neurons in the brain, thereby producing a calming effect. Triazolam has a rapid onset of action and its effects typically last for 1-2 hours, making it useful for inducing sleep. However, due to its short duration of action and potential for dependence and tolerance, triazolam is generally recommended for short-term use only.

Like all benzodiazepines, triazolam carries a risk of serious side effects, including respiratory depression, physical dependence, and cognitive impairment. It should be used with caution and under the close supervision of a healthcare provider.

Maze learning is not a medical term per se, but it is a concept that is often used in the field of neuroscience and psychology. It refers to the process by which an animal or human learns to navigate through a complex environment, such as a maze, in order to find its way to a goal or target.

Maze learning involves several cognitive processes, including spatial memory, learning, and problem-solving. As animals or humans navigate through the maze, they encode information about the location of the goal and the various landmarks within the environment. This information is then used to form a cognitive map that allows them to navigate more efficiently in subsequent trials.

Maze learning has been widely used as a tool for studying learning and memory processes in both animals and humans. For example, researchers may use maze learning tasks to investigate the effects of brain damage or disease on cognitive function, or to evaluate the efficacy of various drugs or interventions for improving cognitive performance.

Dizocilpine maleate is a chemical compound that is commonly known as an N-methyl-D-aspartate (NMDA) receptor antagonist. It is primarily used in research settings to study the role of NMDA receptors in various physiological processes, including learning and memory.

The chemical formula for dizocilpine maleate is C16H24Cl2N2O4·C4H4O4. The compound is a white crystalline powder that is soluble in water and alcohol. It has potent psychoactive effects and has been investigated as a potential treatment for various neurological and psychiatric disorders, although it has not been approved for clinical use.

Dizocilpine maleate works by blocking the action of glutamate, a neurotransmitter that plays a key role in learning and memory, at NMDA receptors in the brain. By doing so, it can alter various cognitive processes and has been shown to have anticonvulsant, analgesic, and neuroprotective effects in animal studies. However, its use is associated with significant side effects, including hallucinations, delusions, and memory impairment, which have limited its development as a therapeutic agent.

Acetylcholine is a neurotransmitter, a type of chemical messenger that transmits signals across a chemical synapse from one neuron (nerve cell) to another "target" neuron, muscle cell, or gland cell. It is involved in both peripheral and central nervous system functions.

In the peripheral nervous system, acetylcholine acts as a neurotransmitter at the neuromuscular junction, where it transmits signals from motor neurons to activate muscles. Acetylcholine also acts as a neurotransmitter in the autonomic nervous system, where it is involved in both the sympathetic and parasympathetic systems.

In the central nervous system, acetylcholine plays a role in learning, memory, attention, and arousal. Disruptions in cholinergic neurotransmission have been implicated in several neurological disorders, including Alzheimer's disease, Parkinson's disease, and myasthenia gravis.

Acetylcholine is synthesized from choline and acetyl-CoA by the enzyme choline acetyltransferase and is stored in vesicles at the presynaptic terminal of the neuron. When a nerve impulse arrives, the vesicles fuse with the presynaptic membrane, releasing acetylcholine into the synapse. The acetylcholine then binds to receptors on the postsynaptic membrane, triggering a response in the target cell. Acetylcholine is subsequently degraded by the enzyme acetylcholinesterase, which terminates its action and allows for signal transduction to be repeated.

Inhalational anesthetics are a type of general anesthetic that is administered through the person's respiratory system. They are typically delivered in the form of vapor or gas, which is inhaled through a mask or breathing tube. Commonly used inhalational anesthetics include sevoflurane, desflurane, isoflurane, and nitrous oxide. These agents work by depressing the central nervous system, leading to a loss of consciousness and an inability to feel pain. They are often used for their rapid onset and offset of action, making them useful for both induction and maintenance of anesthesia during surgical procedures.

The neostriatum is a component of the basal ganglia, a group of subcortical nuclei in the brain that are involved in motor control, procedural learning, and other cognitive functions. It is composed primarily of two types of neurons: medium spiny neurons and aspiny interneurons. The neostriatum receives input from various regions of the cerebral cortex and projects to other parts of the basal ganglia, forming an important part of the cortico-basal ganglia-thalamo-cortical loop.

In medical terminology, the neostriatum is often used interchangeably with the term "striatum," although some sources reserve the term "neostriatum" for the caudate nucleus and putamen specifically, while using "striatum" to refer to the entire structure including the ventral striatum (also known as the nucleus accumbens).

Damage to the neostriatum has been implicated in various neurological conditions, such as Huntington's disease and Parkinson's disease.

Desoxycorticosterone (also known as desoxycorticosterone or DCZ) is a natural steroid hormone produced by the adrenal gland. It is a weak glucocorticoid and mineralocorticoid, which means it has some effects on blood sugar metabolism and regulates electrolyte and fluid balance in the body.

Desoxycorticosterone is used as a medication in the form of its synthetic acetate ester, desoxycorticosterone acetate (DCA), to treat Addison's disease, a condition in which the adrenal glands do not produce enough steroid hormones. DCA helps to replace the missing mineralocorticoid activity and prevent the symptoms of low blood pressure, dehydration, and electrolyte imbalances associated with Addison's disease.

It is important to note that desoxycorticosterone should only be used under the supervision of a healthcare provider, as it can have significant side effects if not properly monitored.

The somatosensory cortex is a part of the brain located in the postcentral gyrus of the parietal lobe, which is responsible for processing sensory information from the body. It receives and integrates tactile, proprioceptive, and thermoception inputs from the skin, muscles, joints, and internal organs, allowing us to perceive and interpret touch, pressure, pain, temperature, vibration, position, and movement of our body parts. The somatosensory cortex is organized in a map-like manner, known as the sensory homunculus, where each body part is represented according to its relative sensitivity and density of innervation. This organization allows for precise localization and discrimination of tactile stimuli across the body surface.

Drug synergism is a pharmacological concept that refers to the interaction between two or more drugs, where the combined effect of the drugs is greater than the sum of their individual effects. This means that when these drugs are administered together, they produce an enhanced therapeutic response compared to when they are given separately.

Drug synergism can occur through various mechanisms, such as:

1. Pharmacodynamic synergism - When two or more drugs interact with the same target site in the body and enhance each other's effects.
2. Pharmacokinetic synergism - When one drug affects the metabolism, absorption, distribution, or excretion of another drug, leading to an increased concentration of the second drug in the body and enhanced therapeutic effect.
3. Physiochemical synergism - When two drugs interact physically, such as when one drug enhances the solubility or permeability of another drug, leading to improved absorption and bioavailability.

It is important to note that while drug synergism can result in enhanced therapeutic effects, it can also increase the risk of adverse reactions and toxicity. Therefore, healthcare providers must carefully consider the potential benefits and risks when prescribing combinations of drugs with known or potential synergistic effects.

Membrane transport modulators refer to a class of molecules that affect the movement of ions, nutrients, and other substances across cell membranes by interacting with membrane transport proteins. These proteins, also known as transporters or carriers, facilitate the passive or active transport of molecules in and out of cells.

Membrane transport modulators can either inhibit or enhance the activity of these transport proteins. They play a crucial role in pharmacology and therapeutics, as they can influence drug absorption, distribution, metabolism, and excretion (ADME). Examples of membrane transport modulators include ion channel blockers, inhibitors of efflux pumps like P-glycoprotein, and enhancers of nutrient uptake transporters.

It is important to note that the term "membrane transport modulator" can encompass a wide range of molecules with varying mechanisms and specificities, so further characterization is often necessary for a more precise understanding of their effects.

Isoflurane is a volatile halogenated ether used for induction and maintenance of general anesthesia. It is a colorless liquid with a pungent, sweet odor. Isoflurane is an agonist at the gamma-aminobutyric acid type A (GABAA) receptor and inhibits excitatory neurotransmission in the brain, leading to unconsciousness and immobility. It has a rapid onset and offset of action due to its low blood solubility, allowing for quick adjustments in anesthetic depth during surgery. Isoflurane is also known for its bronchodilator effects, making it useful in patients with reactive airway disease. However, it can cause dose-dependent decreases in heart rate and blood pressure, so careful hemodynamic monitoring is required during its use.

Intraventricular injections are a type of medical procedure where medication is administered directly into the cerebral ventricles of the brain. The cerebral ventricles are fluid-filled spaces within the brain that contain cerebrospinal fluid (CSF). This procedure is typically used to deliver drugs that target conditions affecting the central nervous system, such as infections or tumors.

Intraventricular injections are usually performed using a thin, hollow needle that is inserted through a small hole drilled into the skull. The medication is then injected directly into the ventricles, allowing it to circulate throughout the CSF and reach the brain tissue more efficiently than other routes of administration.

This type of injection is typically reserved for situations where other methods of drug delivery are not effective or feasible. It carries a higher risk of complications, such as bleeding, infection, or damage to surrounding tissues, compared to other routes of administration. Therefore, it is usually performed by trained medical professionals in a controlled clinical setting.

The cerebellar cortex is the outer layer of the cerebellum, which is a part of the brain that plays a crucial role in motor control, balance, and coordination of muscle movements. The cerebellar cortex contains numerous small neurons called granule cells, as well as other types of neurons such as Purkinje cells, basket cells, and stellate cells. These neurons are organized into distinct layers and microcircuits that process information related to motor function and possibly other functions such as cognition and emotion. The cerebellar cortex receives input from various sources, including the spinal cord, vestibular system, and cerebral cortex, and sends output to brainstem nuclei and thalamus, which in turn project to the cerebral cortex. Damage to the cerebellar cortex can result in ataxia, dysmetria, dysdiadochokinesia, and other motor symptoms.

Reaction time, in the context of medicine and physiology, refers to the time period between the presentation of a stimulus and the subsequent initiation of a response. This complex process involves the central nervous system, particularly the brain, which perceives the stimulus, processes it, and then sends signals to the appropriate muscles or glands to react.

There are different types of reaction times, including simple reaction time (responding to a single, expected stimulus) and choice reaction time (choosing an appropriate response from multiple possibilities). These measures can be used in clinical settings to assess various aspects of neurological function, such as cognitive processing speed, motor control, and alertness.

However, it is important to note that reaction times can be influenced by several factors, including age, fatigue, attention, and the use of certain medications or substances.

A Structure-Activity Relationship (SAR) in the context of medicinal chemistry and pharmacology refers to the relationship between the chemical structure of a drug or molecule and its biological activity or effect on a target protein, cell, or organism. SAR studies aim to identify patterns and correlations between structural features of a compound and its ability to interact with a specific biological target, leading to a desired therapeutic response or undesired side effects.

By analyzing the SAR, researchers can optimize the chemical structure of lead compounds to enhance their potency, selectivity, safety, and pharmacokinetic properties, ultimately guiding the design and development of novel drugs with improved efficacy and reduced toxicity.

Substance Withdrawal Syndrome is a medically recognized condition that occurs when an individual who has been using certain substances, such as alcohol, opioids, or benzodiazepines, suddenly stops or significantly reduces their use. The syndrome is characterized by a specific set of symptoms that can be physical, cognitive, and emotional in nature. These symptoms can vary widely depending on the substance that was being used, the length and intensity of the addiction, and individual factors such as genetics, age, and overall health.

The Diagnostic and Statistical Manual of Mental Disorders, Fifth Edition (DSM-5), published by the American Psychiatric Association, provides the following diagnostic criteria for Substance Withdrawal Syndrome:

A. The development of objective evidence of withdrawal, referring to the specific physiological changes associated with the particular substance, or subjective evidence of withdrawal, characterized by the individual's report of symptoms that correspond to the typical withdrawal syndrome for the substance.

B. The symptoms cause clinically significant distress or impairment in social, occupational, or other important areas of functioning.

C. The symptoms are not better explained by co-occurring mental, medical, or other substance use disorders.

D. The withdrawal syndrome is not attributable to another medical condition and is not better accounted for by another mental disorder.

The DSM-5 also specifies that the diagnosis of Substance Withdrawal Syndrome should be substance-specific, meaning that it should specify the particular class of substances (e.g., alcohol, opioids, benzodiazepines) responsible for the withdrawal symptoms. This is important because different substances have distinct withdrawal syndromes and require different approaches to management and treatment.

In general, Substance Withdrawal Syndrome can be a challenging and potentially dangerous condition that requires professional medical supervision and support during the detoxification process. The specific symptoms and their severity will vary depending on the substance involved, but they may include:

* For alcohol: tremors, seizures, hallucinations, agitation, anxiety, nausea, vomiting, and insomnia.
* For opioids: muscle aches, restlessness, lacrimation (tearing), rhinorrhea (runny nose), yawning, perspiration, chills, mydriasis (dilated pupils), piloerection (goosebumps), nausea or vomiting, diarrhea, and abdominal cramps.
* For benzodiazepines: anxiety, irritability, insomnia, restlessness, confusion, hallucinations, seizures, and increased heart rate and blood pressure.

It is essential to consult with a healthcare professional if you or someone you know is experiencing symptoms of Substance Withdrawal Syndrome. They can provide appropriate medical care, support, and referrals for further treatment as needed.

The ventromedial hypothalamic nucleus (VMN) is a collection of neurons located in the ventromedial region of the hypothalamus, a part of the brain that regulates various autonomic and endocrine functions. The VMN plays an essential role in regulating several physiological processes, including feeding behavior, energy balance, and glucose homeostasis. It contains neurons that are sensitive to changes in nutrient status, such as leptin and insulin levels, and helps to integrate this information with other signals to modulate food intake and energy expenditure. Additionally, the VMN has been implicated in the regulation of various emotional and motivational states, including anxiety, fear, and reward processing.

Steroids, also known as corticosteroids, are a type of hormone that the adrenal gland produces in your body. They have many functions, such as controlling the balance of salt and water in your body and helping to reduce inflammation. Steroids can also be synthetically produced and used as medications to treat a variety of conditions, including allergies, asthma, skin conditions, and autoimmune disorders.

Steroid medications are available in various forms, such as oral pills, injections, creams, and inhalers. They work by mimicking the effects of natural hormones produced by your body, reducing inflammation and suppressing the immune system's response to prevent or reduce symptoms. However, long-term use of steroids can have significant side effects, including weight gain, high blood pressure, osteoporosis, and increased risk of infections.

It is important to note that anabolic steroids are a different class of drugs that are sometimes abused for their muscle-building properties. These steroids are synthetic versions of the male hormone testosterone and can have serious health consequences when taken in large doses or without medical supervision.

A radioligand assay is a type of in vitro binding assay used in molecular biology and pharmacology to measure the affinity and quantity of a ligand (such as a drug or hormone) to its specific receptor. In this technique, a small amount of a radioactively labeled ligand, also known as a radioligand, is introduced to a sample containing the receptor of interest. The radioligand binds competitively with other unlabeled ligands present in the sample for the same binding site on the receptor. After allowing sufficient time for binding, the reaction is stopped, and the amount of bound radioligand is measured using a technique such as scintillation counting. The data obtained from this assay can be used to determine the dissociation constant (Kd) and maximum binding capacity (Bmax) of the receptor-ligand interaction, which are important parameters in understanding the pharmacological properties of drugs and other ligands.

"Competitive binding" is a term used in pharmacology and biochemistry to describe the behavior of two or more molecules (ligands) competing for the same binding site on a target protein or receptor. In this context, "binding" refers to the physical interaction between a ligand and its target.

When a ligand binds to a receptor, it can alter the receptor's function, either activating or inhibiting it. If multiple ligands compete for the same binding site, they will compete to bind to the receptor. The ability of each ligand to bind to the receptor is influenced by its affinity for the receptor, which is a measure of how strongly and specifically the ligand binds to the receptor.

In competitive binding, if one ligand is present in high concentrations, it can prevent other ligands with lower affinity from binding to the receptor. This is because the higher-affinity ligand will have a greater probability of occupying the binding site and blocking access to the other ligands. The competition between ligands can be described mathematically using equations such as the Langmuir isotherm, which describes the relationship between the concentration of ligand and the fraction of receptors that are occupied by the ligand.

Competitive binding is an important concept in drug development, as it can be used to predict how different drugs will interact with their targets and how they may affect each other's activity. By understanding the competitive binding properties of a drug, researchers can optimize its dosage and delivery to maximize its therapeutic effect while minimizing unwanted side effects.

The vestibular nuclei are clusters of neurons located in the brainstem that receive and process information from the vestibular system, which is responsible for maintaining balance and spatial orientation. The vestibular nuclei help to coordinate movements of the eyes, head, and body in response to changes in position or movement. They also play a role in reflexes that help to maintain posture and stabilize vision during head movement. There are four main vestibular nuclei: the medial, lateral, superior, and inferior vestibular nuclei.

Pregnenolone is defined as a steroid hormone produced in the body from cholesterol. It's often referred to as the "mother hormone" since many other hormones, including cortisol, aldosterone, progesterone, testosterone, and estrogen, are synthesized from it.

Pregnenolone is primarily produced in the adrenal glands but can also be produced in smaller amounts in the brain, skin, and sex organs (ovaries and testes). It plays a crucial role in various physiological processes such as maintaining membrane fluidity, acting as an antioxidant, and contributing to cognitive function.

However, it's important to note that while pregnenolone is a hormone, over-the-counter supplements containing this compound are not approved by the FDA for any medical use or condition. As always, consult with a healthcare provider before starting any new supplement regimen.

Alpha-Amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) is a type of excitatory amino acid that functions as a neurotransmitter in the central nervous system. It plays a crucial role in fast synaptic transmission and plasticity in the brain. AMPA receptors are ligand-gated ion channels that are activated by the binding of glutamate or AMPA, allowing the flow of sodium and potassium ions across the neuronal membrane. This ion flux leads to the depolarization of the postsynaptic neuron and the initiation of action potentials. AMPA receptors are also targets for various drugs and toxins that modulate synaptic transmission and plasticity in the brain.

Molecular sequence data refers to the specific arrangement of molecules, most commonly nucleotides in DNA or RNA, or amino acids in proteins, that make up a biological macromolecule. This data is generated through laboratory techniques such as sequencing, and provides information about the exact order of the constituent molecules. This data is crucial in various fields of biology, including genetics, evolution, and molecular biology, allowing for comparisons between different organisms, identification of genetic variations, and studies of gene function and regulation.

Biophysical processes refer to the physical mechanisms and phenomena that occur within living organisms and their constituent parts, such as cells, tissues, and organs. These processes are governed by the principles of physics and chemistry and play a critical role in maintaining life and enabling biological functions. Examples of biophysical processes include:

1. Diffusion: The passive movement of molecules from an area of high concentration to an area of low concentration, which enables the exchange of gases, nutrients, and waste products between cells and their environment.
2. Osmosis: The diffusion of solvent molecules (usually water) across a semi-permeable membrane from an area of lower solute concentration to an area of higher solute concentration. This process is critical for maintaining cell volume and hydration.
3. Electrochemical gradients: The distribution of ions and charged particles across a membrane, which generates an electrical potential that can drive the movement of molecules and ions across the membrane. This process plays a crucial role in nerve impulse transmission and muscle contraction.
4. Enzyme kinetics: The study of how enzymes catalyze chemical reactions within cells, including the rate of reaction, substrate affinity, and inhibition or activation by other molecules.
5. Cell signaling: The communication between cells through the release and detection of signaling molecules, which can trigger a variety of responses, such as cell division, differentiation, or apoptosis.
6. Mechanical forces: The physical forces exerted by cells and tissues, such as tension, compression, and shear stress, which play a critical role in development, maintenance, and repair of biological structures.
7. Thermodynamics: The study of energy flow and transformation within living systems, including the conversion of chemical energy into mechanical work, heat, or electrical signals.

Understanding biophysical processes is essential for gaining insights into the fundamental mechanisms that underlie life and disease, as well as for developing new diagnostic tools and therapies.

Sodium is an essential mineral and electrolyte that is necessary for human health. In a medical context, sodium is often discussed in terms of its concentration in the blood, as measured by serum sodium levels. The normal range for serum sodium is typically between 135 and 145 milliequivalents per liter (mEq/L).

Sodium plays a number of important roles in the body, including:

* Regulating fluid balance: Sodium helps to regulate the amount of water in and around your cells, which is important for maintaining normal blood pressure and preventing dehydration.
* Facilitating nerve impulse transmission: Sodium is involved in the generation and transmission of electrical signals in the nervous system, which is necessary for proper muscle function and coordination.
* Assisting with muscle contraction: Sodium helps to regulate muscle contractions by interacting with other minerals such as calcium and potassium.

Low sodium levels (hyponatremia) can cause symptoms such as confusion, seizures, and coma, while high sodium levels (hypernatremia) can lead to symptoms such as weakness, muscle cramps, and seizures. Both conditions require medical treatment to correct.

Site-directed mutagenesis is a molecular biology technique used to introduce specific and targeted changes to a specific DNA sequence. This process involves creating a new variant of a gene or a specific region of interest within a DNA molecule by introducing a planned, deliberate change, or mutation, at a predetermined site within the DNA sequence.

The methodology typically involves the use of molecular tools such as PCR (polymerase chain reaction), restriction enzymes, and/or ligases to introduce the desired mutation(s) into a plasmid or other vector containing the target DNA sequence. The resulting modified DNA molecule can then be used to transform host cells, allowing for the production of large quantities of the mutated gene or protein for further study.

Site-directed mutagenesis is a valuable tool in basic research, drug discovery, and biotechnology applications where specific changes to a DNA sequence are required to understand gene function, investigate protein structure/function relationships, or engineer novel biological properties into existing genes or proteins.

The lower esophageal sphincter (LES) is a specialized ring of muscle located at the junction of the esophagus and stomach. It functions as a physiological valve that regulates the direction of content flow between the esophagus and the stomach. Normally, the LES remains contracted to prevent the reflux of gastric contents into the esophagus, and it relaxes during swallowing to allow food to enter the stomach.

A dysfunctional lower esophageal sphincter may lead to gastroesophageal reflux disease (GERD), where stomach acid frequently backs up into the esophagus, causing symptoms such as heartburn, chest pain, and difficulty swallowing.

Green Fluorescent Protein (GFP) is not a medical term per se, but a scientific term used in the field of molecular biology. GFP is a protein that exhibits bright green fluorescence when exposed to light, particularly blue or ultraviolet light. It was originally discovered in the jellyfish Aequorea victoria.

In medical and biological research, scientists often use recombinant DNA technology to introduce the gene for GFP into other organisms, including bacteria, plants, and animals, including humans. This allows them to track the expression and localization of specific genes or proteins of interest in living cells, tissues, or even whole organisms.

The ability to visualize specific cellular structures or processes in real-time has proven invaluable for a wide range of research areas, from studying the development and function of organs and organ systems to understanding the mechanisms of diseases and the effects of therapeutic interventions.

The mesencephalon, also known as the midbrain, is the middle portion of the brainstem that connects the hindbrain (rhombencephalon) and the forebrain (prosencephalon). It plays a crucial role in several important functions including motor control, vision, hearing, and the regulation of consciousness and sleep-wake cycles. The mesencephalon contains several important structures such as the cerebral aqueduct, tectum, tegmentum, cerebral peduncles, and several cranial nerve nuclei (III and IV).

S100 calcium binding protein G, also known as calgranulin A or S100A8, is a member of the S100 family of proteins. These proteins are characterized by their ability to bind calcium ions and play a role in intracellular signaling and regulation of various cellular processes.

S100 calcium binding protein G forms a heterodimer with S100 calcium binding protein B (S100A9) and is involved in the inflammatory response, immune function, and tumor growth and progression. The S100A8/A9 heterocomplex has been shown to play a role in neutrophil activation and recruitment, as well as the regulation of cytokine production and cell proliferation.

Elevated levels of S100 calcium binding protein G have been found in various inflammatory conditions, such as rheumatoid arthritis, Crohn's disease, and psoriasis, as well as in several types of cancer, including breast, lung, and colon cancer. Therefore, it has been suggested that S100 calcium binding protein G may be a useful biomarker for the diagnosis and prognosis of these conditions.

Methyltestosterone is a synthetic form of the hormone testosterone, which is primarily used in the treatment of low testosterone levels (hypogonadism) in men. It has a methyl group attached to it, which allows it to be taken orally and still have significant effects on the body.

Testosterone is an androgen hormone that plays important roles in the development and maintenance of male sex characteristics, such as deepening of the voice, growth of facial and body hair, and increased muscle mass. It also helps maintain bone density, red blood cell production, and sex drive.

Methyltestosterone is available in various forms, including tablets and capsules, and its use should be under the supervision of a healthcare professional due to potential side effects and risks associated with its use, such as liver toxicity, increased risk of cardiovascular events, and changes in cholesterol levels.

It's important to note that methyltestosterone is not approved for use in women, as it can cause virilization (development of male sex characteristics) and other side effects.

The extracellular space is the region outside of cells within a tissue or organ, where various biological molecules and ions exist in a fluid medium. This space is filled with extracellular matrix (ECM), which includes proteins like collagen and elastin, glycoproteins, and proteoglycans that provide structural support and biochemical cues to surrounding cells. The ECM also contains various ions, nutrients, waste products, signaling molecules, and growth factors that play crucial roles in cell-cell communication, tissue homeostasis, and regulation of cell behavior. Additionally, the extracellular space includes the interstitial fluid, which is the fluid component of the ECM, and the lymphatic and vascular systems, through which cells exchange nutrients, waste products, and signaling molecules with the rest of the body. Overall, the extracellular space is a complex and dynamic microenvironment that plays essential roles in maintaining tissue structure, function, and homeostasis.

Protein isoforms are different forms or variants of a protein that are produced from a single gene through the process of alternative splicing, where different exons (or parts of exons) are included in the mature mRNA molecule. This results in the production of multiple, slightly different proteins that share a common core structure but have distinct sequences and functions. Protein isoforms can also arise from genetic variations such as single nucleotide polymorphisms or mutations that alter the protein-coding sequence of a gene. These differences in protein sequence can affect the stability, localization, activity, or interaction partners of the protein isoform, leading to functional diversity and specialization within cells and organisms.

The nucleus accumbens is a part of the brain that is located in the ventral striatum, which is a key region of the reward circuitry. It is made up of two subregions: the shell and the core. The nucleus accumbens receives inputs from various sources, including the prefrontal cortex, amygdala, and hippocampus, and sends outputs to the ventral pallidum and other areas.

The nucleus accumbens is involved in reward processing, motivation, reinforcement learning, and addiction. It plays a crucial role in the release of the neurotransmitter dopamine, which is associated with pleasure and reinforcement. Dysfunction in the nucleus accumbens has been implicated in various neurological and psychiatric conditions, including substance use disorders, depression, and obsessive-compulsive disorder.

Afferent neurons, also known as sensory neurons, are a type of nerve cell that conducts impulses or signals from peripheral receptors towards the central nervous system (CNS), which includes the brain and spinal cord. These neurons are responsible for transmitting sensory information such as touch, temperature, pain, sound, and light to the CNS for processing and interpretation. Afferent neurons have specialized receptor endings that detect changes in the environment and convert them into electrical signals, which are then transmitted to the CNS via synapses with other neurons. Once the signals reach the CNS, they are processed and integrated with other information to produce a response or reaction to the stimulus.

Magnetic Resonance Spectroscopy (MRS) is a non-invasive diagnostic technique that provides information about the biochemical composition of tissues, including their metabolic state. It is often used in conjunction with Magnetic Resonance Imaging (MRI) to analyze various metabolites within body tissues, such as the brain, heart, liver, and muscles.

During MRS, a strong magnetic field, radio waves, and a computer are used to produce detailed images and data about the concentration of specific metabolites in the targeted tissue or organ. This technique can help detect abnormalities related to energy metabolism, neurotransmitter levels, pH balance, and other biochemical processes, which can be useful for diagnosing and monitoring various medical conditions, including cancer, neurological disorders, and metabolic diseases.

There are different types of MRS, such as Proton (^1^H) MRS, Phosphorus-31 (^31^P) MRS, and Carbon-13 (^13^C) MRS, each focusing on specific elements or metabolites within the body. The choice of MRS technique depends on the clinical question being addressed and the type of information needed for diagnosis or monitoring purposes.

Biotinyllation is a process of introducing biotin (a vitamin) into a molecule, such as a protein or nucleic acid (DNA or RNA), through chemical reaction. This modification allows the labeled molecule to be easily detected and isolated using streptavidin-biotin interaction, which has one of the strongest non-covalent bonds in nature. Biotinylated molecules are widely used in various research applications such as protein-protein interaction studies, immunohistochemistry, and blotting techniques.

Motor neurons are specialized nerve cells in the brain and spinal cord that play a crucial role in controlling voluntary muscle movements. They transmit electrical signals from the brain to the muscles, enabling us to perform actions such as walking, talking, and swallowing. There are two types of motor neurons: upper motor neurons, which originate in the brain's motor cortex and travel down to the brainstem and spinal cord; and lower motor neurons, which extend from the brainstem and spinal cord to the muscles. Damage or degeneration of these motor neurons can lead to various neurological disorders, such as amyotrophic lateral sclerosis (ALS) and spinal muscular atrophy (SMA).

HEK293 cells, also known as human embryonic kidney 293 cells, are a line of cells used in scientific research. They were originally derived from human embryonic kidney cells and have been adapted to grow in a lab setting. HEK293 cells are widely used in molecular biology and biochemistry because they can be easily transfected (a process by which DNA is introduced into cells) and highly express foreign genes. As a result, they are often used to produce proteins for structural and functional studies. It's important to note that while HEK293 cells are derived from human tissue, they have been grown in the lab for many generations and do not retain the characteristics of the original embryonic kidney cells.

The Raphe Nuclei are clusters of neurons located in the brainstem, specifically in the midline of the pons, medulla oblongata, and mesencephalon (midbrain). These neurons are characterized by their ability to synthesize and release serotonin, a neurotransmitter that plays a crucial role in regulating various functions such as mood, appetite, sleep, and pain perception.

The Raphe Nuclei project axons widely throughout the central nervous system, allowing serotonin to modulate the activity of other neurons. There are several subdivisions within the Raphe Nuclei, each with distinct connections and functions. Dysfunction in the Raphe Nuclei has been implicated in several neurological and psychiatric disorders, including depression, anxiety, and chronic pain.

Transfection is a term used in molecular biology that refers to the process of deliberately introducing foreign genetic material (DNA, RNA or artificial gene constructs) into cells. This is typically done using chemical or physical methods, such as lipofection or electroporation. Transfection is widely used in research and medical settings for various purposes, including studying gene function, producing proteins, developing gene therapies, and creating genetically modified organisms. It's important to note that transfection is different from transduction, which is the process of introducing genetic material into cells using viruses as vectors.

"Cat" is a common name that refers to various species of small carnivorous mammals that belong to the family Felidae. The domestic cat, also known as Felis catus or Felis silvestris catus, is a popular pet and companion animal. It is a subspecies of the wildcat, which is found in Europe, Africa, and Asia.

Domestic cats are often kept as pets because of their companionship, playful behavior, and ability to hunt vermin. They are also valued for their ability to provide emotional support and therapy to people. Cats are obligate carnivores, which means that they require a diet that consists mainly of meat to meet their nutritional needs.

Cats are known for their agility, sharp senses, and predatory instincts. They have retractable claws, which they use for hunting and self-defense. Cats also have a keen sense of smell, hearing, and vision, which allow them to detect prey and navigate their environment.

In medical terms, cats can be hosts to various parasites and diseases that can affect humans and other animals. Some common feline diseases include rabies, feline leukemia virus (FeLV), feline immunodeficiency virus (FIV), and toxoplasmosis. It is important for cat owners to keep their pets healthy and up-to-date on vaccinations and preventative treatments to protect both the cats and their human companions.

Tyrosine 3-Monooxygenase (also known as Tyrosinase or Tyrosine hydroxylase) is an enzyme that plays a crucial role in the synthesis of catecholamines, which are neurotransmitters and hormones in the body. This enzyme catalyzes the conversion of the amino acid L-tyrosine to 3,4-dihydroxyphenylalanine (L-DOPA) by adding a hydroxyl group to the 3rd carbon atom of the tyrosine molecule.

The reaction is as follows:

L-Tyrosine + O2 + pterin (co-factor) -> L-DOPA + pterin (oxidized) + H2O

This enzyme requires molecular oxygen and a co-factor such as tetrahydrobiopterin to carry out the reaction. Tyrosine 3-Monooxygenase is found in various tissues, including the brain and adrenal glands, where it helps regulate the production of catecholamines like dopamine, norepinephrine, and epinephrine. Dysregulation of this enzyme has been implicated in several neurological disorders, such as Parkinson's disease.

A ligand, in the context of biochemistry and medicine, is a molecule that binds to a specific site on a protein or a larger biomolecule, such as an enzyme or a receptor. This binding interaction can modify the function or activity of the target protein, either activating it or inhibiting it. Ligands can be small molecules, like hormones or neurotransmitters, or larger structures, like antibodies. The study of ligand-protein interactions is crucial for understanding cellular processes and developing drugs, as many therapeutic compounds function by binding to specific targets within the body.

Calbindins are a family of calcium-binding proteins that are widely distributed in various tissues, including the gastrointestinal tract, brain, and kidney. They play important roles in regulating intracellular calcium levels and modulating calcium-dependent signaling pathways. Calbindin D28k, one of the major isoforms, is particularly abundant in the central nervous system and has been implicated in neuroprotection, neuronal plasticity, and regulation of neurotransmitter release. Deficiencies or alterations in calbindins have been associated with various pathological conditions, including neurological disorders and cancer.

The CA3 region, also known as the field CA3 or regio CA3, is a subfield in the hippocampus, a complex brain structure that plays a crucial role in learning and memory. The hippocampus is divided into several subfields, including the dentate gyrus, CA3, CA2, CA1, and the subiculum.

The CA3 region is located in the cornu ammonis (Latin for "ammon's horn") and is characterized by its distinctive appearance with a high density of small, tightly packed pyramidal neurons. These neurons have extensive branching dendrites that receive inputs from various brain regions, including the entorhinal cortex, other hippocampal subfields, and the septum.

The CA3 region is particularly noteworthy for its involvement in pattern completion, a process by which the brain can recognize and recall complete memories based on partial or degraded inputs. This function is mediated by the recurrent collateral connections between the pyramidal neurons in the CA3 region, forming an autoassociative network that allows for the storage and retrieval of memory patterns.

Deficits in the CA3 region have been implicated in several neurological and psychiatric disorders, including Alzheimer's disease, epilepsy, and schizophrenia.

Enzyme inhibitors are substances that bind to an enzyme and decrease its activity, preventing it from catalyzing a chemical reaction in the body. They can work by several mechanisms, including blocking the active site where the substrate binds, or binding to another site on the enzyme to change its shape and prevent substrate binding. Enzyme inhibitors are often used as drugs to treat various medical conditions, such as high blood pressure, abnormal heart rhythms, and bacterial infections. They can also be found naturally in some foods and plants, and can be used in research to understand enzyme function and regulation.

'Gene expression regulation' refers to the processes that control whether, when, and where a particular gene is expressed, meaning the production of a specific protein or functional RNA encoded by that gene. This complex mechanism can be influenced by various factors such as transcription factors, chromatin remodeling, DNA methylation, non-coding RNAs, and post-transcriptional modifications, among others. Proper regulation of gene expression is crucial for normal cellular function, development, and maintaining homeostasis in living organisms. Dysregulation of gene expression can lead to various diseases, including cancer and genetic disorders.

Excitatory amino acid agents are drugs or substances that increase the activity of excitatory neurotransmitters, particularly glutamate, in the central nervous system. These agents can cause excitation of neurons and may lead to various effects on the brain and other organs. They have been studied for their potential use in various medical conditions, such as stroke and cognitive disorders, but they also carry the risk of adverse effects, including neurotoxicity and excitotoxicity. Examples of excitatory amino acid agents include N-methyl-D-aspartate (NMDA) receptor agonists, AMPA/kainate receptor agonists, and glutamate release enhancers.

Retinal horizontal cells are a type of neuron located in the outer retina of the eye, specifically in the inner nuclear layer. These cells receive input from photoreceptors (rods and cones) and provide feedback to them through their extensive lateral connections, forming a neural network that helps in processing visual information.

Horizontal cells have dendrites that branch out and connect with multiple photoreceptor cells. They respond to light by hyperpolarizing, which means they become less excitable when exposed to light. This response is the opposite of photoreceptors, which depolarize (become more excitable) in response to light.

The primary function of retinal horizontal cells is to mediate lateral inhibition, a process that helps sharpen the contrast between adjacent areas of the visual scene. By comparing the signals from neighboring photoreceptors, horizontal cells can enhance the differences in light intensity and help create a more detailed and precise image. This information is then sent to bipolar cells, which relay it further to ganglion cells and ultimately to the brain for visual perception.

Aspartic acid is an α-amino acid with the chemical formula HO2CCH(NH2)CO2H. It is one of the twenty standard amino acids, and it is a polar, negatively charged, and hydrophilic amino acid. In proteins, aspartic acid usually occurs in its ionized form, aspartate, which has a single negative charge.

Aspartic acid plays important roles in various biological processes, including metabolism, neurotransmitter synthesis, and energy production. It is also a key component of many enzymes and proteins, where it often contributes to the formation of ionic bonds and helps stabilize protein structure.

In addition to its role as a building block of proteins, aspartic acid is also used in the synthesis of other important biological molecules, such as nucleotides, which are the building blocks of DNA and RNA. It is also a component of the dipeptide aspartame, an artificial sweetener that is widely used in food and beverages.

Like other amino acids, aspartic acid is essential for human health, but it cannot be synthesized by the body and must be obtained through the diet. Foods that are rich in aspartic acid include meat, poultry, fish, dairy products, eggs, legumes, and some fruits and vegetables.

A cell membrane, also known as the plasma membrane, is a thin semi-permeable phospholipid bilayer that surrounds all cells in animals, plants, and microorganisms. It functions as a barrier to control the movement of substances in and out of the cell, allowing necessary molecules such as nutrients, oxygen, and signaling molecules to enter while keeping out harmful substances and waste products. The cell membrane is composed mainly of phospholipids, which have hydrophilic (water-loving) heads and hydrophobic (water-fearing) tails. This unique structure allows the membrane to be flexible and fluid, yet selectively permeable. Additionally, various proteins are embedded in the membrane that serve as channels, pumps, receptors, and enzymes, contributing to the cell's overall functionality and communication with its environment.

An amino acid sequence is the specific order of amino acids in a protein or peptide molecule, formed by the linking of the amino group (-NH2) of one amino acid to the carboxyl group (-COOH) of another amino acid through a peptide bond. The sequence is determined by the genetic code and is unique to each type of protein or peptide. It plays a crucial role in determining the three-dimensional structure and function of proteins.

I'm sorry for any confusion, but "turtles" is not a medical term. It refers to the group of reptiles that have a shell and include various species such as tortoises and terrapins. If you have any medical concerns or questions, I would be happy to try to help with those!

Tritium is not a medical term, but it is a term used in the field of nuclear physics and chemistry. Tritium (symbol: T or 3H) is a radioactive isotope of hydrogen with two neutrons and one proton in its nucleus. It is also known as heavy hydrogen or superheavy hydrogen.

Tritium has a half-life of about 12.3 years, which means that it decays by emitting a low-energy beta particle (an electron) to become helium-3. Due to its radioactive nature and relatively short half-life, tritium is used in various applications, including nuclear weapons, fusion reactors, luminous paints, and medical research.

In the context of medicine, tritium may be used as a radioactive tracer in some scientific studies or medical research, but it is not a term commonly used to describe a medical condition or treatment.

Immunoelectron microscopy (IEM) is a specialized type of electron microscopy that combines the principles of immunochemistry and electron microscopy to detect and localize specific antigens within cells or tissues at the ultrastructural level. This technique allows for the visualization and identification of specific proteins, viruses, or other antigenic structures with a high degree of resolution and specificity.

In IEM, samples are first fixed, embedded, and sectioned to prepare them for electron microscopy. The sections are then treated with specific antibodies that have been labeled with electron-dense markers, such as gold particles or ferritin. These labeled antibodies bind to the target antigens in the sample, allowing for their visualization under an electron microscope.

There are several different methods of IEM, including pre-embedding and post-embedding techniques. Pre-embedding involves labeling the antigens before embedding the sample in resin, while post-embedding involves labeling the antigens after embedding. Post-embedding techniques are generally more commonly used because they allow for better preservation of ultrastructure and higher resolution.

IEM is a valuable tool in many areas of research, including virology, bacteriology, immunology, and cell biology. It can be used to study the structure and function of viruses, bacteria, and other microorganisms, as well as the distribution and localization of specific proteins and antigens within cells and tissues.

The suprachiasmatic nucleus (SCN) is a small region located in the hypothalamus of the brain, just above the optic chiasm where the optic nerves from each eye cross. It is considered to be the primary circadian pacemaker in mammals, responsible for generating and maintaining the body's internal circadian rhythm, which is a roughly 24-hour cycle that regulates various physiological processes such as sleep-wake cycles, hormone release, and metabolism.

The SCN receives direct input from retinal ganglion cells, which are sensitive to light and dark signals. This information helps the SCN synchronize the internal circadian rhythm with the external environment, allowing it to adjust to changes in day length and other environmental cues. The SCN then sends signals to other parts of the brain and body to regulate various functions according to the time of day.

Disruption of the SCN's function can lead to a variety of circadian rhythm disorders, such as jet lag, shift work disorder, and advanced or delayed sleep phase syndrome.

Nicotinic receptors are a type of ligand-gated ion channel receptor that are activated by the neurotransmitter acetylcholine and the alkaloid nicotine. They are widely distributed throughout the nervous system and play important roles in various physiological processes, including neuronal excitability, neurotransmitter release, and cognitive functions such as learning and memory. Nicotinic receptors are composed of five subunits that form a ion channel pore, which opens to allow the flow of cations (positively charged ions) when the receptor is activated by acetylcholine or nicotine. There are several subtypes of nicotinic receptors, which differ in their subunit composition and functional properties. These receptors have been implicated in various neurological disorders, including Alzheimer's disease, Parkinson's disease, and schizophrenia.

Opioid mu receptors, also known as mu-opioid receptors (MORs), are a type of G protein-coupled receptor that binds to opioids, a class of chemicals that include both natural and synthetic painkillers. These receptors are found in the brain, spinal cord, and gastrointestinal tract, and play a key role in mediating the effects of opioid drugs such as morphine, heroin, and oxycodone.

MORs are involved in pain modulation, reward processing, respiratory depression, and physical dependence. Activation of MORs can lead to feelings of euphoria, decreased perception of pain, and slowed breathing. Prolonged activation of these receptors can also result in tolerance, where higher doses of the drug are required to achieve the same effect, and dependence, where withdrawal symptoms occur when the drug is discontinued.

MORs have three main subtypes: MOR-1, MOR-2, and MOR-3, with MOR-1 being the most widely studied and clinically relevant. Selective agonists for MOR-1, such as fentanyl and sufentanil, are commonly used in anesthesia and pain management. However, the abuse potential and risk of overdose associated with these drugs make them a significant public health concern.

Benzoates are the salts and esters of benzoic acid. They are widely used as preservatives in foods, cosmetics, and pharmaceuticals to prevent the growth of microorganisms. The chemical formula for benzoic acid is C6H5COOH, and when it is combined with a base (like sodium or potassium), it forms a benzoate salt (e.g., sodium benzoate or potassium benzoate). When benzoic acid reacts with an alcohol, it forms a benzoate ester (e.g., methyl benzoate or ethyl benzoate).

Benzoates are generally considered safe for use in food and cosmetics in small quantities. However, some people may have allergies or sensitivities to benzoates, which can cause reactions such as hives, itching, or asthma symptoms. In addition, there is ongoing research into the potential health effects of consuming high levels of benzoates over time, particularly in relation to gut health and the development of certain diseases.

In a medical context, benzoates may also be used as a treatment for certain conditions. For example, sodium benzoate is sometimes given to people with elevated levels of ammonia in their blood (hyperammonemia) to help reduce those levels and prevent brain damage. This is because benzoates can bind with excess ammonia in the body and convert it into a form that can be excreted in urine.

Calcium channels are specialized proteins that span the membrane of cells and allow calcium ions (Ca²+) to flow in and out of the cell. They are crucial for many physiological processes, including muscle contraction, neurotransmitter release, hormone secretion, and gene expression.

There are several types of calcium channels, classified based on their biophysical and pharmacological properties. The most well-known are:

1. Voltage-gated calcium channels (VGCCs): These channels are activated by changes in the membrane potential. They are further divided into several subtypes, including L-type, P/Q-type, N-type, R-type, and T-type. VGCCs play a critical role in excitation-contraction coupling in muscle cells and neurotransmitter release in neurons.
2. Receptor-operated calcium channels (ROCCs): These channels are activated by the binding of an extracellular ligand, such as a hormone or neurotransmitter, to a specific receptor on the cell surface. ROCCs are involved in various physiological processes, including smooth muscle contraction and platelet activation.
3. Store-operated calcium channels (SOCCs): These channels are activated by the depletion of intracellular calcium stores, such as those found in the endoplasmic reticulum. SOCCs play a critical role in maintaining calcium homeostasis and signaling within cells.

Dysregulation of calcium channel function has been implicated in various diseases, including hypertension, arrhythmias, migraine, epilepsy, and neurodegenerative disorders. Therefore, calcium channels are an important target for drug development and therapy.

A mutation is a permanent change in the DNA sequence of an organism's genome. Mutations can occur spontaneously or be caused by environmental factors such as exposure to radiation, chemicals, or viruses. They may have various effects on the organism, ranging from benign to harmful, depending on where they occur and whether they alter the function of essential proteins. In some cases, mutations can increase an individual's susceptibility to certain diseases or disorders, while in others, they may confer a survival advantage. Mutations are the driving force behind evolution, as they introduce new genetic variability into populations, which can then be acted upon by natural selection.

Anxiety: A feeling of worry, nervousness, or unease, typically about an imminent event or something with an uncertain outcome. In a medical context, anxiety refers to a mental health disorder characterized by feelings of excessive and persistent worry, fear, or panic that interfere with daily activities. It can also be a symptom of other medical conditions, such as heart disease, diabetes, or substance abuse disorders. Anxiety disorders include generalized anxiety disorder, panic disorder, social anxiety disorder, and phobias.

Neuropeptides are small protein-like molecules that are used by neurons to communicate with each other and with other cells in the body. They are produced in the cell body of a neuron, processed from larger precursor proteins, and then transported to the nerve terminal where they are stored in secretory vesicles. When the neuron is stimulated, the vesicles fuse with the cell membrane and release their contents into the extracellular space.

Neuropeptides can act as neurotransmitters or neuromodulators, depending on their target receptors and the duration of their effects. They play important roles in a variety of physiological processes, including pain perception, appetite regulation, stress response, and social behavior. Some neuropeptides also have hormonal functions, such as oxytocin and vasopressin, which are produced in the hypothalamus and released into the bloodstream to regulate reproductive and cardiovascular function, respectively.

There are hundreds of different neuropeptides that have been identified in the nervous system, and many of them have multiple functions and interact with other signaling molecules to modulate neural activity. Dysregulation of neuropeptide systems has been implicated in various neurological and psychiatric disorders, such as chronic pain, addiction, depression, and anxiety.

Bicyclic compounds are organic molecules that contain two rings in their structure, with at least two common atoms shared between the rings. These compounds can be found in various natural and synthetic substances, including some medications and bioactive molecules. The unique structure of bicyclic compounds can influence their chemical and physical properties, which may impact their biological activity or reactivity.

Biophysics is a interdisciplinary field that combines the principles and methods of physics with those of biology to study biological systems and phenomena. It involves the use of physical theories, models, and techniques to understand and explain the properties, functions, and behaviors of living organisms and their constituents, such as cells, proteins, and DNA.

Biophysics can be applied to various areas of biology, including molecular biology, cell biology, neuroscience, and physiology. It can help elucidate the mechanisms of biological processes at the molecular and cellular levels, such as protein folding, ion transport, enzyme kinetics, gene expression, and signal transduction. Biophysical methods can also be used to develop diagnostic and therapeutic tools for medical applications, such as medical imaging, drug delivery, and gene therapy.

Examples of biophysical techniques include X-ray crystallography, nuclear magnetic resonance (NMR) spectroscopy, electron microscopy, fluorescence microscopy, atomic force microscopy, and computational modeling. These methods allow researchers to probe the structure, dynamics, and interactions of biological molecules and systems with high precision and resolution, providing insights into their functions and behaviors.

Brain-Derived Neurotrophic Factor (BDNF) is a type of protein called a neurotrophin, which is involved in the growth and maintenance of neurons (nerve cells) in the brain. BDNFA is encoded by the BDNF gene and is widely expressed throughout the central nervous system. It plays an essential role in supporting the survival of existing neurons, encouraging the growth and differentiation of new neurons and synapses, and contributing to neuroplasticity - the ability of the brain to change and adapt as a result of experience. Low levels of BDNF have been associated with several neurological disorders, including depression, Alzheimer's disease, and Huntington's disease.

Long-term potentiation (LTP) is a persistent strengthening of synapses following high-frequency stimulation of their afferents. It is a cellular mechanism for learning and memory, where the efficacy of neurotransmission is increased at synapses in the hippocampus and other regions of the brain. LTP can last from hours to days or even weeks, depending on the type and strength of stimulation. It involves complex biochemical processes, including changes in the number and sensitivity of receptors for neurotransmitters, as well as alterations in the structure and function of synaptic connections between neurons. LTP is widely studied as a model for understanding the molecular basis of learning and memory.

Biological transport refers to the movement of molecules, ions, or solutes across biological membranes or through cells in living organisms. This process is essential for maintaining homeostasis, regulating cellular functions, and enabling communication between cells. There are two main types of biological transport: passive transport and active transport.

Passive transport does not require the input of energy and includes:

1. Diffusion: The random movement of molecules from an area of high concentration to an area of low concentration until equilibrium is reached.
2. Osmosis: The diffusion of solvent molecules (usually water) across a semi-permeable membrane from an area of lower solute concentration to an area of higher solute concentration.
3. Facilitated diffusion: The assisted passage of polar or charged substances through protein channels or carriers in the cell membrane, which increases the rate of diffusion without consuming energy.

Active transport requires the input of energy (in the form of ATP) and includes:

1. Primary active transport: The direct use of ATP to move molecules against their concentration gradient, often driven by specific transport proteins called pumps.
2. Secondary active transport: The coupling of the movement of one substance down its electrochemical gradient with the uphill transport of another substance, mediated by a shared transport protein. This process is also known as co-transport or counter-transport.

Piperidines are not a medical term per se, but they are a class of organic compounds that have important applications in the pharmaceutical industry. Medically relevant piperidines include various drugs such as some antihistamines, antidepressants, and muscle relaxants.

A piperidine is a heterocyclic amine with a six-membered ring containing five carbon atoms and one nitrogen atom. The structure can be described as a cyclic secondary amine. Piperidines are found in some natural alkaloids, such as those derived from the pepper plant (Piper nigrum), which gives piperidines their name.

In a medical context, it is more common to encounter specific drugs that belong to the class of piperidines rather than the term itself.

Recombinant proteins are artificially created proteins produced through the use of recombinant DNA technology. This process involves combining DNA molecules from different sources to create a new set of genes that encode for a specific protein. The resulting recombinant protein can then be expressed, purified, and used for various applications in research, medicine, and industry.

Recombinant proteins are widely used in biomedical research to study protein function, structure, and interactions. They are also used in the development of diagnostic tests, vaccines, and therapeutic drugs. For example, recombinant insulin is a common treatment for diabetes, while recombinant human growth hormone is used to treat growth disorders.

The production of recombinant proteins typically involves the use of host cells, such as bacteria, yeast, or mammalian cells, which are engineered to express the desired protein. The host cells are transformed with a plasmid vector containing the gene of interest, along with regulatory elements that control its expression. Once the host cells are cultured and the protein is expressed, it can be purified using various chromatography techniques.

Overall, recombinant proteins have revolutionized many areas of biology and medicine, enabling researchers to study and manipulate proteins in ways that were previously impossible.

Tertiary protein structure refers to the three-dimensional arrangement of all the elements (polypeptide chains) of a single protein molecule. It is the highest level of structural organization and results from interactions between various side chains (R groups) of the amino acids that make up the protein. These interactions, which include hydrogen bonds, ionic bonds, van der Waals forces, and disulfide bridges, give the protein its unique shape and stability, which in turn determines its function. The tertiary structure of a protein can be stabilized by various factors such as temperature, pH, and the presence of certain ions. Any changes in these factors can lead to denaturation, where the protein loses its tertiary structure and thus its function.

Protein transport, in the context of cellular biology, refers to the process by which proteins are actively moved from one location to another within or between cells. This is a crucial mechanism for maintaining proper cell function and regulation.

Intracellular protein transport involves the movement of proteins within a single cell. Proteins can be transported across membranes (such as the nuclear envelope, endoplasmic reticulum, Golgi apparatus, or plasma membrane) via specialized transport systems like vesicles and transport channels.

Intercellular protein transport refers to the movement of proteins from one cell to another, often facilitated by exocytosis (release of proteins in vesicles) and endocytosis (uptake of extracellular substances via membrane-bound vesicles). This is essential for communication between cells, immune response, and other physiological processes.

It's important to note that any disruption in protein transport can lead to various diseases, including neurological disorders, cancer, and metabolic conditions.

Pyrazoles are heterocyclic aromatic organic compounds that contain a six-membered ring with two nitrogen atoms at positions 1 and 2. The chemical structure of pyrazoles consists of a pair of nitrogen atoms adjacent to each other in the ring, which makes them unique from other azole heterocycles such as imidazoles or triazoles.

Pyrazoles have significant biological activities and are found in various pharmaceuticals, agrochemicals, and natural products. Some pyrazole derivatives exhibit anti-inflammatory, analgesic, antipyretic, antimicrobial, antiviral, antifungal, and anticancer properties.

In the medical field, pyrazoles are used in various drugs to treat different conditions. For example, celecoxib (Celebrex) is a selective COX-2 inhibitor used for pain relief and inflammation reduction in arthritis patients. It contains a pyrazole ring as its core structure. Similarly, febuxostat (Uloric) is a medication used to treat gout, which also has a pyrazole moiety.

Overall, pyrazoles are essential compounds with significant medical applications and potential for further development in drug discovery and design.

Retinal Ganglion Cells (RGCs) are a type of neuron located in the innermost layer of the retina, the light-sensitive tissue at the back of the eye. These cells receive visual information from photoreceptors (rods and cones) via intermediate cells called bipolar cells. RGCs then send this visual information through their long axons to form the optic nerve, which transmits the signals to the brain for processing and interpretation as vision.

There are several types of RGCs, each with distinct morphological and functional characteristics. Some RGCs are specialized in detecting specific features of the visual scene, such as motion, contrast, color, or brightness. The diversity of RGCs allows for a rich and complex representation of the visual world in the brain.

Damage to RGCs can lead to various visual impairments, including loss of vision, reduced visual acuity, and altered visual fields. Conditions associated with RGC damage or degeneration include glaucoma, optic neuritis, ischemic optic neuropathy, and some inherited retinal diseases.

Kynurenic acid is a metabolite of the amino acid tryptophan, which is formed through the kynurenine pathway. It functions as an antagonist at glutamate receptors and acts as a neuroprotective agent by blocking excessive stimulation of NMDA receptors in the brain. Additionally, kynurenic acid also has anti-inflammatory properties and is involved in the regulation of the immune response. Abnormal levels of kynurenic acid have been implicated in several neurological disorders such as schizophrenia, epilepsy, and Huntington's disease.

Reverse Transcriptase Polymerase Chain Reaction (RT-PCR) is a laboratory technique used in molecular biology to amplify and detect specific DNA sequences. This technique is particularly useful for the detection and quantification of RNA viruses, as well as for the analysis of gene expression.

The process involves two main steps: reverse transcription and polymerase chain reaction (PCR). In the first step, reverse transcriptase enzyme is used to convert RNA into complementary DNA (cDNA) by reading the template provided by the RNA molecule. This cDNA then serves as a template for the PCR amplification step.

In the second step, the PCR reaction uses two primers that flank the target DNA sequence and a thermostable polymerase enzyme to repeatedly copy the targeted cDNA sequence. The reaction mixture is heated and cooled in cycles, allowing the primers to anneal to the template, and the polymerase to extend the new strand. This results in exponential amplification of the target DNA sequence, making it possible to detect even small amounts of RNA or cDNA.

RT-PCR is a sensitive and specific technique that has many applications in medical research and diagnostics, including the detection of viruses such as HIV, hepatitis C virus, and SARS-CoV-2 (the virus that causes COVID-19). It can also be used to study gene expression, identify genetic mutations, and diagnose genetic disorders.

In the context of medicine, "periodicity" refers to the occurrence of events or phenomena at regular intervals or cycles. This term is often used in reference to recurring symptoms or diseases that have a pattern of appearing and disappearing over time. For example, some medical conditions like menstrual cycles, sleep-wake disorders, and certain infectious diseases exhibit periodicity. It's important to note that the duration and frequency of these cycles can vary depending on the specific condition or individual.

The ventral thalamic nuclei are a group of nuclei located in the ventral part of the thalamus, a region of the diencephalon in the brain. These nuclei play a crucial role in sensory and motor functions, as well as cognitive processes such as attention and memory. They include several subnuclei, such as the ventral anterior (VA), ventral lateral (VL), ventral medial (VM), and ventral posterior (VP) nuclei.

The ventral anterior and ventral lateral nuclei are involved in motor control and receive inputs from the basal ganglia, cerebellum, and cortex. They project to the premotor and motor areas of the cortex, contributing to the planning, initiation, and execution of movements.

The ventral medial nucleus is associated with emotional processing and receives inputs from the limbic system, including the amygdala and hippocampus. It projects to the prefrontal cortex and cingulate gyrus, contributing to the regulation of emotions and motivation.

The ventral posterior nuclei are involved in sensory processing, particularly for tactile and proprioceptive information. They receive inputs from the spinal cord and brainstem and project to the primary somatosensory cortex, where they contribute to the perception of touch, pressure, temperature, and body position.

Overall, the ventral thalamic nuclei are an essential component of the neural circuits involved in sensory, motor, and cognitive functions, and their dysfunction has been implicated in various neurological and psychiatric disorders.

Calcium channel blockers (CCBs) are a class of medications that work by inhibiting the influx of calcium ions into cardiac and smooth muscle cells. This action leads to relaxation of the muscles, particularly in the blood vessels, resulting in decreased peripheral resistance and reduced blood pressure. Calcium channel blockers also have anti-arrhythmic effects and are used in the management of various cardiovascular conditions such as hypertension, angina, and certain types of arrhythmias.

Calcium channel blockers can be further classified into two main categories based on their chemical structure: dihydropyridines (e.g., nifedipine, amlodipine) and non-dihydropyridines (e.g., verapamil, diltiazem). Dihydropyridines are more selective for vascular smooth muscle and have a greater effect on blood pressure than heart rate or conduction. Non-dihydropyridines have a more significant impact on cardiac conduction and contractility, in addition to their vasodilatory effects.

It is important to note that calcium channel blockers may interact with other medications and should be used under the guidance of a healthcare professional. Potential side effects include dizziness, headache, constipation, and peripheral edema.

Wakefulness is a state of consciousness in which an individual is alert and aware of their surroundings. It is characterized by the ability to perceive, process, and respond to stimuli in a purposeful manner. In a medical context, wakefulness is often assessed using measures such as the electroencephalogram (EEG) to evaluate brain activity patterns associated with consciousness.

Wakefulness is regulated by several interconnected neural networks that promote arousal and attention. These networks include the ascending reticular activating system (ARAS), which consists of a group of neurons located in the brainstem that project to the thalamus and cerebral cortex, as well as other regions involved in regulating arousal and attention, such as the basal forebrain and hypothalamus.

Disorders of wakefulness can result from various underlying conditions, including neurological disorders, sleep disorders, medication side effects, or other medical conditions that affect brain function. Examples of such disorders include narcolepsy, insomnia, hypersomnia, and various forms of encephalopathy or brain injury.

Protein binding, in the context of medical and biological sciences, refers to the interaction between a protein and another molecule (known as the ligand) that results in a stable complex. This process is often reversible and can be influenced by various factors such as pH, temperature, and concentration of the involved molecules.

In clinical chemistry, protein binding is particularly important when it comes to drugs, as many of them bind to proteins (especially albumin) in the bloodstream. The degree of protein binding can affect a drug's distribution, metabolism, and excretion, which in turn influence its therapeutic effectiveness and potential side effects.

Protein-bound drugs may be less available for interaction with their target tissues, as only the unbound or "free" fraction of the drug is active. Therefore, understanding protein binding can help optimize dosing regimens and minimize adverse reactions.

Amines are organic compounds that contain a basic nitrogen atom with a lone pair of electrons. They are derived from ammonia (NH3) by replacing one or more hydrogen atoms with alkyl or aryl groups. The nomenclature of amines follows the substitutive type, where the parent compound is named as an aliphatic or aromatic hydrocarbon, and the functional group "amine" is designated as a suffix or prefix.

Amines are classified into three types based on the number of carbon atoms attached to the nitrogen atom:

1. Primary (1°) amines: One alkyl or aryl group is attached to the nitrogen atom.
2. Secondary (2°) amines: Two alkyl or aryl groups are attached to the nitrogen atom.
3. Tertiary (3°) amines: Three alkyl or aryl groups are attached to the nitrogen atom.

Quaternary ammonium salts have four organic groups attached to the nitrogen atom and a positive charge, with anions balancing the charge.

Amines have a wide range of applications in the chemical industry, including pharmaceuticals, dyes, polymers, and solvents. They also play a significant role in biological systems as neurotransmitters, hormones, and cell membrane components.

Dopamine D2 receptor is a type of metabotropic G protein-coupled receptor that binds to the neurotransmitter dopamine. It is one of five subtypes of dopamine receptors (D1-D5) and is encoded by the gene DRD2. The activation of D2 receptors leads to a decrease in the activity of adenylyl cyclase, which results in reduced levels of cAMP and modulation of ion channels.

D2 receptors are widely distributed throughout the central nervous system (CNS) and play important roles in various physiological functions, including motor control, reward processing, emotion regulation, and cognition. They are also involved in several neurological and psychiatric disorders, such as Parkinson's disease, schizophrenia, drug addiction, and Tourette syndrome.

D2 receptors have two main subtypes: D2 short (D2S) and D2 long (D2L). The D2S subtype is primarily located in the presynaptic terminals and functions as an autoreceptor that regulates dopamine release, while the D2L subtype is mainly found in the postsynaptic neurons and modulates intracellular signaling pathways.

Antipsychotic drugs, which are used to treat schizophrenia and other psychiatric disorders, work by blocking D2 receptors. However, excessive blockade of these receptors can lead to side effects such as extrapyramidal symptoms (EPS), tardive dyskinesia, and hyperprolactinemia. Therefore, the development of drugs that selectively target specific subtypes of dopamine receptors is an active area of research in the field of neuropsychopharmacology.

Veratrine is not a medical term, but it is a pharmacological term that refers to a mixture of alkaloids (veratridine and cevadine) extracted from the seeds of the sabadilla lily (Schoenocaulon officinale). Veratrine has been used in research and medicine for its effects on nerve cells, particularly in studying sodium channels. It can cause prolonged depolarization of nerve membranes leading to repetitive firing of action potentials. However, due to its high toxicity, it is not used clinically.

Extracellular fluid (ECF) is the fluid that exists outside of the cells in the body. It makes up about 20-25% of the total body weight in a healthy adult. ECF can be further divided into two main components: interstitial fluid and intravascular fluid.

Interstitial fluid is the fluid that surrounds the cells and fills the spaces between them. It provides nutrients to the cells, removes waste products, and helps maintain a balanced environment around the cells.

Intravascular fluid, also known as plasma, is the fluid component of blood that circulates in the blood vessels. It carries nutrients, hormones, and waste products throughout the body, and helps regulate temperature, pH, and osmotic pressure.

Maintaining the proper balance of ECF is essential for normal bodily functions. Disruptions in this balance can lead to various medical conditions, such as dehydration, edema, and heart failure.

Cannabinoid receptor modulators are a class of compounds that interact with and modify the function of cannabinoid receptors, which are part of the endocannabinoid system in the human body. These receptors play a role in regulating various physiological processes such as pain, mood, memory, appetite, and immunity.

There are two main types of cannabinoid receptors: CB1 receptors, which are primarily found in the brain and central nervous system, and CB2 receptors, which are mainly found in the immune system and peripheral tissues. Cannabinoid receptor modulators can be classified into three categories based on their effects on these receptors:

1. Agonists: These compounds bind to and activate cannabinoid receptors, leading to a range of effects such as pain relief, anti-inflammation, and mood enhancement. Examples include THC (tetrahydrocannabinol), the psychoactive component of marijuana, and synthetic cannabinoids like dronabinol (Marinol) and nabilone (Cesamet).
2. Antagonists: These compounds bind to cannabinoid receptors but do not activate them, instead blocking or reducing the effects of agonist compounds. Examples include rimonabant (Acomplia), which was withdrawn from the market due to psychiatric side effects, and SR141716A.
3. Inverse Agonists: These compounds bind to cannabinoid receptors and produce effects opposite to those of agonist compounds. Examples include CBD (cannabidiol), a non-psychoactive component of marijuana that has anti-inflammatory, anxiolytic, and neuroprotective properties.

Cannabinoid receptor modulators have potential therapeutic applications in various medical conditions such as chronic pain, multiple sclerosis, epilepsy, cancer, and mental health disorders. However, further research is needed to fully understand their mechanisms of action and potential side effects.

The septal nuclei are a collection of gray matter structures located in the basal forebrain, specifically in the septum pellucidum. They consist of several interconnected subnuclei that play important roles in various functions such as reward and reinforcement, emotional processing, learning, and memory.

The septal nuclei are primarily composed of GABAergic neurons (neurons that release the neurotransmitter gamma-aminobutyric acid or GABA) and receive inputs from several brain regions, including the hippocampus, amygdala, hypothalamus, and prefrontal cortex. They also send projections to various areas, including the thalamus, hypothalamus, and other limbic structures.

Stimulation of the septal nuclei has been associated with feelings of pleasure and reward, while damage or lesions can lead to changes in emotional behavior and cognitive functions. The septal nuclei are also involved in neuroendocrine regulation, particularly in relation to the hypothalamic-pituitary-adrenal (HPA) axis and the release of stress hormones.

"Gene knock-in techniques" refer to a group of genetic engineering methods used in molecular biology to precisely insert or "knock-in" a specific gene or DNA sequence into a specific location within the genome of an organism. This is typically done using recombinant DNA technology and embryonic stem (ES) cells, although other techniques such as CRISPR-Cas9 can also be used.

The goal of gene knock-in techniques is to create a stable and heritable genetic modification in which the introduced gene is expressed at a normal level and in the correct spatial and temporal pattern. This allows researchers to study the function of individual genes, investigate gene regulation, model human diseases, and develop potential therapies for genetic disorders.

In general, gene knock-in techniques involve several steps: first, a targeting vector is constructed that contains the desired DNA sequence flanked by homologous regions that match the genomic locus where the insertion will occur. This vector is then introduced into ES cells, which are cultured and allowed to undergo homologous recombination with the endogenous genome. The resulting modified ES cells are selected for and characterized to confirm the correct integration of the DNA sequence. Finally, the modified ES cells are used to generate chimeric animals, which are then bred to produce offspring that carry the genetic modification in their germline.

Overall, gene knock-in techniques provide a powerful tool for studying gene function and developing new therapies for genetic diseases.

Exploratory behavior refers to the actions taken by an individual to investigate and gather information about their environment. This type of behavior is often driven by curiosity and a desire to understand new or unfamiliar situations, objects, or concepts. In a medical context, exploratory behavior may refer to a patient's willingness to learn more about their health condition, try new treatments, or engage in self-care activities. It can also refer to the behaviors exhibited by young children as they explore their world and develop their cognitive and motor skills. Exploratory behavior is an important aspect of learning and development, and it can have a positive impact on overall health and well-being.

Self-administration, in the context of medicine and healthcare, refers to the act of an individual administering medication or treatment to themselves. This can include various forms of delivery such as oral medications, injections, or topical treatments. It is important that individuals who self-administer are properly trained and understand the correct dosage, timing, and technique to ensure safety and effectiveness. Self-administration promotes independence, allows for timely treatment, and can improve overall health outcomes.

Potassium chloride is an essential electrolyte that is often used in medical settings as a medication. It's a white, crystalline salt that is highly soluble in water and has a salty taste. In the body, potassium chloride plays a crucial role in maintaining fluid and electrolyte balance, nerve function, and muscle contraction.

Medically, potassium chloride is commonly used to treat or prevent low potassium levels (hypokalemia) in the blood. Hypokalemia can occur due to various reasons such as certain medications, kidney diseases, vomiting, diarrhea, or excessive sweating. Potassium chloride is available in various forms, including tablets, capsules, and liquids, and it's usually taken by mouth.

It's important to note that potassium chloride should be used with caution and under the supervision of a healthcare provider, as high levels of potassium (hyperkalemia) can be harmful and even life-threatening. Hyperkalemia can cause symptoms such as muscle weakness, irregular heartbeat, and cardiac arrest.

Calbindin 2 is a calcium-binding protein that belongs to the calbindin family and is found in various tissues, including the brain and intestines. It has a molecular weight of approximately 28 kDa and plays a crucial role in regulating intracellular calcium levels, neurotransmitter release, and protecting neurons from excitotoxicity. Calbindin 2 is also known as calbindin D-28k or calbindin-D9k, depending on the species and its molecular weight. It has multiple isoforms generated by alternative splicing and is involved in various physiological processes, including muscle contraction, hormone secretion, and cell proliferation. In the nervous system, calbindin 2 is expressed in specific populations of neurons and glial cells, where it functions as a neuroprotective agent and modulates synaptic plasticity.

Ethylene chlorohydrin is a chemical compound with the formula C2H4Cl2O. It is a colorless liquid with an ether-like odor and is used as a solvent and a chemical intermediate in the production of other chemicals. Ethylene chlorohydrin is produced by the reaction of ethylene oxide with hydrochloric acid.

In medical terms, ethylene chlorohydrin is not commonly used or encountered. However, it is classified as a hazardous substance and can be harmful if swallowed, inhaled, or comes into contact with the skin. It can cause irritation to the eyes, skin, and respiratory tract, and prolonged exposure may lead to more serious health effects such as damage to the nervous system and internal organs.

If you suspect that you have been exposed to ethylene chlorohydrin, it is important to seek medical attention immediately and to follow any recommended treatment or safety precautions.

Cholecystokinin (CCK) is a hormone that is produced in the duodenum (the first part of the small intestine) and in the brain. It is released into the bloodstream in response to food, particularly fatty foods, and plays several roles in the digestive process.

In the digestive system, CCK stimulates the contraction of the gallbladder, which releases bile into the small intestine to help digest fats. It also inhibits the release of acid from the stomach and slows down the movement of food through the intestines.

In the brain, CCK acts as a neurotransmitter and has been shown to have effects on appetite regulation, mood, and memory. It may play a role in the feeling of fullness or satiety after eating, and may also be involved in anxiety and panic disorders.

CCK is sometimes referred to as "gallbladder-stimulating hormone" or "pancreozymin," although these terms are less commonly used than "cholecystokinin."

Nicotinic agonists are substances that bind to and activate nicotinic acetylcholine receptors (nAChRs), which are ligand-gated ion channels found in the nervous system of many organisms, including humans. These receptors are activated by the endogenous neurotransmitter acetylcholine and the exogenous compound nicotine.

When a nicotinic agonist binds to the receptor, it triggers a conformational change that leads to the opening of an ion channel, allowing the influx of cations such as calcium, sodium, and potassium. This ion flux can depolarize the postsynaptic membrane and generate or modulate electrical signals in excitable tissues, such as neurons and muscles.

Nicotinic agonists have various therapeutic and recreational uses, but they can also produce harmful effects, depending on the dose, duration of exposure, and individual sensitivity. Some examples of nicotinic agonists include:

1. Nicotine: A highly addictive alkaloid found in tobacco plants, which is the prototypical nicotinic agonist. It is used in smoking cessation therapies, such as nicotine gum and patches, but it can also lead to dependence and various health issues when consumed through smoking or vaping.
2. Varenicline: A medication approved for smoking cessation that acts as a partial agonist of nAChRs. It reduces the rewarding effects of nicotine and alleviates withdrawal symptoms, helping smokers quit.
3. Rivastigmine: A cholinesterase inhibitor used to treat Alzheimer's disease and other forms of dementia. It increases the concentration of acetylcholine in the synaptic cleft, enhancing its activity at nicotinic receptors and improving cognitive function.
4. Succinylcholine: A neuromuscular blocking agent used during surgical procedures to induce paralysis and facilitate intubation. It acts as a depolarizing nicotinic agonist, causing transient muscle fasciculations followed by prolonged relaxation.
5. Curare and related compounds: Plant-derived alkaloids that act as competitive antagonists of nicotinic receptors. They are used in anesthesia to induce paralysis and facilitate mechanical ventilation during surgery.

In summary, nicotinic agonists are substances that bind to and activate nicotinic acetylcholine receptors, leading to various physiological responses. These compounds have diverse applications in medicine, from smoking cessation therapies to treatments for neurodegenerative disorders and anesthesia. However, they can also pose risks when misused or abused, as seen with nicotine addiction and the potential side effects of certain medications.

Valine is an essential amino acid, meaning it cannot be produced by the human body and must be obtained through diet. It is a hydrophobic amino acid, with a branched side chain, and is necessary for the growth, repair, and maintenance of tissues in the body. Valine is also important for muscle metabolism, and is often used by athletes as a supplement to enhance physical performance. Like other essential amino acids, valine must be obtained through foods such as meat, fish, dairy products, and legumes.

Stereoisomerism is a type of isomerism (structural arrangement of atoms) in which molecules have the same molecular formula and sequence of bonded atoms, but differ in the three-dimensional orientation of their atoms in space. This occurs when the molecule contains asymmetric carbon atoms or other rigid structures that prevent free rotation, leading to distinct spatial arrangements of groups of atoms around a central point. Stereoisomers can have different chemical and physical properties, such as optical activity, boiling points, and reactivities, due to differences in their shape and the way they interact with other molecules.

There are two main types of stereoisomerism: enantiomers (mirror-image isomers) and diastereomers (non-mirror-image isomers). Enantiomers are pairs of stereoisomers that are mirror images of each other, but cannot be superimposed on one another. Diastereomers, on the other hand, are non-mirror-image stereoisomers that have different physical and chemical properties.

Stereoisomerism is an important concept in chemistry and biology, as it can affect the biological activity of molecules, such as drugs and natural products. For example, some enantiomers of a drug may be active, while others are inactive or even toxic. Therefore, understanding stereoisomerism is crucial for designing and synthesizing effective and safe drugs.

Confocal microscopy is a powerful imaging technique used in medical and biological research to obtain high-resolution, contrast-rich images of thick samples. This super-resolution technology provides detailed visualization of cellular structures and processes at various depths within a specimen.

In confocal microscopy, a laser beam focused through a pinhole illuminates a small spot within the sample. The emitted fluorescence or reflected light from this spot is then collected by a detector, passing through a second pinhole that ensures only light from the focal plane reaches the detector. This process eliminates out-of-focus light, resulting in sharp images with improved contrast compared to conventional widefield microscopy.

By scanning the laser beam across the sample in a raster pattern and collecting fluorescence at each point, confocal microscopy generates optical sections of the specimen. These sections can be combined to create three-dimensional reconstructions, allowing researchers to study cellular architecture and interactions within complex tissues.

Confocal microscopy has numerous applications in medical research, including studying protein localization, tracking intracellular dynamics, analyzing cell morphology, and investigating disease mechanisms at the cellular level. Additionally, it is widely used in clinical settings for diagnostic purposes, such as analyzing skin lesions or detecting pathogens in patient samples.

Neuromuscular depolarizing agents are a type of muscle relaxant used in anesthesia and critical care medicine. These drugs work by causing depolarization of the post-synaptic membrane at the neuromuscular junction, which is the site where nerve impulses are transmitted to muscles. This results in the binding of the drug to the receptor and the activation of ion channels, leading to muscle contraction.

The most commonly used depolarizing agent is suxamethonium (also known as succinylcholine), which has a rapid onset and short duration of action. It is often used during rapid sequence intubation, where there is a need for immediate muscle relaxation to facilitate endotracheal intubation.

However, the use of depolarizing agents can also lead to several side effects, including increased potassium levels in the blood (hyperkalemia), muscle fasciculations, and an increase in intracranial and intraocular pressure. Therefore, these drugs should be used with caution and only under the close supervision of a trained healthcare provider.

The prosencephalon is a term used in the field of neuroembryology, which refers to the developmental stage of the forebrain in the embryonic nervous system. It is one of the three primary vesicles that form during the initial stages of neurulation, along with the mesencephalon (midbrain) and rhombencephalon (hindbrain).

The prosencephalon further differentiates into two secondary vesicles: the telencephalon and diencephalon. The telencephalon gives rise to structures such as the cerebral cortex, basal ganglia, and olfactory bulbs, while the diencephalon develops into structures like the thalamus, hypothalamus, and epithalamus.

It is important to note that 'prosencephalon' itself is not used as a medical term in adult neuroanatomy, but it is crucial for understanding the development of the human brain during embryogenesis.

Enflurane is a volatile halogenated ether that was commonly used as an inhalational general anesthetic agent. Its chemical formula is C3H2ClF5O. It has been largely replaced by newer and safer anesthetics, but it is still occasionally used in certain clinical situations due to its favorable properties such as rapid onset and offset of action, stable hemodynamics, and low blood solubility. However, it can cause adverse effects such as respiratory depression, arrhythmias, and neurotoxicity, particularly with prolonged use or high doses. Therefore, its use requires careful monitoring and management by anesthesia professionals.

Sleep is a complex physiological process characterized by altered consciousness, relatively inhibited sensory activity, reduced voluntary muscle activity, and decreased interaction with the environment. It's typically associated with specific stages that can be identified through electroencephalography (EEG) patterns. These stages include rapid eye movement (REM) sleep, associated with dreaming, and non-rapid eye movement (NREM) sleep, which is further divided into three stages.

Sleep serves a variety of functions, including restoration and strengthening of the immune system, support for growth and development in children and adolescents, consolidation of memory, learning, and emotional regulation. The lack of sufficient sleep or poor quality sleep can lead to significant health problems, such as obesity, diabetes, cardiovascular disease, and even cognitive decline.

The American Academy of Sleep Medicine (AASM) defines sleep as "a period of daily recurring natural rest during which consciousness is suspended and metabolic processes are reduced." However, it's important to note that the exact mechanisms and purposes of sleep are still being researched and debated among scientists.

'Receptors, Serotonin, 5-HT3' refer to a specific type of serotonin receptor called the 5-HT3 receptor, which is a ligand-gated ion channel found in the cell membrane. Serotonin, also known as 5-hydroxytryptamine (5-HT), is a neurotransmitter that plays a role in various physiological functions, including mood regulation, appetite control, and nausea.

The 5-HT3 receptor is activated by serotonin and mediates fast excitatory synaptic transmission in the central and peripheral nervous systems. It is permeable to sodium (Na+), potassium (K+), and calcium (Ca2+) ions, allowing for the rapid depolarization of neurons and the initiation of action potentials.

The 5-HT3 receptor has been a target for drug development, particularly in the treatment of chemotherapy-induced nausea and vomiting, as well as irritable bowel syndrome. Antagonists of the 5-HT3 receptor, such as ondansetron and granisetron, work by blocking the receptor and preventing serotonin from activating it, thereby reducing symptoms of nausea and vomiting.

Spinal ganglia, also known as dorsal root ganglia, are clusters of nerve cell bodies located in the peripheral nervous system. They are situated along the length of the spinal cord and are responsible for transmitting sensory information from the body to the brain. Each spinal ganglion contains numerous neurons, or nerve cells, with long processes called axons that extend into the periphery and innervate various tissues and organs. The cell bodies within the spinal ganglia receive sensory input from these axons and transmit this information to the central nervous system via the dorsal roots of the spinal nerves. This allows the brain to interpret and respond to a wide range of sensory stimuli, including touch, temperature, pain, and proprioception (the sense of the position and movement of one's body).

Dopaminergic neurons are a type of specialized brain cells that produce, synthesize, and release the neurotransmitter dopamine. These neurons play crucial roles in various brain functions, including motivation, reward processing, motor control, and cognition. They are primarily located in several regions of the midbrain, such as the substantia nigra pars compacta (SNc) and the ventral tegmental area (VTA).

Dopaminergic neurons have a unique physiology characterized by their ability to generate slow, irregular electrical signals called pacemaker activity. This distinctive firing pattern allows dopamine to be released in a controlled manner, which is essential for proper brain function.

The degeneration and loss of dopaminergic neurons in the SNc are associated with Parkinson's disease, a neurodegenerative disorder characterized by motor impairments such as tremors, rigidity, and bradykinesia (slowness of movement). The reduction in dopamine levels caused by this degeneration leads to an imbalance in the brain's neural circuitry, resulting in the characteristic symptoms of Parkinson's disease.

Isoquinolines are not a medical term per se, but a chemical classification. They refer to a class of organic compounds that consist of a benzene ring fused to a piperidine ring. This structure is similar to that of quinoline, but with the nitrogen atom located at a different position in the ring.

Isoquinolines have various biological activities and can be found in some natural products, including certain alkaloids. Some isoquinoline derivatives have been developed as drugs for the treatment of various conditions, such as cardiovascular diseases, neurological disorders, and cancer. However, specific medical definitions related to isoquinolines typically refer to the use or effects of these specific drugs rather than the broader class of compounds.

The cerebellar nuclei are clusters of neurons located within the white matter of the cerebellum, a region of the brain responsible for motor coordination, balance, and fine movement regulation. There are four main pairs of cerebellar nuclei: the fastigial, interpositus, dentate, and vestibular nuclei. These nuclei receive input from various parts of the cerebellar cortex and project to different areas of the brainstem and thalamus, contributing to the regulation of muscle tone, posture, and movement.

Astacoidea is a superfamily of freshwater decapod crustaceans, which includes crayfish and lobsters. This superfamily is divided into two families: Astacidae, which contains the true crayfishes, and Cambaridae, which contains the North American burrowing crayfishes. These animals are characterized by a robust exoskeleton, antennae, and pincers, and they are primarily scavengers and predators. They are found in freshwater environments around the world, and some species are of commercial importance as a food source.

The superior colliculi are a pair of prominent eminences located on the dorsal surface of the midbrain, forming part of the tectum or roof of the midbrain. They play a crucial role in the integration and coordination of visual, auditory, and somatosensory information for the purpose of directing spatial attention and ocular movements. Essentially, they are involved in the reflexive orienting of the head and eyes towards novel or significant stimuli in the environment.

In a more detailed medical definition, the superior colliculi are two rounded, convex mounds of gray matter that are situated on the roof of the midbrain, specifically at the level of the rostral mesencephalic tegmentum. Each superior colliculus has a stratified laminated structure, consisting of several layers that process different types of sensory information and control specific motor outputs.

The superficial layers of the superior colliculi primarily receive and process visual input from the retina, lateral geniculate nucleus, and other visual areas in the brain. These layers are responsible for generating spatial maps of the visual field, which allow for the localization and identification of visual stimuli.

The intermediate and deep layers of the superior colliculi receive and process auditory and somatosensory information from various sources, including the inferior colliculus, medial geniculate nucleus, and ventral posterior nucleus of the thalamus. These layers are involved in the localization and identification of auditory and tactile stimuli, as well as the coordination of head and eye movements towards these stimuli.

The superior colliculi also contain a population of neurons called "motor command neurons" that directly control the muscles responsible for orienting the eyes, head, and body towards novel or significant sensory events. These motor command neurons are activated in response to specific patterns of activity in the sensory layers of the superior colliculus, allowing for the rapid and automatic orientation of attention and gaze towards salient stimuli.

In summary, the superior colliculi are a pair of structures located on the dorsal surface of the midbrain that play a critical role in the integration and coordination of visual, auditory, and somatosensory information for the purpose of orienting attention and gaze towards salient stimuli. They contain sensory layers that generate spatial maps of the environment, as well as motor command neurons that directly control the muscles responsible for orienting the eyes, head, and body.

A reflex is an automatic, involuntary and rapid response to a stimulus that occurs without conscious intention. In the context of physiology and neurology, it's a basic mechanism that involves the transmission of nerve impulses between neurons, resulting in a muscle contraction or glandular secretion.

Reflexes are important for maintaining homeostasis, protecting the body from harm, and coordinating movements. They can be tested clinically to assess the integrity of the nervous system, such as the knee-j jerk reflex, which tests the function of the L3-L4 spinal nerve roots and the sensitivity of the stretch reflex arc.

The inferior colliculi are a pair of rounded eminences located in the midbrain, specifically in the tectum of the mesencephalon. They play a crucial role in auditory processing and integration. The inferior colliculi receive inputs from various sources, including the cochlear nuclei, superior olivary complex, and cortical areas. They then send their outputs to the medial geniculate body, which is a part of the thalamus that relays auditory information to the auditory cortex.

In summary, the inferior colliculi are important structures in the auditory pathway that help process and integrate auditory information before it reaches the cerebral cortex for further analysis and perception.

"Biological clocks" refer to the internal time-keeping systems in living organisms that regulate the timing of various physiological processes and behaviors according to a daily (circadian) rhythm. These rhythms are driven by genetic mechanisms and can be influenced by environmental factors such as light and temperature.

In humans, biological clocks help regulate functions such as sleep-wake cycles, hormone release, body temperature, and metabolism. Disruptions to these internal timekeeping systems have been linked to various health problems, including sleep disorders, mood disorders, and cognitive impairment.

The Intralaminar Thalamic Nuclei are a group of nuclei located within the thalamus, a part of the brain that serves as a relay station for sensory and motor signals. These nuclei are situated between the laminae (layers) of the thalamus and are characterized by their intricate internal organization. They play a crucial role in various functions, including attention, consciousness, and sleep-wake regulation. The Intralaminar Thalamic Nuclei have extensive connections with the cerebral cortex and other subcortical structures, making them an essential component of the brain's neural circuitry.

Lindane is defined in medical terms as an agricultural and pharmaceutical compound that contains thegamma-isomer of hexachlorocyclohexane (γ-HCH). It has been used as a topical treatment for scabies and lice infestations, although its use is now limited due to concerns about toxicity and environmental persistence. Lindane works by disrupting the nervous system of insects, leading to paralysis and death. However, it can also have similar effects on mammals, including humans, at high doses or with prolonged exposure. Therefore, its use is restricted and alternatives are recommended for the treatment of scabies and lice.

A dose-response relationship in radiation refers to the correlation between the amount of radiation exposure (dose) and the biological response or adverse health effects observed in exposed individuals. As the level of radiation dose increases, the severity and frequency of the adverse health effects also tend to increase. This relationship is crucial in understanding the risks associated with various levels of radiation exposure and helps inform radiation protection standards and guidelines.

The effects of ionizing radiation can be categorized into two types: deterministic and stochastic. Deterministic effects have a threshold dose below which no effect is observed, and above this threshold, the severity of the effect increases with higher doses. Examples include radiation-induced cataracts or radiation dermatitis. Stochastic effects, on the other hand, do not have a clear threshold and are based on probability; as the dose increases, so does the likelihood of the adverse health effect occurring, such as an increased risk of cancer.

Understanding the dose-response relationship in radiation exposure is essential for setting limits on occupational and public exposure to ionizing radiation, optimizing radiation protection practices, and developing effective medical countermeasures in case of radiation emergencies.

Nicotine is defined as a highly addictive psychoactive alkaloid and stimulant found in the nightshade family of plants, primarily in tobacco leaves. It is the primary component responsible for the addiction to cigarettes and other forms of tobacco. Nicotine can also be produced synthetically.

When nicotine enters the body, it activates the release of several neurotransmitters such as dopamine, norepinephrine, and serotonin, leading to feelings of pleasure, stimulation, and relaxation. However, with regular use, tolerance develops, requiring higher doses to achieve the same effects, which can contribute to the development of nicotine dependence.

Nicotine has both short-term and long-term health effects. Short-term effects include increased heart rate and blood pressure, increased alertness and concentration, and arousal. Long-term use can lead to addiction, lung disease, cardiovascular disease, and reproductive problems. It is important to note that nicotine itself is not the primary cause of many tobacco-related diseases, but rather the result of other harmful chemicals found in tobacco smoke.

Calcium signaling is the process by which cells regulate various functions through changes in intracellular calcium ion concentrations. Calcium ions (Ca^2+^) are crucial second messengers that play a critical role in many cellular processes, including muscle contraction, neurotransmitter release, gene expression, and programmed cell death (apoptosis).

Intracellular calcium levels are tightly regulated by a complex network of channels, pumps, and exchangers located on the plasma membrane and intracellular organelles such as the endoplasmic reticulum (ER) and mitochondria. These proteins control the influx, efflux, and storage of calcium ions within the cell.

Calcium signaling is initiated when an external signal, such as a hormone or neurotransmitter, binds to a specific receptor on the plasma membrane. This interaction triggers the opening of ion channels, allowing extracellular Ca^2+^ to flow into the cytoplasm. In some cases, this influx of calcium ions is sufficient to activate downstream targets directly. However, in most instances, the increase in intracellular Ca^2+^ serves as a trigger for the release of additional calcium from internal stores, such as the ER.

The release of calcium from the ER is mediated by ryanodine receptors (RyRs) and inositol trisphosphate receptors (IP3Rs), which are activated by specific second messengers generated in response to the initial external signal. The activation of these channels leads to a rapid increase in cytoplasmic Ca^2+^, creating a transient intracellular calcium signal known as a "calcium spark" or "calcium puff."

These localized increases in calcium concentration can then propagate throughout the cell as waves of elevated calcium, allowing for the spatial and temporal coordination of various cellular responses. The duration and amplitude of these calcium signals are finely tuned by the interplay between calcium-binding proteins, pumps, and exchangers, ensuring that appropriate responses are elicited in a controlled manner.

Dysregulation of intracellular calcium signaling has been implicated in numerous pathological conditions, including neurodegenerative diseases, cardiovascular disorders, and cancer. Therefore, understanding the molecular mechanisms governing calcium homeostasis and signaling is crucial for the development of novel therapeutic strategies targeting these diseases.

Gene expression is the process by which the information encoded in a gene is used to synthesize a functional gene product, such as a protein or RNA molecule. This process involves several steps: transcription, RNA processing, and translation. During transcription, the genetic information in DNA is copied into a complementary RNA molecule, known as messenger RNA (mRNA). The mRNA then undergoes RNA processing, which includes adding a cap and tail to the mRNA and splicing out non-coding regions called introns. The resulting mature mRNA is then translated into a protein on ribosomes in the cytoplasm through the process of translation.

The regulation of gene expression is a complex and highly controlled process that allows cells to respond to changes in their environment, such as growth factors, hormones, and stress signals. This regulation can occur at various stages of gene expression, including transcriptional activation or repression, RNA processing, mRNA stability, and translation. Dysregulation of gene expression has been implicated in many diseases, including cancer, genetic disorders, and neurological conditions.

The entorhinal cortex is a region in the brain that is located in the medial temporal lobe and is part of the limbic system. It plays a crucial role in memory, navigation, and the processing of sensory information. The entorhinal cortex is closely connected to the hippocampus, which is another important structure for memory and spatial cognition.

The entorhinal cortex can be divided into several subregions, including the lateral, medial, and posterior sections. These subregions have distinct connectivity patterns and may contribute differently to various cognitive functions. One of the most well-known features of the entorhinal cortex is the presence of "grid cells," which are neurons that fire in response to specific spatial locations and help to form a cognitive map of the environment.

Damage to the entorhinal cortex has been linked to several neurological and psychiatric conditions, including Alzheimer's disease, epilepsy, and schizophrenia.

I'm sorry for any confusion, but "perfume" is not a term that has a medical definition. Perfumes are fragranced products used primarily for personal grooming and aesthetic purposes. They consist of a mixture of essential oils or aroma compounds, fixatives, and solvents.

Perfumes can sometimes cause allergic reactions or irritations in some individuals, leading to symptoms such as skin rashes, itching, or sneezing. In such cases, people might consult with healthcare professionals for advice on avoiding specific fragrances or managing related allergies. However, the term "perfume" itself is not a medical concept and does not have a medical definition.

4-Chloromercuribenzenesulfonate is a chemical compound with the formula C6H5ClHgSO3. It is an organomercury compound, where mercury is bonded to a phenyl ring and a sulfonate group. This compound is an white crystalline powder that is soluble in water and denser than water.

It has been used historically as a diuretic and antiseptic, but its use in medicine has been discontinued due to the toxicity of mercury. Exposure to mercury can have serious health consequences, including damage to the nervous system, kidneys, and digestive system. Therefore, handling and disposal of 4-chloromercuribenzenesulfonate should be done with caution and in accordance with local regulations for hazardous materials.

The trigeminal nuclei are a collection of sensory nerve cell bodies (nuclei) located in the brainstem that receive and process sensory information from the face and head, including pain, temperature, touch, and proprioception. There are four main trigeminal nuclei: the ophthalmic, maxillary, mandibular, and mesencephalic nuclei. Each nucleus is responsible for processing sensory information from specific areas of the face and head. The trigeminal nerve (cranial nerve V) carries these sensory signals to the brainstem, where they synapse with neurons in the trigeminal nuclei before being relayed to higher brain centers for further processing.

Dopamine antagonists are a class of drugs that block the action of dopamine, a neurotransmitter in the brain associated with various functions including movement, motivation, and emotion. These drugs work by binding to dopamine receptors and preventing dopamine from attaching to them, which can help to reduce the symptoms of certain medical conditions such as schizophrenia, bipolar disorder, and gastroesophageal reflux disease (GERD).

There are several types of dopamine antagonists, including:

1. Typical antipsychotics: These drugs are primarily used to treat psychosis, including schizophrenia and delusional disorders. Examples include haloperidol, chlorpromazine, and fluphenazine.
2. Atypical antipsychotics: These drugs are also used to treat psychosis but have fewer side effects than typical antipsychotics. They may also be used to treat bipolar disorder and depression. Examples include risperidone, olanzapine, and quetiapine.
3. Antiemetics: These drugs are used to treat nausea and vomiting. Examples include metoclopramide and prochlorperazine.
4. Dopamine agonists: While not technically dopamine antagonists, these drugs work by stimulating dopamine receptors and can be used to treat conditions such as Parkinson's disease. However, they can also have the opposite effect and block dopamine receptors in high doses, making them functionally similar to dopamine antagonists.

Common side effects of dopamine antagonists include sedation, weight gain, and movement disorders such as tardive dyskinesia. It's important to use these drugs under the close supervision of a healthcare provider to monitor for side effects and adjust the dosage as needed.

Azabicyclo compounds are a type of organic compound that contain at least one nitrogen atom (azacycle) and two rings fused together (bicyclic). The nitrogen atom can be part of either a saturated or unsaturated ring, and the rings themselves can be composed of carbon atoms only or contain other heteroatoms such as oxygen or sulfur.

The term "azabicyclo" is often followed by a set of three numbers that specify the number of atoms in each of the three rings involved in the fusion. For example, azabicyclo[3.2.1]octane is a compound with two fused rings containing 3 and 2 carbon atoms, respectively, and one nitrogen atom forming the third ring of 1 carbon atom.

These compounds have a wide range of applications in pharmaceuticals, agrochemicals, and materials science due to their unique structures and properties. In particular, azabicyclo compounds are often used as building blocks for the synthesis of complex natural products and bioactive molecules.

The term "septum" in the context of the brain refers to the septal nuclei, which are a collection of neurons located in the basal forebrain. Specifically, they make up the septal area, which is part of the limbic system and plays a role in reward, reinforcement, and positive motivational states.

There isn't a structure called the "septum of brain" in medical terminology. However, there are several structures in the brain that contain a septum or have a partitioning septum within them, such as:

1. Septal nuclei (as mentioned above)
2. The nasal septum, which is a thin wall of bone and cartilage that separates the two nostrils in the nose
3. The interventricular septum, which is a thin muscular wall that separates the left and right lateral ventricles within the brain
4. The membranous septum, a part of the heart's structure that separates the left and right ventricles

Confusion might arise due to the term "septum" being used in different contexts. In this case, there is no specific medical definition for 'Septum of Brain'.

Photoaffinity labels are molecules that, upon exposure to light, form covalent bonds with nearby proteins or other biomolecules. These labels typically contain a reactive group that becomes highly reactive after photoactivation, allowing for the specific and irreversible labeling of proteins in their native environment. This technique is widely used in molecular biology research to study protein-protein interactions, protein structure, and protein function. The labeled proteins can then be identified and analyzed using various methods such as gel electrophoresis, mass spectrometry, or microscopy.

Benzothiadiazines are a class of heterocyclic chemical compounds that contain a benzene fused to a thiadiazine ring. They have been used in the synthesis of various pharmaceutical drugs, particularly those used for their anti-inflammatory, antihypertensive, and diuretic properties.

One of the most well-known benzothiadiazines is benothiazine itself, which has been used as a precursor in the synthesis of various dyes and pigments. However, it is not used in medical applications.

The benzothiadiazines that are used medically are typically derivatives of the parent compound, such as clotrimazole and ftorafur. Clotrimazole is an antifungal medication used to treat various fungal infections, while ftorafur is an antineoplastic agent used in the treatment of certain types of cancer.

It's important to note that benzothiadiazines are not a commonly used class of drugs in medicine, and their use is typically limited to specific indications where they have been shown to be effective.

Finasteride is a synthetic 4-azasteroid compound that acts as a specific inhibitor of Type II 5α-reductase, an intracellular enzyme that converts testosterone to dihydrotestosterone (DHT). DHT is a hormonal byproduct thought to be responsible for the development and worsening of benign prostatic hyperplasia (BPH) and androgenetic alopecia (AGA), also known as male pattern baldness.

Finasteride is available in two formulations: finasteride 1 mg (Proscar) and finasteride 5 mg (Propecia). Finasteride 1 mg is used to treat BPH, while finasteride 5 mg is used for the treatment of AGA in men. The drug works by reducing the production of DHT, which in turn slows down the progression of BPH and AGA.

It's important to note that finasteride is not approved for use in women or children, and it should be used with caution in men due to potential side effects such as decreased sexual desire, difficulty in achieving an erection, and a decrease in the amount of semen produced.

The lateral hypothalamic area (LHA) is a region in the hypothalamus, which is a part of the brain that plays a crucial role in regulating various autonomic functions and maintaining homeostasis. The LHA is located laterally to the third ventricle and contains several neuronal populations that are involved in diverse physiological processes such as feeding behavior, energy balance, sleep-wake regulation, and neuroendocrine function.

Some of the key neurons found in the LHA include orexin/hypocretin neurons, melanin-concentrating hormone (MCH) neurons, and agouti-related protein (AGRP) neurons. These neurons release neurotransmitters and neuropeptides that modulate various physiological functions, including appetite regulation, energy expenditure, and arousal. Dysfunction in the LHA has been implicated in several neurological and psychiatric disorders, such as narcolepsy, obesity, and depression.

Western blotting is a laboratory technique used in molecular biology to detect and quantify specific proteins in a mixture of many different proteins. This technique is commonly used to confirm the expression of a protein of interest, determine its size, and investigate its post-translational modifications. The name "Western" blotting distinguishes this technique from Southern blotting (for DNA) and Northern blotting (for RNA).

The Western blotting procedure involves several steps:

1. Protein extraction: The sample containing the proteins of interest is first extracted, often by breaking open cells or tissues and using a buffer to extract the proteins.
2. Separation of proteins by electrophoresis: The extracted proteins are then separated based on their size by loading them onto a polyacrylamide gel and running an electric current through the gel (a process called sodium dodecyl sulfate-polyacrylamide gel electrophoresis or SDS-PAGE). This separates the proteins according to their molecular weight, with smaller proteins migrating faster than larger ones.
3. Transfer of proteins to a membrane: After separation, the proteins are transferred from the gel onto a nitrocellulose or polyvinylidene fluoride (PVDF) membrane using an electric current in a process called blotting. This creates a replica of the protein pattern on the gel but now immobilized on the membrane for further analysis.
4. Blocking: The membrane is then blocked with a blocking agent, such as non-fat dry milk or bovine serum albumin (BSA), to prevent non-specific binding of antibodies in subsequent steps.
5. Primary antibody incubation: A primary antibody that specifically recognizes the protein of interest is added and allowed to bind to its target protein on the membrane. This step may be performed at room temperature or 4°C overnight, depending on the antibody's properties.
6. Washing: The membrane is washed with a buffer to remove unbound primary antibodies.
7. Secondary antibody incubation: A secondary antibody that recognizes the primary antibody (often coupled to an enzyme or fluorophore) is added and allowed to bind to the primary antibody. This step may involve using a horseradish peroxidase (HRP)-conjugated or alkaline phosphatase (AP)-conjugated secondary antibody, depending on the detection method used later.
8. Washing: The membrane is washed again to remove unbound secondary antibodies.
9. Detection: A detection reagent is added to visualize the protein of interest by detecting the signal generated from the enzyme-conjugated or fluorophore-conjugated secondary antibody. This can be done using chemiluminescent, colorimetric, or fluorescent methods.
10. Analysis: The resulting image is analyzed to determine the presence and quantity of the protein of interest in the sample.

Western blotting is a powerful technique for identifying and quantifying specific proteins within complex mixtures. It can be used to study protein expression, post-translational modifications, protein-protein interactions, and more. However, it requires careful optimization and validation to ensure accurate and reproducible results.

Potassium channels are membrane proteins that play a crucial role in regulating the electrical excitability of cells, including cardiac, neuronal, and muscle cells. These channels facilitate the selective passage of potassium ions (K+) across the cell membrane, maintaining the resting membrane potential and shaping action potentials. They are composed of four or six subunits that assemble to form a central pore through which potassium ions move down their electrochemical gradient. Potassium channels can be modulated by various factors such as voltage, ligands, mechanical stimuli, or temperature, allowing cells to fine-tune their electrical properties and respond to different physiological demands. Dysfunction of potassium channels has been implicated in several diseases, including cardiac arrhythmias, epilepsy, and neurodegenerative disorders.

Aging is a complex, progressive and inevitable process of bodily changes over time, characterized by the accumulation of cellular damage and degenerative changes that eventually lead to increased vulnerability to disease and death. It involves various biological, genetic, environmental, and lifestyle factors that contribute to the decline in physical and mental functions. The medical field studies aging through the discipline of gerontology, which aims to understand the underlying mechanisms of aging and develop interventions to promote healthy aging and extend the human healthspan.

A mammalian embryo is the developing offspring of a mammal, from the time of implantation of the fertilized egg (blastocyst) in the uterus until the end of the eighth week of gestation. During this period, the embryo undergoes rapid cell division and organ differentiation to form a complex structure with all the major organs and systems in place. This stage is followed by fetal development, which continues until birth. The study of mammalian embryos is important for understanding human development, evolution, and reproductive biology.

Serotonin receptors are a type of cell surface receptor that bind to the neurotransmitter serotonin (5-hydroxytryptamine, 5-HT). They are widely distributed throughout the body, including the central and peripheral nervous systems, where they play important roles in regulating various physiological processes such as mood, appetite, sleep, memory, learning, and cognition.

There are seven different classes of serotonin receptors (5-HT1 to 5-HT7), each with multiple subtypes, that exhibit distinct pharmacological properties and signaling mechanisms. These receptors are G protein-coupled receptors (GPCRs) or ligand-gated ion channels, which activate intracellular signaling pathways upon serotonin binding.

Serotonin receptors have been implicated in various neurological and psychiatric disorders, including depression, anxiety, schizophrenia, and migraine. Therefore, selective serotonin receptor agonists or antagonists are used as therapeutic agents for the treatment of these conditions.

Proline is an organic compound that is classified as a non-essential amino acid, meaning it can be produced by the human body and does not need to be obtained through the diet. It is encoded in the genetic code as the codon CCU, CCC, CCA, or CCG. Proline is a cyclic amino acid, containing an unusual secondary amine group, which forms a ring structure with its carboxyl group.

In proteins, proline acts as a structural helix breaker, disrupting the alpha-helix structure and leading to the formation of turns and bends in the protein chain. This property is important for the proper folding and function of many proteins. Proline also plays a role in the stability of collagen, a major structural protein found in connective tissues such as tendons, ligaments, and skin.

In addition to its role in protein structure, proline has been implicated in various cellular processes, including signal transduction, apoptosis, and oxidative stress response. It is also a precursor for the synthesis of other biologically important compounds such as hydroxyproline, which is found in collagen and elastin, and glutamate, an excitatory neurotransmitter in the brain.

The vagus nerve, also known as the 10th cranial nerve (CN X), is the longest of the cranial nerves and extends from the brainstem to the abdomen. It has both sensory and motor functions and plays a crucial role in regulating various bodily functions such as heart rate, digestion, respiratory rate, speech, and sweating, among others.

The vagus nerve is responsible for carrying sensory information from the internal organs to the brain, and it also sends motor signals from the brain to the muscles of the throat and voice box, as well as to the heart, lungs, and digestive tract. The vagus nerve helps regulate the body's involuntary responses, such as controlling heart rate and blood pressure, promoting relaxation, and reducing inflammation.

Dysfunction in the vagus nerve can lead to various medical conditions, including gastroparesis, chronic pain, and autonomic nervous system disorders. Vagus nerve stimulation (VNS) is a therapeutic intervention that involves delivering electrical impulses to the vagus nerve to treat conditions such as epilepsy, depression, and migraine headaches.

"Macaca fascicularis" is the scientific name for the crab-eating macaque, also known as the long-tailed macaque. It's a species of monkey that is native to Southeast Asia. They are called "crab-eating" macaques because they are known to eat crabs and other crustaceans. These monkeys are omnivorous and their diet also includes fruits, seeds, insects, and occasionally smaller vertebrates.

Crab-eating macaques are highly adaptable and can be found in a wide range of habitats, including forests, grasslands, and wetlands. They are also known to live in close proximity to human settlements and are often considered pests due to their tendency to raid crops and steal food from humans.

These monkeys are social animals and live in large groups called troops. They have a complex social structure with a clear hierarchy and dominant males. Crab-eating macaques are also known for their intelligence and problem-solving abilities.

In medical research, crab-eating macaques are often used as animal models due to their close genetic relationship to humans. They are used in studies related to infectious diseases, neuroscience, and reproductive biology, among others.

Cocaine is a highly addictive stimulant drug derived from the leaves of the coca plant (Erythroxylon coca). It is a powerful central nervous system stimulant that affects the brain and body in many ways. When used recreationally, cocaine can produce feelings of euphoria, increased energy, and mental alertness; however, it can also cause serious negative consequences, including addiction, cardiovascular problems, seizures, and death.

Cocaine works by increasing the levels of dopamine in the brain, a neurotransmitter associated with pleasure and reward. This leads to the pleasurable effects that users seek when they take the drug. However, cocaine also interferes with the normal functioning of the brain's reward system, making it difficult for users to experience pleasure from natural rewards like food or social interactions.

Cocaine can be taken in several forms, including powdered form (which is usually snorted), freebase (a purer form that is often smoked), and crack cocaine (a solid form that is typically heated and smoked). Each form of cocaine has different risks and potential harms associated with its use.

Long-term use of cocaine can lead to a number of negative health consequences, including addiction, heart problems, malnutrition, respiratory issues, and mental health disorders like depression or anxiety. It is important to seek help if you or someone you know is struggling with cocaine use or addiction.

Biological models, also known as physiological models or organismal models, are simplified representations of biological systems, processes, or mechanisms that are used to understand and explain the underlying principles and relationships. These models can be theoretical (conceptual or mathematical) or physical (such as anatomical models, cell cultures, or animal models). They are widely used in biomedical research to study various phenomena, including disease pathophysiology, drug action, and therapeutic interventions.

Examples of biological models include:

1. Mathematical models: These use mathematical equations and formulas to describe complex biological systems or processes, such as population dynamics, metabolic pathways, or gene regulation networks. They can help predict the behavior of these systems under different conditions and test hypotheses about their underlying mechanisms.
2. Cell cultures: These are collections of cells grown in a controlled environment, typically in a laboratory dish or flask. They can be used to study cellular processes, such as signal transduction, gene expression, or metabolism, and to test the effects of drugs or other treatments on these processes.
3. Animal models: These are living organisms, usually vertebrates like mice, rats, or non-human primates, that are used to study various aspects of human biology and disease. They can provide valuable insights into the pathophysiology of diseases, the mechanisms of drug action, and the safety and efficacy of new therapies.
4. Anatomical models: These are physical representations of biological structures or systems, such as plastic models of organs or tissues, that can be used for educational purposes or to plan surgical procedures. They can also serve as a basis for developing more sophisticated models, such as computer simulations or 3D-printed replicas.

Overall, biological models play a crucial role in advancing our understanding of biology and medicine, helping to identify new targets for therapeutic intervention, develop novel drugs and treatments, and improve human health.

Dopamine D1 receptors are a type of G protein-coupled receptor that bind to the neurotransmitter dopamine. They are classified as D1-like receptors, along with D5 receptors, and are activated by dopamine through a stimulatory G protein (Gs).

D1 receptors are widely expressed in the central nervous system, including the striatum, prefrontal cortex, hippocampus, and amygdala. They play important roles in various physiological functions, such as movement control, motivation, reward processing, working memory, and cognition.

Activation of D1 receptors leads to increased levels of intracellular cyclic adenosine monophosphate (cAMP) and activation of protein kinase A (PKA), which in turn modulate the activity of various downstream signaling pathways. Dysregulation of dopamine D1 receptor function has been implicated in several neurological and psychiatric disorders, including Parkinson's disease, schizophrenia, attention deficit hyperactivity disorder (ADHD), and drug addiction.

Schizophrenia is a severe mental disorder characterized by disturbances in thought, perception, emotion, and behavior. It often includes hallucinations (usually hearing voices), delusions, paranoia, and disorganized speech and behavior. The onset of symptoms typically occurs in late adolescence or early adulthood. Schizophrenia is a complex, chronic condition that requires ongoing treatment and management. It significantly impairs social and occupational functioning, and it's often associated with reduced life expectancy due to comorbid medical conditions. The exact causes of schizophrenia are not fully understood, but research suggests that genetic, environmental, and neurodevelopmental factors play a role in its development.

'Ascaris' is a genus of parasitic roundworms that are known to infect the human gastrointestinal tract. The two species that commonly infect humans are Ascaris lumbricoides (also known as the "large roundworm") and Ascaris suum (the "pig roundworm").

Human infection with Ascaris lumbricoides typically occurs through the ingestion of contaminated food or water containing the worm's eggs. Once inside the human body, these eggs hatch into larvae, which migrate through various tissues before reaching the small intestine, where they mature into adult worms. Adult female worms can grow up to 20-35 cm in length and produce thousands of eggs per day, which are then excreted in feces and can contaminate the environment, perpetuating the transmission cycle.

Symptoms of ascariasis (the infection caused by Ascaris) can range from mild to severe, depending on the number of worms present and the individual's overall health status. Light infections may not cause any symptoms, while heavy infections can lead to abdominal pain, nausea, vomiting, diarrhea, and intestinal obstruction. In some cases, Ascaris worms may migrate to unusual locations such as the lungs or bile ducts, causing additional complications.

Preventive measures include improving sanitation and hygiene practices, such as handwashing with soap and water, proper disposal of human feces, and cooking food thoroughly before consumption. Treatment typically involves administration of anthelmintic medications that kill the worms, followed by appropriate follow-up care to ensure complete eradication of the infection.

Estranes are a type of steroid hormone related to estrogen, which is a female sex hormone. Estranes are not normally produced in the human body but can be found in some plants and animals. They are often used in hormone replacement therapy and contraceptives. Examples of estranes include equilin and equilenin, which are found in the urine of pregnant mares.

It's important to note that while estranes have estrogen-like effects on the body, they may also have unique properties and potential side effects compared to traditional estrogens. Therefore, their use should be carefully monitored and managed by a healthcare professional.

Transgenic rats are genetically modified rats that have incorporated foreign DNA (transgene) into their own genome. This is typically done through the use of recombinant DNA techniques in the laboratory. The transgene can come from any species, including other mammals, plants, or even bacteria. Once the transgene is introduced into the rat's embryonic cells, it becomes a permanent part of the rat's genetic makeup and is passed on to its offspring.

Transgenic rats are used in biomedical research as models for studying human diseases, developing new therapies, and testing the safety and efficacy of drugs. They offer several advantages over traditional laboratory rats, including the ability to manipulate specific genes, study gene function and regulation, and investigate the underlying mechanisms of disease.

Some common applications of transgenic rats in research include:

1. Modeling human diseases: Transgenic rats can be engineered to develop symptoms and characteristics of human diseases, such as cancer, diabetes, Alzheimer's, and Parkinson's. This allows researchers to study the disease progression, test new treatments, and evaluate their effectiveness.
2. Gene function and regulation: By introducing specific genes into rats, scientists can investigate their role in various biological processes, such as development, aging, and metabolism. They can also study how genes are regulated and how they interact with each other.
3. Drug development and testing: Transgenic rats can be used to test the safety and efficacy of new drugs before they are tested in humans. By studying the effects of drugs on transgenic rats, researchers can gain insights into their potential benefits and risks.
4. Toxicology studies: Transgenic rats can be used to study the toxicity of chemicals, pollutants, and other substances. This helps ensure that new products and treatments are safe for human use.

In summary, transgenic rats are genetically modified rats that have incorporated foreign DNA into their own genome. They are widely used in biomedical research to model human diseases, study gene function and regulation, develop new therapies, and test the safety and efficacy of drugs.

**Ketamine** is a dissociative anesthetic medication primarily used for starting and maintaining anesthesia. It can lead to a state of altered perception, hallucinations, sedation, and memory loss. Ketamine is also used as a pain reliever in patients with chronic pain conditions and during certain medical procedures due to its strong analgesic properties.

It is available as a generic drug and is also sold under various brand names, such as Ketalar, Ketanest, and Ketamine HCl. It can be administered intravenously, intramuscularly, orally, or as a nasal spray.

In addition to its medical uses, ketamine has been increasingly used off-label for the treatment of mood disorders like depression, anxiety, and post-traumatic stress disorder (PTSD), owing to its rapid antidepressant effects. However, more research is needed to fully understand its long-term benefits and risks in these applications.

It's important to note that ketamine can be abused recreationally due to its dissociative and hallucinogenic effects, which may lead to addiction and severe psychological distress. Therefore, it should only be used under the supervision of a medical professional.

Avoidance learning is a type of conditioning in which an individual learns to act in a certain way to avoid experiencing an unpleasant or aversive stimulus. It is a form of learning that occurs when an organism changes its behavior to avoid a negative outcome or situation. This can be seen in both animals and humans, and it is often studied in the field of psychology and neuroscience.

In avoidance learning, the individual learns to associate a particular cue or stimulus with the unpleasant experience. Over time, they learn to perform an action to escape or avoid the cue, thereby preventing the negative outcome from occurring. For example, if a rat receives an electric shock every time it hears a certain tone, it may eventually learn to press a lever to turn off the tone and avoid the shock.

Avoidance learning can be adaptive in some situations, as it allows individuals to avoid dangerous or harmful stimuli. However, it can also become maladaptive if it leads to excessive fear or anxiety, or if it interferes with an individual's ability to function in daily life. For example, a person who has been attacked may develop a phobia of public places and avoid them altogether, even though this limits their ability to engage in social activities and live a normal life.

In summary, avoidance learning is a type of conditioning in which an individual learns to act in a certain way to avoid experiencing an unpleasant or aversive stimulus. It can be adaptive in some situations but can also become maladaptive if it leads to excessive fear or anxiety or interferes with daily functioning.

I believe you may be referring to the "ventral" part of the hypothalamus, as there isn't a widely recognized anatomical division called the "middle" hypothalamus. The ventral hypothalamus is a region that contains several critical structures, including:

1. The infundibular stem: This is a funnel-shaped structure that extends downward from the hypothalamus and forms the beginning of the pituitary stalk. It contains tuber cinereum and the median eminence.
2. Tuber cinereum: A region with several nuclei, including the arcuate nucleus, which plays a role in regulating feeding behavior, growth hormone release, and sexual function.
3. Median eminence: A crucial area where the hypothalamus interacts with the pituitary gland. It contains nerve terminals that release neurohormones into the portal capillaries, which then carry these substances to the anterior pituitary to regulate hormone secretion.

The ventral hypothalamus is essential for various functions, such as releasing and inhibiting hormones, regulating body temperature, hunger, thirst, sleep, emotional behavior, and parental behaviors.

"Rana catesbeiana" is the scientific name for the American bullfrog, which is not a medical term or concept. It belongs to the animal kingdom, specifically in the order Anura and family Ranidae. The American bullfrog is native to North America and is known for its large size and distinctive loud call.

However, if you are looking for a medical definition, I apologize for any confusion. Please provide more context or specify the term you would like me to define.

Analog computers are a type of computer that use continuously variable physical quantities to represent and manipulate information. Unlike digital computers, which represent data using discrete binary digits (0s and 1s), analog computers use physical quantities such as voltage, current, or mechanical position to represent information. This allows them to perform certain types of calculations and simulations more accurately and efficiently than digital computers, particularly for systems that involve continuous change or complex relationships between variables.

Analog computers were widely used in scientific and engineering applications before the advent of digital computers, but they have since been largely replaced by digital technology due to its greater flexibility, reliability, and ease of use. However, analog computers are still used in some specialized applications such as control systems for industrial processes, flight simulators, and musical instruments.

In summary, analog computers are a type of computer that use continuously variable physical quantities to represent and manipulate information, and they are still used in some specialized applications today.

Hypothermia is a medically defined condition where the core body temperature drops below 35°C (95°F). It is often associated with exposure to cold environments, but can also occur in cases of severe illness, injury, or immersion in cold water. Symptoms may include shivering, confusion, slowed heart rate and breathing, and if not treated promptly, can lead to unconsciousness, cardiac arrest, and even death.

Spinal nerve roots are the initial parts of spinal nerves that emerge from the spinal cord through the intervertebral foramen, which are small openings between each vertebra in the spine. These nerve roots carry motor, sensory, and autonomic fibers to and from specific regions of the body. There are 31 pairs of spinal nerve roots in total, with 8 cervical, 12 thoracic, 5 lumbar, 5 sacral, and 1 coccygeal pair. Each root has a dorsal (posterior) and ventral (anterior) ramus that branch off to form the peripheral nervous system. Irritation or compression of these nerve roots can result in pain, numbness, weakness, or loss of reflexes in the affected area.

Drug tolerance is a medical concept that refers to the decreased response to a drug following its repeated use, requiring higher doses to achieve the same effect. This occurs because the body adapts to the presence of the drug, leading to changes in the function or expression of targets that the drug acts upon, such as receptors or enzymes. Tolerance can develop to various types of drugs, including opioids, benzodiazepines, and alcohol, and it is often associated with physical dependence and addiction. It's important to note that tolerance is different from resistance, which refers to the ability of a pathogen to survive or grow in the presence of a drug, such as antibiotics.

The tegmentum mesencephali, also known as the mesencephalic tegmentum, is a region in the midbrain (mesencephalon) of the brainstem. It contains several important structures including the periaqueductal gray matter, the nucleus raphe, the reticular formation, and various cranial nerve nuclei. The tegmentum mesencephali plays a crucial role in various functions such as pain modulation, sleep-wake regulation, eye movement control, and cardiovascular regulation.

Imidazoles are a class of heterocyclic organic compounds that contain a double-bonded nitrogen atom and two additional nitrogen atoms in the ring. They have the chemical formula C3H4N2. In a medical context, imidazoles are commonly used as antifungal agents. Some examples of imidazole-derived antifungals include clotrimazole, miconazole, and ketoconazole. These medications work by inhibiting the synthesis of ergosterol, a key component of fungal cell membranes, leading to increased permeability and death of the fungal cells. Imidazoles may also have anti-inflammatory, antibacterial, and anticancer properties.

The arcuate nucleus is a part of the hypothalamus in the brain. It is involved in the regulation of various physiological functions, including appetite, satiety, and reproductive hormones. The arcuate nucleus contains two main types of neurons: those that produce neuropeptide Y and agouti-related protein, which stimulate feeding and reduce energy expenditure; and those that produce pro-opiomelanocortin and cocaine-and-amphetamine-regulated transcript, which suppress appetite and increase energy expenditure. These neurons communicate with other parts of the brain to help maintain energy balance and reproductive function.

A microelectrode is a small electrode with dimensions ranging from several micrometers to a few tens of micrometers in diameter. They are used in various biomedical applications, such as neurophysiological studies, neuromodulation, and brain-computer interfaces. In these applications, microelectrodes serve to record electrical activity from individual or small groups of neurons or deliver electrical stimuli to specific neural structures with high spatial resolution.

Microelectrodes can be fabricated using various materials, including metals (e.g., tungsten, stainless steel, platinum), metal alloys, carbon fibers, and semiconductor materials like silicon. The design of microelectrodes may vary depending on the specific application, with some common types being sharpened metal wires, glass-insulated metal microwires, and silicon-based probes with multiple recording sites.

The development and use of microelectrodes have significantly contributed to our understanding of neural function in health and disease, enabling researchers and clinicians to investigate the underlying mechanisms of neurological disorders and develop novel therapies for conditions such as Parkinson's disease, epilepsy, and hearing loss.

REM sleep, or Rapid Eye Movement sleep, is a stage of sleep characterized by rapid eye movements, low muscle tone, and active brain activity. It is one of the two main types of sleep along with non-REM sleep and is marked by vivid dreaming, increased brain metabolism, and altered brain wave patterns. REM sleep is often referred to as "paradoxical sleep" because of the seemingly contradictory nature of its characteristics - an active brain in a state of relaxation. It is thought to play a role in memory consolidation, learning, and mood regulation. A typical night's sleep cycle includes several episodes of REM sleep, with each episode becoming longer as the night progresses.

Dimerization is a process in which two molecules, usually proteins or similar structures, bind together to form a larger complex. This can occur through various mechanisms, such as the formation of disulfide bonds, hydrogen bonding, or other non-covalent interactions. Dimerization can play important roles in cell signaling, enzyme function, and the regulation of gene expression.

In the context of medical research and therapy, dimerization is often studied in relation to specific proteins that are involved in diseases such as cancer. For example, some drugs have been developed to target and inhibit the dimerization of certain proteins, with the goal of disrupting their function and slowing or stopping the progression of the disease.

Mannoheptulose is a type of sugar that occurs naturally in some plants, including avocados and a few other fruits. Its chemical formula is C7H14O7, and it's a heptose (a monosaccharide or simple sugar with seven carbon atoms) with a mannose configuration.

In the context of medical definitions, mannoheptulose might be mentioned in relation to certain metabolic disorders or dietary considerations. For instance, some research has suggested that mannoheptulose may have an impact on insulin secretion and glucose metabolism, although its effects are not fully understood and it is not widely used in clinical practice.

It's worth noting that while mannoheptulose does occur naturally in some foods, it's not a common or well-known sugar, and it's not typically included as an added ingredient in processed foods. As with any sugar or sweetener, it's generally a good idea to consume it in moderation as part of a balanced diet.

Drug receptors are specific protein molecules found on the surface of cells, to which drugs can bind. These receptors are part of the cell's communication system and are responsible for responding to neurotransmitters, hormones, and other signaling molecules in the body. When a drug binds to its corresponding receptor, it can alter the receptor's function and trigger a cascade of intracellular events that ultimately lead to a biological response.

Drug receptors can be classified into several types based on their function, including:

1. G protein-coupled receptors (GPCRs): These are the largest family of drug receptors and are involved in various physiological processes such as vision, olfaction, neurotransmission, and hormone signaling. They activate intracellular signaling pathways through heterotrimeric G proteins.
2. Ion channel receptors: These receptors form ion channels that allow the flow of ions across the cell membrane when activated. They are involved in rapid signal transduction and can be directly gated by ligands or indirectly through G protein-coupled receptors.
3. Enzyme-linked receptors: These receptors have an intracellular domain that functions as an enzyme, activating intracellular signaling pathways when bound to a ligand. Examples include receptor tyrosine kinases and receptor serine/threonine kinases.
4. Nuclear receptors: These receptors are located in the nucleus and function as transcription factors, regulating gene expression upon binding to their ligands.

Understanding drug receptors is crucial for developing new drugs and predicting their potential therapeutic and adverse effects. By targeting specific receptors, drugs can modulate cellular responses and produce desired pharmacological actions.

Dopamine agonists are a class of medications that mimic the action of dopamine, a neurotransmitter in the brain that regulates movement, emotion, motivation, and reinforcement of rewarding behaviors. These medications bind to dopamine receptors in the brain and activate them, leading to an increase in dopaminergic activity.

Dopamine agonists are used primarily to treat Parkinson's disease, a neurological disorder characterized by motor symptoms such as tremors, rigidity, bradykinesia (slowness of movement), and postural instability. By increasing dopaminergic activity in the brain, dopamine agonists can help alleviate some of these symptoms.

Examples of dopamine agonists include:

1. Pramipexole (Mirapex)
2. Ropinirole (Requip)
3. Rotigotine (Neupro)
4. Apomorphine (Apokyn)

Dopamine agonists may also be used off-label to treat other conditions, such as restless legs syndrome or certain types of dopamine-responsive dystonia. However, these medications can have significant side effects, including nausea, dizziness, orthostatic hypotension, compulsive behaviors (such as gambling, shopping, or sexual addiction), and hallucinations. Therefore, they should be used with caution and under the close supervision of a healthcare provider.

The "immobility response, tonic" is a medical term that refers to a state of decreased movement or complete immobility, often in response to stress or fear. This reaction is characterized by an increased muscle tone, which can lead to rigidity and stiffness. It's a primitive response that occurs in many animals, including humans, and is thought to be a protective mechanism that helps individuals avoid detection by predators.

In a clinical setting, the immobility response, tonic may be observed during medical procedures or situations that cause fear or discomfort. For example, some people may become immobile and rigid when they are afraid of needles or other sharp objects. This response can make it difficult to perform certain medical procedures, and healthcare providers may need to take special precautions to ensure the safety and comfort of their patients.

It's important to note that while the immobility response, tonic is a normal physiological reaction in many situations, prolonged or frequent episodes can have negative consequences on an individual's physical and mental health. Chronic stress and fear can lead to a range of health problems, including anxiety, depression, and chronic pain.

'Piper nigrum' is not a medical term, but it is a botanical name. It refers to the black pepper plant, which is native to South India and Southeast Asia. The fruit of the plant, known as peppercorns, is used as a spice and has various medicinal properties.

Black pepper contains piperine, an alkaloid that gives it its pungent flavor and may have several health benefits, such as improving digestion, reducing inflammation, and enhancing bioavailability of nutrients in other foods when consumed together. However, more research is needed to confirm these potential benefits and establish appropriate dosages for medical use.

Urodela is not a medical term, but a taxonomic category in the field of biology. It refers to a group of amphibians commonly known as newts and salamanders. These creatures are characterized by their slender bodies, moist skin, and four legs. They undergo a process of metamorphosis during their development, transitioning from an aquatic larval stage to a terrestrial adult stage.

While not a medical term itself, understanding the biology and ecology of Urodela can be relevant in fields such as environmental health and toxicology, where these animals may serve as indicators of ecosystem health or potential subjects for studying the effects of pollutants on living organisms.

In the context of medical and clinical neuroscience, memory is defined as the brain's ability to encode, store, retain, and recall information or experiences. Memory is a complex cognitive process that involves several interconnected regions of the brain and can be categorized into different types based on various factors such as duration and the nature of the information being remembered.

The major types of memory include:

1. Sensory memory: The shortest form of memory, responsible for holding incoming sensory information for a brief period (less than a second to several seconds) before it is either transferred to short-term memory or discarded.
2. Short-term memory (also called working memory): A temporary storage system that allows the brain to hold and manipulate information for approximately 20-30 seconds, although this duration can be extended through rehearsal strategies. Short-term memory has a limited capacity, typically thought to be around 7±2 items.
3. Long-term memory: The memory system responsible for storing large amounts of information over extended periods, ranging from minutes to a lifetime. Long-term memory has a much larger capacity compared to short-term memory and is divided into two main categories: explicit (declarative) memory and implicit (non-declarative) memory.

Explicit (declarative) memory can be further divided into episodic memory, which involves the recollection of specific events or episodes, including their temporal and spatial contexts, and semantic memory, which refers to the storage and retrieval of general knowledge, facts, concepts, and vocabulary, independent of personal experience or context.

Implicit (non-declarative) memory encompasses various forms of learning that do not require conscious awareness or intention, such as procedural memory (skills and habits), priming (facilitated processing of related stimuli), classical conditioning (associative learning), and habituation (reduced responsiveness to repeated stimuli).

Memory is a crucial aspect of human cognition and plays a significant role in various aspects of daily life, including learning, problem-solving, decision-making, social interactions, and personal identity. Memory dysfunction can result from various neurological and psychiatric conditions, such as dementia, Alzheimer's disease, stroke, traumatic brain injury, and depression.

Halothane is a general anesthetic agent, which is a volatile liquid that evaporates easily and can be inhaled. It is used to produce and maintain general anesthesia (a state of unconsciousness) during surgical procedures. Halothane is known for its rapid onset and offset of action, making it useful for both induction and maintenance of anesthesia.

The medical definition of Halothane is:

Halothane (2-bromo-2-chloro-1,1,1-trifluoroethane) is a volatile liquid general anesthetic agent with a mild, sweet odor. It is primarily used for the induction and maintenance of general anesthesia in surgical procedures due to its rapid onset and offset of action. Halothane is administered via inhalation and acts by depressing the central nervous system, leading to a reversible loss of consciousness and analgesia.

It's important to note that Halothane has been associated with rare cases of severe liver injury (hepatotoxicity) and anaphylaxis (a severe, life-threatening allergic reaction). These risks have led to the development and use of alternative general anesthetic agents with better safety profiles.

The olfactory pathways refer to the neural connections and structures involved in the sense of smell. The process begins with odor molecules that are inhaled through the nostrils, where they bind to specialized receptor cells located in the upper part of the nasal cavity, known as the olfactory epithelium.

These receptor cells then transmit signals via the olfactory nerve (cranial nerve I) to the olfactory bulb, a structure at the base of the brain. Within the olfactory bulb, the signals are processed and relayed through several additional structures, including the olfactory tract, lateral olfactory striae, and the primary olfactory cortex (located within the piriform cortex).

From there, information about odors is further integrated with other sensory systems and cognitive functions in higher-order brain regions, such as the limbic system, thalamus, and hippocampus. This complex network of olfactory pathways allows us to perceive and recognize various scents and plays a role in emotional responses, memory formation, and feeding behaviors.

ICR (Institute of Cancer Research) is a strain of albino Swiss mice that are widely used in scientific research. They are an outbred strain, which means that they have been bred to maintain maximum genetic heterogeneity. However, it is also possible to find inbred strains of ICR mice, which are genetically identical individuals produced by many generations of brother-sister mating.

Inbred ICR mice are a specific type of ICR mouse that has been inbred for at least 20 generations. This means that they have a high degree of genetic uniformity and are essentially genetically identical to one another. Inbred strains of mice are often used in research because their genetic consistency makes them more reliable models for studying biological phenomena and testing new therapies or treatments.

It is important to note that while inbred ICR mice may be useful for certain types of research, they do not necessarily represent the genetic diversity found in human populations. Therefore, it is important to consider the limitations of using any animal model when interpreting research findings and applying them to human health.

Transaminases, also known as aminotransferases, are a group of enzymes found in various tissues of the body, particularly in the liver, heart, muscle, and kidneys. They play a crucial role in the metabolism of amino acids, the building blocks of proteins.

There are two major types of transaminases: aspartate aminotransferase (AST) and alanine aminotransferase (ALT). Both enzymes are normally present in low concentrations in the bloodstream. However, when tissues that contain these enzymes are damaged or injured, such as during liver disease or muscle damage, the levels of AST and ALT in the blood may significantly increase.

Measurement of serum transaminase levels is a common laboratory test used to assess liver function and detect liver injury or damage. Increased levels of these enzymes in the blood can indicate conditions such as hepatitis, liver cirrhosis, drug-induced liver injury, heart attack, and muscle disorders. It's important to note that while elevated transaminase levels may suggest liver disease, they do not specify the type or cause of the condition, and further diagnostic tests are often required for accurate diagnosis and treatment.

Nicotinic antagonists are a class of drugs that block the action of nicotine at nicotinic acetylcholine receptors (nAChRs). These receptors are found in the nervous system and are activated by the neurotransmitter acetylcholine, as well as by nicotine. When nicotine binds to these receptors, it can cause the release of various neurotransmitters, including dopamine, which can lead to rewarding effects and addiction.

Nicotinic antagonists work by binding to nAChRs and preventing nicotine from activating them. This can help to reduce the rewarding effects of nicotine and may be useful in treating nicotine addiction. Examples of nicotinic antagonists include mecamylamine, varenicline, and cytisine.

It's important to note that while nicotinic antagonists can help with nicotine addiction, they can also have side effects, such as nausea, vomiting, and abnormal dreams. Additionally, some people may experience more serious side effects, such as seizures or cardiovascular problems, so it's important to use these medications under the close supervision of a healthcare provider.

Down-regulation is a process that occurs in response to various stimuli, where the number or sensitivity of cell surface receptors or the expression of specific genes is decreased. This process helps maintain homeostasis within cells and tissues by reducing the ability of cells to respond to certain signals or molecules.

In the context of cell surface receptors, down-regulation can occur through several mechanisms:

1. Receptor internalization: After binding to their ligands, receptors can be internalized into the cell through endocytosis. Once inside the cell, these receptors may be degraded or recycled back to the cell surface in smaller numbers.
2. Reduced receptor synthesis: Down-regulation can also occur at the transcriptional level, where the expression of genes encoding for specific receptors is decreased, leading to fewer receptors being produced.
3. Receptor desensitization: Prolonged exposure to a ligand can lead to a decrease in receptor sensitivity or affinity, making it more difficult for the cell to respond to the signal.

In the context of gene expression, down-regulation refers to the decreased transcription and/or stability of specific mRNAs, leading to reduced protein levels. This process can be induced by various factors, including microRNA (miRNA)-mediated regulation, histone modification, or DNA methylation.

Down-regulation is an essential mechanism in many physiological processes and can also contribute to the development of several diseases, such as cancer and neurodegenerative disorders.

Electroshock, also known as electroconvulsive therapy (ECT), is a medical procedure in which electric currents are passed through the brain to treat certain mental health conditions. It is primarily used to treat severe forms of depression that have not responded to other treatments, and it may also be used to treat bipolar disorder and schizophrenia.

During an ECT procedure, electrodes are placed on the patient's head, and a carefully controlled electric current is passed through the brain, intentionally triggering a seizure. The patient is under general anesthesia and given muscle relaxants to prevent physical injury from the seizure.

ECT is typically administered in a series of treatments, usually two or three times a week for several weeks. While the exact mechanism of action is not fully understood, ECT is thought to affect brain chemistry and help regulate mood and other symptoms. It is generally considered a safe and effective treatment option for certain mental health conditions when other treatments have failed. However, it can have side effects, including short-term memory loss and confusion, and it may not be appropriate for everyone.

A chemical stimulation in a medical context refers to the process of activating or enhancing physiological or psychological responses in the body using chemical substances. These chemicals can interact with receptors on cells to trigger specific reactions, such as neurotransmitters and hormones that transmit signals within the nervous system and endocrine system.

Examples of chemical stimulation include the use of medications, drugs, or supplements that affect mood, alertness, pain perception, or other bodily functions. For instance, caffeine can chemically stimulate the central nervous system to increase alertness and decrease feelings of fatigue. Similarly, certain painkillers can chemically stimulate opioid receptors in the brain to reduce the perception of pain.

It's important to note that while chemical stimulation can have therapeutic benefits, it can also have adverse effects if used improperly or in excessive amounts. Therefore, it's essential to follow proper dosing instructions and consult with a healthcare provider before using any chemical substances for stimulation purposes.

Ethylenediamines are organic compounds that contain two amine groups (-NH2) separated by two methylene bridges (-CH2-). The general formula for ethylenediamines is C2H8N2. They can act as a chelating agent, forming stable complexes with many metal ions. Ethylenediamines are used in various industrial and pharmaceutical applications, including the manufacture of resins, textile dyes, and as a solvent for cellulose acetate. In medicine, they can be used as a vasodilator and in the treatment of urinary tract infections.

Fear is a basic human emotion that is typically characterized by a strong feeling of anxiety, apprehension, or distress in response to a perceived threat or danger. It is a natural and adaptive response that helps individuals identify and respond to potential dangers in their environment, and it can manifest as physical, emotional, and cognitive symptoms.

Physical symptoms of fear may include increased heart rate, rapid breathing, sweating, trembling, and muscle tension. Emotional symptoms may include feelings of anxiety, worry, or panic, while cognitive symptoms may include difficulty concentrating, racing thoughts, and intrusive thoughts about the perceived threat.

Fear can be a normal and adaptive response to real dangers, but it can also become excessive or irrational in some cases, leading to phobias, anxiety disorders, and other mental health conditions. In these cases, professional help may be necessary to manage and overcome the fear.

Analgesics are a class of drugs that are used to relieve pain. They work by blocking the transmission of pain signals in the nervous system, allowing individuals to manage their pain levels more effectively. There are many different types of analgesics available, including both prescription and over-the-counter options. Some common examples include acetaminophen (Tylenol), ibuprofen (Advil or Motrin), and opioids such as morphine or oxycodone.

The choice of analgesic will depend on several factors, including the type and severity of pain being experienced, any underlying medical conditions, potential drug interactions, and individual patient preferences. It is important to use these medications as directed by a healthcare provider, as misuse or overuse can lead to serious side effects and potential addiction.

In addition to their pain-relieving properties, some analgesics may also have additional benefits such as reducing inflammation (like in the case of nonsteroidal anti-inflammatory drugs or NSAIDs) or causing sedation (as with certain opioids). However, it is essential to weigh these potential benefits against the risks and side effects associated with each medication.

When used appropriately, analgesics can significantly improve a person's quality of life by helping them manage their pain effectively and allowing them to engage in daily activities more comfortably.

Agatoxins are a group of neurotoxins that are derived from the venom of funnel web spiders, specifically in the genus Agelenopsis and Agelena. These toxins primarily target and inhibit the function of voltage-gated calcium channels (VGCCs) found in nerve cells.

Agatoxins can be further divided into subtypes based on their specificity for different VGCC isoforms, such as Agatoxin-I, which selectively binds to P/Q-type VGCCs, and Agatoxin-II, which targets N-type VGCCs.

These toxins have been extensively studied in neuroscience research due to their ability to modulate synaptic transmission and plasticity, making them valuable tools for understanding the molecular mechanisms underlying various neurological processes and diseases. Additionally, there is interest in developing agatoxin-based therapeutics for treating conditions such as chronic pain and epilepsy.

Auditory pathways refer to the series of structures and nerves in the body that are involved in processing sound and transmitting it to the brain for interpretation. The process begins when sound waves enter the ear and cause vibrations in the eardrum, which then move the bones in the middle ear. These movements stimulate hair cells in the cochlea, a spiral-shaped structure in the inner ear, causing them to release neurotransmitters that activate auditory nerve fibers.

The auditory nerve carries these signals to the brainstem, where they are relayed through several additional structures before reaching the auditory cortex in the temporal lobe of the brain. Here, the signals are processed and interpreted as sounds, allowing us to hear and understand speech, music, and other environmental noises.

Damage or dysfunction at any point along the auditory pathway can lead to hearing loss or impairment.

In the context of medicine, particularly in behavioral neuroscience and psychology, "reward" is not typically used as a definitive medical term. However, it generally refers to a positive outcome or incentive that reinforces certain behaviors, making them more likely to be repeated in the future. This can involve various stimuli such as food, water, sexual activity, social interaction, or drug use, among others.

In the brain, rewards are associated with the activation of the reward system, primarily the mesolimbic dopamine pathway, which includes the ventral tegmental area (VTA) and the nucleus accumbens (NAcc). The release of dopamine in these areas is thought to reinforce and motivate behavior linked to rewards.

It's important to note that while "reward" has a specific meaning in this context, it is not a formal medical diagnosis or condition. Instead, it is a concept used to understand the neural and psychological mechanisms underlying motivation, learning, and addiction.

Androstenols are a type of steroid compound that is found in both animals and humans. They are classified as pheromones, which are chemicals that can affect the behavior or physiology of other members of the same species. Androstenols are found in high concentrations in male sweat, and they have been suggested to play a role in human sexual attraction and communication.

In particular, androstenols are thought to have a positive and calming effect on people, and may help to reduce stress and anxiety. They have also been shown to increase feelings of approachability and friendliness between individuals. Some studies have suggested that androstenols may be particularly effective at enhancing social interactions in women.

Androstenols are often used in perfumes and colognes, as well as in aromatherapy products, because of their potential to promote positive social interactions and reduce stress. However, it is important to note that the effects of androstenols on human behavior and physiology are still not fully understood, and more research is needed to confirm their role in human communication and attraction.

Ivermectin is an anti-parasitic drug that is used to treat a variety of infections caused by parasites such as roundworms, threadworms, and lice. It works by paralyzing and killing the parasites, thereby eliminating the infection. Ivermectin is available in various forms, including tablets, creams, and solutions for topical use, as well as injections for veterinary use.

Ivermectin has been shown to be effective against a wide range of parasitic infections, including onchocerciasis (river blindness), strongyloidiasis, scabies, and lice infestations. It is also being studied as a potential treatment for other conditions, such as COVID-19, although its effectiveness for this use has not been proven.

Ivermectin is generally considered safe when used as directed, but it can cause side effects in some people, including skin rashes, nausea, and diarrhea. It should be used with caution in pregnant women and people with certain medical conditions, such as liver or kidney disease.

Ethosuximide is a medication that belongs to a class of drugs called anticonvulsants or anti-seizure medications. It is primarily used to treat absence seizures, also known as petit mal seizures, which are a type of seizure characterized by brief, sudden lapses in consciousness.

Ethosuximide works by reducing the abnormal electrical activity in the brain that leads to seizures. It does this by inhibiting the formation of sodium channels in the brain, which helps to stabilize the electrical impulses and reduce the likelihood of seizure activity.

Like all medications, ethosuximide can have side effects, including stomach upset, dizziness, headache, and sleepiness. It is important for patients to follow their doctor's instructions carefully when taking this medication and to report any bothersome or persistent side effects promptly. Ethosuximide may also interact with other medications, so it is important to inform your healthcare provider of all medications you are taking before starting ethosuximide therapy.

High-performance liquid chromatography (HPLC) is a type of chromatography that separates and analyzes compounds based on their interactions with a stationary phase and a mobile phase under high pressure. The mobile phase, which can be a gas or liquid, carries the sample mixture through a column containing the stationary phase.

In HPLC, the mobile phase is a liquid, and it is pumped through the column at high pressures (up to several hundred atmospheres) to achieve faster separation times and better resolution than other types of liquid chromatography. The stationary phase can be a solid or a liquid supported on a solid, and it interacts differently with each component in the sample mixture, causing them to separate as they travel through the column.

HPLC is widely used in analytical chemistry, pharmaceuticals, biotechnology, and other fields to separate, identify, and quantify compounds present in complex mixtures. It can be used to analyze a wide range of substances, including drugs, hormones, vitamins, pigments, flavors, and pollutants. HPLC is also used in the preparation of pure samples for further study or use.

Neuropeptide Y (NPY) is a neurotransmitter and neuropeptide that is widely distributed in the central and peripheral nervous systems. It is a member of the pancreatic polypeptide family, which includes peptide YY and pancreatic polypeptide. NPY plays important roles in various physiological functions such as energy balance, feeding behavior, stress response, anxiety, memory, and cardiovascular regulation. It is involved in the modulation of neurotransmitter release, synaptic plasticity, and neural development. NPY is synthesized from a larger precursor protein called prepro-NPY, which is post-translationally processed to generate the mature NPY peptide. The NPY system has been implicated in various pathological conditions such as obesity, depression, anxiety disorders, hypertension, and drug addiction.

The basal ganglia are a group of interconnected nuclei, or clusters of neurons, located in the base of the brain. They play a crucial role in regulating motor function, cognition, and emotion. The main components of the basal ganglia include the striatum (made up of the caudate nucleus, putamen, and ventral striatum), globus pallidus (divided into external and internal segments), subthalamic nucleus, and substantia nigra (with its pars compacta and pars reticulata).

The basal ganglia receive input from various regions of the cerebral cortex and other brain areas. They process this information and send output back to the thalamus and cortex, helping to modulate and coordinate movement. The basal ganglia also contribute to higher cognitive functions such as learning, decision-making, and habit formation. Dysfunction in the basal ganglia can lead to neurological disorders like Parkinson's disease, Huntington's disease, and dystonia.

A kidney, in medical terms, is one of two bean-shaped organs located in the lower back region of the body. They are essential for maintaining homeostasis within the body by performing several crucial functions such as:

1. Regulation of water and electrolyte balance: Kidneys help regulate the amount of water and various electrolytes like sodium, potassium, and calcium in the bloodstream to maintain a stable internal environment.

2. Excretion of waste products: They filter waste products from the blood, including urea (a byproduct of protein metabolism), creatinine (a breakdown product of muscle tissue), and other harmful substances that result from normal cellular functions or external sources like medications and toxins.

3. Endocrine function: Kidneys produce several hormones with important roles in the body, such as erythropoietin (stimulates red blood cell production), renin (regulates blood pressure), and calcitriol (activated form of vitamin D that helps regulate calcium homeostasis).

4. pH balance regulation: Kidneys maintain the proper acid-base balance in the body by excreting either hydrogen ions or bicarbonate ions, depending on whether the blood is too acidic or too alkaline.

5. Blood pressure control: The kidneys play a significant role in regulating blood pressure through the renin-angiotensin-aldosterone system (RAAS), which constricts blood vessels and promotes sodium and water retention to increase blood volume and, consequently, blood pressure.

Anatomically, each kidney is approximately 10-12 cm long, 5-7 cm wide, and 3 cm thick, with a weight of about 120-170 grams. They are surrounded by a protective layer of fat and connected to the urinary system through the renal pelvis, ureters, bladder, and urethra.

Efferent neurons are specialized nerve cells that transmit signals from the central nervous system (CNS), which includes the brain and spinal cord, to effector organs such as muscles or glands. These signals typically result in a response or action, hence the term "efferent," derived from the Latin word "efferre" meaning "to carry away."

Efferent neurons are part of the motor pathway and can be further classified into two types:

1. Somatic efferent neurons: These neurons transmit signals to skeletal muscles, enabling voluntary movements and posture maintenance. They have their cell bodies located in the ventral horn of the spinal cord and send their axons through the ventral roots to innervate specific muscle fibers.
2. Autonomic efferent neurons: These neurons are responsible for controlling involuntary functions, such as heart rate, digestion, respiration, and pupil dilation. They have a two-neuron chain arrangement, with the preganglionic neuron having its cell body in the CNS (brainstem or spinal cord) and synapsing with the postganglionic neuron in an autonomic ganglion near the effector organ. Autonomic efferent neurons can be further divided into sympathetic, parasympathetic, and enteric subdivisions based on their functions and innervation patterns.

In summary, efferent neurons are a critical component of the nervous system, responsible for transmitting signals from the CNS to various effector organs, ultimately controlling and coordinating numerous bodily functions and responses.

Panic, in a medical context, refers to an intense and sudden episode of fear or discomfort that reaches a peak within minutes, accompanied by physical reactions such as increased heart rate, rapid breathing (hyperventilation), trembling, shaking, and potentially causing a feeling of losing control or going crazy. It's often a symptom of panic disorder or another anxiety disorder. A single panic attack doesn't necessarily mean a person has a panic disorder, but repeated attacks may indicate this condition.

Serotonin antagonists are a class of drugs that block the action of serotonin, a neurotransmitter, at specific receptor sites in the brain and elsewhere in the body. They work by binding to the serotonin receptors without activating them, thereby preventing the natural serotonin from binding and transmitting signals.

Serotonin antagonists are used in the treatment of various conditions such as psychiatric disorders, migraines, and nausea and vomiting associated with cancer chemotherapy. They can have varying degrees of affinity for different types of serotonin receptors (e.g., 5-HT2A, 5-HT3, etc.), which contributes to their specific therapeutic effects and side effect profiles.

Examples of serotonin antagonists include ondansetron (used to treat nausea and vomiting), risperidone and olanzapine (used to treat psychiatric disorders), and methysergide (used to prevent migraines). It's important to note that these medications should be used under the supervision of a healthcare provider, as they can have potential risks and interactions with other drugs.

Malformations of Cortical Development (MCDs) are a group of congenital brain abnormalities that occur during the development and organization of the cerebral cortex, which is the brain region responsible for higher cognitive functions. These malformations result from disruptions in neuronal migration, proliferation, or organization, leading to varying degrees of cortical thickness, folding, and structural integrity.

MCDs can be classified into several subtypes based on their distinct neuroimaging and histopathological features. Some common MCD subtypes include:

1. Lissencephaly (smooth brain): A severe malformation characterized by the absence of normal gyral and sulcal patterns, resulting in a smooth cortical surface. This is caused by defects in neuronal migration during early development.
2. Polymicrogyria (many small folds): A condition where the cortex has an excessive number of small, irregular gyri, leading to thickened and disorganized cortical layers. This can be focal or diffuse and is caused by abnormal neuronal migration or organization during mid to late development.
3. Schizencephaly (cleft brain): A malformation characterized by a linear cleft or gap in the cerebral cortex, extending from the pial surface to the ventricular system. This can be unilateral or bilateral and is caused by disruptions in neuronal migration and/or cortical organization during early development.
4. Heterotopias (misplaced cells): A condition where groups of neurons are abnormally located within the white matter or at the gray-white matter junction, instead of their normal position in the cerebral cortex. This can be focal or diffuse and is caused by defects in neuronal migration during early development.
5. Focal cortical dysplasia (abnormal localized tissue): A condition characterized by abnormal cortical architecture, including disorganized lamination, enlarged neurons, and heterotopic neurons. This can be focal or multifocal and is caused by defects in cortical organization during late development.

MCDs are often associated with neurological symptoms such as epilepsy, intellectual disability, motor deficits, and behavioral abnormalities. The severity of these symptoms depends on the type, location, and extent of the malformation.

Neutral amino acid transport systems refer to a group of membrane transporters that facilitate the movement of neutral amino acids across cell membranes. Neutral amino acids are those that have a neutral charge at physiological pH and include amino acids such as alanine, serine, threonine, valine, leucine, isoleucine, methionine, cysteine, tyrosine, phenylalanine, and tryptophan.

There are several different transport systems that have been identified for neutral amino acids, each with its own specificity and affinity for different amino acids. Some of the major neutral amino acid transport systems include:

1. System A: This transporter preferentially transports small, neutral amino acids such as alanine, serine, and threonine. It is found in many tissues, including the intestines, kidneys, and brain.
2. System B0+: This transporter preferentially transports large, neutral amino acids such as leucine, isoleucine, valine, methionine, and phenylalanine. It is found in many tissues, including the intestines, kidneys, and brain.
3. System L: This transporter preferentially transports large, neutral amino acids such as leucine, isoleucine, valine, methionine, and phenylalanine. It is found in many tissues, including the intestines, kidneys, and brain.
4. System y+: This transporter preferentially transports cationic amino acids such as lysine and arginine, but it can also transport some neutral amino acids. It is found in many tissues, including the intestines, kidneys, and brain.
5. System b0,+: This transporter preferentially transports cationic amino acids such as lysine and arginine, but it can also transport some neutral amino acids. It is found in many tissues, including the intestines, kidneys, and brain.

These transport systems play important roles in maintaining amino acid homeostasis in the body, as well as in various physiological processes such as protein synthesis, neurotransmitter synthesis, and cell signaling. Dysregulation of these transport systems has been implicated in several diseases, including cancer, neurological disorders, and metabolic disorders.

Operant conditioning is a type of learning in which behavior is modified by its consequences, either reinforcing or punishing the behavior. It was first described by B.F. Skinner and involves an association between a response (behavior) and a consequence (either reward or punishment). There are two types of operant conditioning: positive reinforcement, in which a desirable consequence follows a desired behavior, increasing the likelihood that the behavior will occur again; and negative reinforcement, in which a undesirable consequence is removed following a desired behavior, also increasing the likelihood that the behavior will occur again.

For example, if a child cleans their room (response) and their parent gives them praise or a treat (positive reinforcement), the child is more likely to clean their room again in the future. If a child is buckling their seatbelt in the car (response) and the annoying buzzer stops (negative reinforcement), the child is more likely to buckle their seatbelt in the future.

It's important to note that operant conditioning is a form of learning, not motivation. The behavior is modified by its consequences, regardless of the individual's internal state or intentions.

The Central Nervous System (CNS) is the part of the nervous system that consists of the brain and spinal cord. It is called the "central" system because it receives information from, and sends information to, the rest of the body through peripheral nerves, which make up the Peripheral Nervous System (PNS).

The CNS is responsible for processing sensory information, controlling motor functions, and regulating various autonomic processes like heart rate, respiration, and digestion. The brain, as the command center of the CNS, interprets sensory stimuli, formulates thoughts, and initiates actions. The spinal cord serves as a conduit for nerve impulses traveling to and from the brain and the rest of the body.

The CNS is protected by several structures, including the skull (which houses the brain) and the vertebral column (which surrounds and protects the spinal cord). Despite these protective measures, the CNS remains vulnerable to injury and disease, which can have severe consequences due to its crucial role in controlling essential bodily functions.

Alprazolam is a medication that belongs to a class of drugs called benzodiazepines. It works by increasing the activity of gamma-aminobutyric acid (GABA), a neurotransmitter in the brain that has a calming effect. Alprazolam is used to treat anxiety disorders, panic disorder, and anxiety associated with depression.

The medical definition of Alprazolam is:

"A triazolo analog of the benzodiazepine class of central nervous system-active compounds. It has antianxiety, anticonvulsant, muscle relaxant, and sedative properties. Alprazolam is used in the management of anxiety disorders, panic disorder, and anxiety associated with depression."

It's important to note that Alprazolam can be habit-forming and should only be taken under the supervision of a healthcare provider. It can also cause side effects such as drowsiness, dizziness, and impaired coordination. If you have any questions about Alprazolam or are considering taking it, it's important to speak with your doctor first.

Norepinephrine, also known as noradrenaline, is a neurotransmitter and a hormone that is primarily produced in the adrenal glands and is released into the bloodstream in response to stress or physical activity. It plays a crucial role in the "fight-or-flight" response by preparing the body for action through increasing heart rate, blood pressure, respiratory rate, and glucose availability.

As a neurotransmitter, norepinephrine is involved in regulating various functions of the nervous system, including attention, perception, motivation, and arousal. It also plays a role in modulating pain perception and responding to stressful or emotional situations.

In medical settings, norepinephrine is used as a vasopressor medication to treat hypotension (low blood pressure) that can occur during septic shock, anesthesia, or other critical illnesses. It works by constricting blood vessels and increasing heart rate, which helps to improve blood pressure and perfusion of vital organs.

Secobarbital is a barbiturate medication that is primarily used for the treatment of short-term insomnia and as a preoperative sedative. It works by depressing the central nervous system, producing a calming effect and helping to induce sleep. Secobarbital has a rapid onset of action and a relatively short duration of effect.

It is available in various forms, including capsules and injectable solutions, and is typically prescribed for use on an as-needed basis rather than as a regular medication. Secobarbital can be habit-forming and carries a risk of dependence and withdrawal, so it should only be used under the close supervision of a healthcare provider.

It's important to note that Secobarbital is not commonly prescribed in modern medical practice due to its high potential for abuse and the availability of safer and more effective sleep aids.

Orexin receptors are a type of G protein-coupled receptor found in the central nervous system that play a crucial role in regulating various physiological functions, including wakefulness, energy balance, and reward processing. There are two subtypes of orexin receptors: OX1R (orexin-1 receptor) and OX2R (orexin-2 receptor). These receptors bind to the neuropeptides orexin A and orexin B, which are synthesized in a small group of neurons located in the hypothalamus. Activation of these receptors leads to increased wakefulness, appetite stimulation, and reward-seeking behavior, among other effects. Dysregulation of the orexin system has been implicated in several neurological disorders, such as narcolepsy, where a loss of orexin-producing neurons results in excessive daytime sleepiness and cataplexy.

The olivary nucleus is a structure located in the medulla oblongata, which is a part of the brainstem. It consists of two main parts: the inferior olive and the accessory olive. The inferior olive is further divided into several subnuclei.

The olivary nucleus plays an important role in the coordination of movements, particularly in the regulation of fine motor control and rhythmic movements. It receives input from various sources, including the cerebellum, spinal cord, and other brainstem nuclei, and sends output to the cerebellum via the climbing fibers.

Damage to the olivary nucleus can result in a variety of neurological symptoms, including ataxia (loss of coordination), tremors, and dysarthria (speech difficulties). Certain neurodegenerative disorders, such as multiple system atrophy, may also affect the olivary nucleus and contribute to its degeneration.

Hypothalamic diseases refer to conditions that affect the hypothalamus, a small but crucial region of the brain responsible for regulating many vital functions in the body. The hypothalamus helps control:

1. Body temperature
2. Hunger and thirst
3. Sleep cycles
4. Emotions and behavior
5. Release of hormones from the pituitary gland

Hypothalamic diseases can be caused by genetic factors, infections, tumors, trauma, or other conditions that damage the hypothalamus. Some examples of hypothalamic diseases include:

1. Hypothalamic dysfunction syndrome: A condition characterized by various symptoms such as obesity, sleep disturbances, and hormonal imbalances due to hypothalamic damage.
2. Kallmann syndrome: A genetic disorder that affects the development of the hypothalamus and results in a lack of sexual maturation and a decreased sense of smell.
3. Prader-Willi syndrome: A genetic disorder that causes obesity, developmental delays, and hormonal imbalances due to hypothalamic dysfunction.
4. Craniopharyngiomas: Tumors that develop near the pituitary gland and hypothalamus, often causing visual impairment, hormonal imbalances, and growth problems.
5. Infiltrative diseases: Conditions such as sarcoidosis or histiocytosis can infiltrate the hypothalamus, leading to various symptoms related to hormonal imbalances and neurological dysfunction.
6. Traumatic brain injury: Damage to the hypothalamus due to head trauma can result in various hormonal and neurological issues.
7. Infections: Bacterial or viral infections that affect the hypothalamus, such as encephalitis or meningitis, can cause damage and lead to hypothalamic dysfunction.

Treatment for hypothalamic diseases depends on the underlying cause and may involve medications, surgery, hormone replacement therapy, or other interventions to manage symptoms and improve quality of life.

Theta rhythm is a type of electrical brain activity that can be detected through an electroencephalogram (EEG), which measures the electrical impulses generated by the brain's neurons. Theta waves have a frequency range of 4-8 Hz and are typically observed in the EEG readings of children, as well as adults during states of drowsiness, light sleep, or deep meditation.

Theta rhythm is thought to be involved in several cognitive processes, including memory consolidation, spatial navigation, and emotional regulation. It has also been associated with various mental states, such as creativity, intuition, and heightened suggestibility. However, more research is needed to fully understand the functional significance of theta rhythm and its role in brain function.

The supraoptic nucleus (SON) is a collection of neurons located in the hypothalamus, near the optic chiasm, in the brain. It plays a crucial role in regulating osmoregulation and fluid balance within the body through the production and release of vasopressin, also known as antidiuretic hormone (ADH).

Vasopressin is released into the bloodstream and acts on the kidneys to promote water reabsorption, thereby helping to maintain normal blood pressure and osmolarity. The supraoptic nucleus receives input from osmoreceptors in the circumventricular organs of the brain, which detect changes in the concentration of solutes in the extracellular fluid. When the osmolarity increases, such as during dehydration, the supraoptic nucleus is activated to release vasopressin and help restore normal fluid balance.

Additionally, the supraoptic nucleus also contains oxytocin-producing neurons, which play a role in social bonding, maternal behavior, and childbirth. Oxytocin is released into the bloodstream and acts on various tissues, including the uterus and mammary glands, to promote contraction and milk ejection.

Benzoxazines are a class of heterocyclic organic compounds that contain a benzene fused to an oxazine ring. They are known for their diverse chemical and pharmacological properties, including anti-inflammatory, antimicrobial, and antitumor activities. Some benzoxazines also exhibit potential as building blocks in the synthesis of pharmaceuticals and materials. However, it is important to note that specific medical definitions for individual compounds within this class may vary depending on their unique structures and properties.

Although the term "GABAС receptor" is frequently used, GABAС may be viewed as a variant within the GABAA receptor family. ... The GABA receptors are a class of receptors that respond to the neurotransmitter gamma-aminobutyric acid (GABA), the chief ... GABA receptors influence neural function by coordinating with glutamatergic processes. A subclass of ionotropic GABA receptors ... Over-excitation of this receptor induces receptor remodeling and the eventual invagination of the GABA receptor. As a result, ...
GABA-α and GABAreceptors produce sedative and hypnotic effects and have anti-convulsion properties. GABAreceptors also ... A GABA receptor agonist is a drug that is an agonist for one or more of the GABA receptors, producing typically sedative ... There are three receptors of the gamma-aminobutyric acid. The two receptors GABA-α and GABA-ρ are ion channels that are ... The GABAreceptor belongs to the class of G-Protein coupled receptors that inhibit adenylyl cyclase, therefore leading to ...
GABAA receptors GABAA-ρ receptors The GABAB receptor, a G protein-coupled receptor, is the only metabotropic GABA receptor and ... Ionotropic GABA receptors (iGABARs) are ligand-gated ion channel of the GABA receptors class which are activated by gamma- ... Thus, the iontropic GABA receptors consist of the GABAA receptor and the GABAA-ρ receptor. There are pharmacological ... The two types of GABA receptors are the GABAA and GABAB receptors. The pentameric GABAA receptors are ionotropic, meaning that ...
... s are drugs that inhibit the action of GABA. In general these drugs produce stimulant and convulsant ... GABAA receptor negative allosteric modulators GABA+antagonists at the U.S. National Library of Medicine Medical Subject ... v t e (GABA receptor antagonists, Biochemistry, All stub articles, Nervous system drug stubs). ... Other agents which may have GABAA receptor antagonism include the antibiotic ciprofloxacin, tranexamic acid, thujone, ginkgo ...
... is a protein that in humans is encoded by the GABARAPL1 gene. GRCh38: Ensembl ... "Entrez Gene: GABA type A receptor associated protein like 1". Retrieved 2017-12-21. Nemos C, Mansuy V, Vernier-Magnin S, ... "GEC1 interacts with the kappa opioid receptor and enhances expression of the receptor". J. Biol. Chem. 281 (12): 7983-93. doi: ... Chen Y, Chen C, Kotsikorou E, Lynch DL, Reggio PH, Liu-Chen LY (2009). "GEC1-kappa opioid receptor binding involves hydrophobic ...
GABA(B)) receptors with truncated receptors and metabotropic glutamate receptor 4 supports the GABA(B) heterodimer as the ... "Expression cloning of GABA(B) receptors uncovers similarity to metabotropic glutamate receptors". Nature. 386 (6622): 239-46. ... The GABA(B) receptor 1 gene is mapped to chromosome 6p21.3 within the HLA class I region close to the HLA-F gene. ... Couve A, Kittler JT, Uren JM, Calver AR, Pangalos MN, Walsh FS, Moss SJ (2001). "Association of GABA(B) receptors and members ...
"A pharmacological characterization of GABA, THIP and DS2 at binary α4β3 and β3δ receptors: GABA activates β3δ receptors via the ... Goetz T, Arslan A, Wisden W, Wulff P (2007). "GABAA receptors: Structure and function in the basal ganglia". GABA(A) receptors ... July 1987). "Sequence and functional expression of the GABA A receptor shows a ligand-gated receptor super-family". Nature. 328 ... is a determinant subunit for the specific cellular localization of δ-GABAA receptors, which are modulated by the GABA. GABA is ...
GABA-A receptors; (4) AMPA/kainate receptors; and (5) carbonic anhydrase isoenzymes. There is evidence that topiramate may ... Effects on specific GABA-A receptor isoforms could also contribute to the antiseizure activity of the drug. Topiramate ... AMPA receptor antagonists, Anticonvulsants, Carbonic anhydrase inhibitors, CYP3A4 inducers, GABAA receptor positive allosteric ... modulators, Johnson & Johnson brands, Kainate receptor antagonists, Monosaccharide derivatives, Sodium channel blockers, ...
Dupont AG, Légat L (October 2020). "GABA is a mediator of brain AT1 and AT2 receptor-mediated blood pressure responses". ... where GABA can be recycled) and astrocytes (where GABA can be broken down). GABA Transporter 1 uses energy from the dissipation ... The GABA affinity (Km) of the mouse isoform of GAT1 is 8 μM. In the brain of a mature mammal, glutamate is converted to GABA by ... The stoichiometry for GABA Transporter 1 is 2 Na+: 1 Cl−: 1 GABA. The presence of a Cl−/Cl− exchange is also proposed because ...
GABAB receptor agonists, GHB receptor agonists, GABA analogues, General anesthetics, Neurotransmitters, Drug culture, ... It is a precursor to GABA, glutamate, and glycine in certain brain areas. It acts on the GHB receptor and is a weak agonist at ... Other antipsychotics were tested and were not found to have an affinity for this receptor. GHB is a precursor to GABA, ... Dimitrijevic N, Dzitoyeva S, Satta R, Imbesi M, Yildiz S, Manev H (September 2005). "Drosophila GABA(B) receptors are involved ...
GABA). They are closely related and similar to GABAA receptor antagonists. The effects of GABAA receptor NAMs are functionally ... A GABAA receptor negative allosteric modulator is a negative allosteric modulator (NAM), or inhibitor, of the GABAA receptor, a ... Flumazenil is a competitive antagonist of the benzodiazepine site of the GABAA receptor and hence is a GABAA receptor NAM of ... GABAA receptor positive allosteric modulator AMPA receptor positive allosteric modulator List of investigational ...
"GABA(A) receptors and alcohol". Pharmacology Biochemistry and Behavior. 90 (1): 90-4. doi:10.1016/j.pbb.2008.03.006. PMC ... and NMDA receptors, the glycine receptor, the nicotinic acetylcholine receptors, the serotonin 5-HT3 receptor, voltage-gated ... Nicotinic acetylcholine receptor positive allosteric modulator 5-HT3 receptor positive allosteric modulator Glycine reuptake ... to other actions AMPA receptor negative allosteric modulator Kainate receptor negative allosteric modulator Glycine receptor ...
The GABAA receptor (GABAAR) is an ionotropic receptor activated by the inhibitory neurotransmitter γ-aminobutyric acid (GABA). ... The Cys-loop receptor superfamily includes inhibitory receptors (GABAA receptors, GABAC receptors, glycine receptors) and ... Sallard, Erwan; Letourneur, Diane; Legendre, Pascal (2021). "Electrophysiology of ionotropic GABA receptors". Cellular and ... "Human GABAA receptor α1-β2-γ2 subtype in complex with GABA plus propofol". RCSB PDB. doi:10.2210/pdb6X3T/pdb. S2CID 225185057. ...
GABA Receptor Agonists". Drugs and Diseases. Medccape. Retrieved 10 July 2005. Ralvenius WT, Acuña MA, Benke D, Matthey A, ... June 2000). "Sedative but not anxiolytic properties of benzodiazepines are mediated by the GABA(A) receptor alpha1 subtype". ... work by enhancing GABA-activated chloride influx at GABAA receptors, creating a hyperpolarizing, inhibitory postsynaptic ... The α1 subtype of the GABAA receptor, was shown to be responsible for the sedative effects of diazepam by McKernan et al. in ...
Wang H, Bedford FK, Brandon NJ, Moss SJ, Olsen RW (January 1999). "GABA(A)-receptor-associated protein links GABA(A) receptors ... Wang H, Bedford FK, Brandon NJ, Moss SJ, Olsen RW (January 1999). "GABA(A)-receptor-associated protein links GABA(A) receptors ... mediates neuronal inhibition by binding to GABA receptors. The type A GABA receptors are pentameric chloride channels assembled ... "Subunit specificity and interaction domain between GABA(A) receptor-associated protein (GABARAP) and GABA(A) receptors". ...
Benzodiazepines produce an anxiolytic response by modulating GABA and increasing its receptor binding. A third common treatment ... September 2011). "Ingestion of Lactobacillus strain regulates emotional behavior and central GABA receptor expression in a ... decreased GABA-ergic tone; allelic polymorphism of the catechol-O-methyltransferase (COMT) gene; increased adenosine receptor ... and a receptor gene for BDNF called NTRK2 was associated with anxiety in a large genome-wide investigation. The reason that ...
GABA agonist GABA antagonist GABA receptor Cerne R, Lippa A, Poe MM, Smith JL, Jin X, Ping X, Golani LK, Cook JM, Witkin JM ( ... The GABAA receptors are made up of subunits which form a receptor complex. Humans have 19 receptor subunits and are classified ... Unlike GABAA receptor agonists, GABAA PAMs do not bind at the same active site as the γ-aminobutyric acid (GABA) ... GABA is a major inhibitory neurotransmitter in the central nervous system. Upon binding, it triggers the GABAA receptor to open ...
GABA Receptor Physiology and Pharmacology (6th ed.). American Society for Neurochemistry. Retrieved 2008-10-01. Itier V, ... Nicotinic acetylcholine receptors are the best-studied of the ionotropic receptors. Since nicotinic receptors help transmit ... The nicotinic receptors are considered cholinergic receptors, since they respond to acetylcholine. Nicotinic receptors get ... They possess similarities with GABAA receptors, glycine receptors, and the type 3 serotonin receptors (which are all ionotropic ...
... rat or human GABA receptors is expected to be low for afoxolaner. Selectivity for insect over mammalian GABA-receptors has been ... It acts as an antagonist at GABA-receptors (those gated by the neurotransmitter gamma-aminobutyric acid) and other ligand-gated ... Hosie AM, Aronstein K, Sattelle DB, ffrench-Constant RH (December 1997). "Molecular biology of insect neuronal GABA receptors ... Isoxazolines, among the chloride channel modulators, bind to a distinct and unique target site within the insect GABA-gated ...
Watanabe M, Maemura K, Kanbara K, Tamayama T, Hayasaki H (2002). "GABA and GABA receptors in the central nervous system and ... NMDA receptors rely on the EPSC produced by AMPA receptors to open. NMDA receptors are permeable to Ca2+, which is an important ... 2009). "Metabotropic glutamate receptor subtype 4 selectively modulates both glutamate and GABA transmission in the striatum: ... Glutamate is the main excitatory and GABA the main inhibitory neurotransmitter in the mammalian cortex "Glutamate Receptors - ...
Alcohol also acts as a positive allosteric modulator of GABA receptors, specifically type GABAA. Upon activation, these GABA ... Schummers, J.; Browning, M. D. (2001). "Evidence for a role for GABA(A) and NMDA receptors in ethanol inhibition of long-term ... Hodge, C. W.; Cox, A. A. (1998). "The discriminative stimulus effects of ethanol are mediated by NMDA and GABA(A) receptors in ... Paul, S. M. (2006). "Alcohol-sensitive GABA receptors and alcohol antagonists". Proceedings of the National Academy of Sciences ...
However, due to its antagonist effect on GABA receptors, it has been used as a central nervous system stimulant. It was also ... GABAA receptor negative allosteric modulators, GABAA-rho receptor negative allosteric modulators, Glycine receptor antagonists ... Other research suggests that the toxin acts instead as a non-competitive antagonist, or inhibitor, for GABA receptors. A study ... Newland CF, Cull-Candy SG (February 1992). "On the mechanism of action of picrotoxin on GABA receptor channels in dissociated ...
"Interaction of pitrazepin with the GABA/benzodiazepine receptor complex and with glycine receptors". European Journal of ... Sattelle DB, Pinnock RD, Wafford KA, David JA (January 1988). "GABA receptors on the cell-body membrane of an identified insect ... Murphy VF, Wann KT (November 1988). "The action of GABA receptor agonists and antagonists on muscle membrane conductance in ... Anthony NM, Harrison JB, Sattelle DB (1993). "GABA receptor molecules of insects". Exs. 63: 172-209. doi:10.1007/978-3-0348- ...
These receptors have inhibitory functions comparable to those of the GABA receptors. Lastly, investigation into similar toxins ... Tutin is an antagonist of the GABA receptors. By inhibiting these receptors, the sedative effect of this neurotransmitter is ... Apart from GABA receptor inhibition, in vitro studies have also shown tutin to have an inhibitory effect on the glycine ... Glycine receptor antagonists, GABAA receptor antagonists, Spiro compounds, Sesquiterpene lactones, Neurotoxins). ...
... gene and GABA receptors in the cerebellum of people with essential tremor. HAPT1 mutations have also been linked to ET, as well ... "Defective dentate nucleus GABA receptors in essential tremor". Brain. 135 (Pt 1): 105-16. doi:10.1093/brain/awr301. PMID ... Mally J, Stone TW (June 1991). "The effect of theophylline on essential tremor: the possible role of GABA". Pharmacology ...
Chen G, Trombley PQ, van den Pol AN (October 1995). "GABA receptors precede glutamate receptors in hypothalamic development; ... Hirose S (2014). "Mutant GABAA receptor subunits in genetic (Idiopathic) epilepsy". Mutant GABA(A) receptor subunits in genetic ... "Functional asymmetry of the conserved cystine loops in alphabetagamma GABA A receptors revealed by the response to GABA ... GABA (γ-aminobutyric acid) system is the major inhibitory system in the brain, and its dominant GABAA receptor subtype is ...
Margeta-Mitrovic M, Jan YN, Jan LY (July 2000). "A trafficking checkpoint controls GABA(B) receptor heterodimerization". Neuron ... transmembrane domain receptors, 7TM receptors, heptahelical receptors, serpentine receptors, and G protein-linked receptors ( ... G protein-coupled receptors database List of MeSH codes (D12.776) Metabotropic receptor Orphan receptor Pepducins, a class of ... is a receptor that can bind with stimulative signal molecules, while inhibitory hormone receptor (Ri) is a receptor that can ...
It works by interacting with the GABA receptors. Approved for medical use in the United States in 2004, eszopiclone is ... In terms of benzodiazepine receptor binding and relevant potency, 3 mg of eszopiclone is equivalent to 10 mg of diazepam. In a ... It was found that newer agents with novel mechanisms of action and improved safety profiles, such as the melatonin receptor ... The review stated: "the 90‐day‐use caveat [was] removed from nonbenzodiazepine, benzodiazepine receptor agonist hypnotics, ...
Triller studied GABA and glycine receptors in particular. He showed that the nature of the pre-synaptic neurotransmitter ... This work has been used as a model to locate most channels and receptors, such as glutamate receptors. Triller demonstrated the ... As early as 1985, he was able to visualize the glycine receptor in the synapses of the central nervous system by electron ... "Distribution of glycine receptors at central synapses: an immunoelectron microscopy study" J Cell Biol, 101 (2), 1985, 683-688 ...
When GABA binds to the GABAA receptor, the chloride ion channels open such that chloride ions can flow into the neuron. This ... Sigel E, Steinmann ME (November 2012). "Structure, function, and modulation of GABA(A) receptors". The Journal of Biological ... Therefore, this type of receptor is the major inhibitory neurotransmitter receptor in the mammalian central nervous system. As ... In addition to the inhibitory effect, hexobarbital blocks, like all barbiturates, AMPA receptors, kainate receptors, neural ...
GABAA receptor antagonists are drugs that bind to GABAA receptors but do not activate them and inhibit the action of GABA. Thus ... "GABA-A Receptor Antagonists - MeSH - NCBI". www.ncbi.nlm.nih.gov. Retrieved 2022-01-18. "GABAA Receptor Agonists - an overview ... 3-Mercaptopropionic acid Allylglycine Glycine receptor antagonists are drugs which inactivates the glycine receptors. ... "Acetylcholine receptor anatomy". www.openanesthesia.org. Retrieved 2022-01-18. Cooper, Kathryn (October 2014). "The chemical ...
... is a GABA receptor agonist. It was patented as an anticonvulsant by Merck but was never marketed. Imidazopyridine ... GABAA receptor agonists, Imidazopyridines, Abandoned drugs, All stub articles, Anticonvulsant stubs). ...
These changes rely on the precise timing of GABA receptors activation which in turn are dependent upon the release and ... The GABA transporter group consists of six different transporters: GABA transporter type 1 (GAT1; SLC6A1) GABA transporter type ... The GABA transporter help creates an equilibrium of GABA and will work in the reverse direction if needed to maintain the ... The GABA transmitters are not broken down but are cleared via GABA transporters through re-absorption from the synaptic cleft. ...
GABA. Muscimol binds to the same site on the GABAA receptor complex as GABA itself, as opposed to other GABAergic drugs such as ... Frølund B, Ebert B, Kristiansen U, Liljefors T, Krogsgaard-Larsen P (August 2002). "GABA(A) receptor ligands and their ... Johnston GA (October 2014). "Muscimol as an ionotropic GABA receptor agonist". Neurochemical Research. 39 (10): 1942-1947. doi: ... April 2019). "Extrasynaptic δ-GABAA receptors are high-affinity muscimol receptors". Journal of Neurochemistry. 149 (1): 41-53 ...
Bormann J, Ferrero P, Guidotti A, Costa E (1985). "Neuropeptide modulation of GABA receptor C1- channels". Regulatory Peptides ... 1992). "The human "peripheral-type" benzodiazepine receptor: regional mapping of the gene and characterization of the receptor ... "Peripheral" benzodiazepine receptors are also found in the brain, although only at around a quarter the expression levels of ... YL-IPA08 Ro5-4864 - original ligand with which TSPO receptor was characterised, now less used due to inter-species differences ...
Although the term "GABAС receptor" is frequently used, GABAС may be viewed as a variant within the GABAA receptor family. ... The GABA receptors are a class of receptors that respond to the neurotransmitter gamma-aminobutyric acid (GABA), the chief ... GABA receptors influence neural function by coordinating with glutamatergic processes. A subclass of ionotropic GABA receptors ... Over-excitation of this receptor induces receptor remodeling and the eventual invagination of the GABA receptor. As a result, ...
... receptors requires heterodimerization of GB1 and GB2 subunits, but little is known about mechanisms that ensure efficient ... Because individual GABA(B) receptor subunits and improperly assembled receptor complexes are not functional even if expressed ... A trafficking checkpoint controls GABA(B) receptor heterodimerization Neuron. 2000 Jul;27(1):97-106. doi: 10.1016/s0896-6273(00 ... Surface expression of GABA(B) receptors requires heterodimerization of GB1 and GB2 subunits, but little is known about ...
GABA A Receptor gamma 1 (1). * GABA A Receptor gamma 2/GABRG2+GABRA4+GABA A Receptor alpha 1+GABA A Receptor alpha 6+GABA A ... GABA A Receptor alpha 1+GABA A Re (1). * GABA A Receptor beta 2/GABRB2+GABA A Receptor gamma 2/GABRG2+GABA A Receptor alpha 1 ( ... GABA A Receptor beta 2/GABRB2 (5). * GABA A Receptor beta 2/GABRB2+GABA A Receptor beta 3/GABRB3+GABA A Receptor gamma 2/GABRG2 ... GABA A Receptor beta 3/GABRB3+GABA A Receptor gamma (1). * CYP2C9+GABA B Receptor 2/GABBR2+GABA B Receptor 1+Cytochrome P450 ...
... Neurosci Lett. 1984 ... The effects of some conformationally restricted analogues of gamma-aminobutyric acid (GABA) on [3H](-)-baclofen binding ... and that folded analogues of GABA may interact with a class of binding site (GABAc?) insensitive to (-)-baclofen and ... indicated that GABA interacts with (-)-baclofen-sensitive binding sites (GABAB) in extended rather than folded conformations, ...
This article will briefly cover: As stated to me, plus the occurrence of GABA receptors in animal evolution ... Retrieved from "http://www.scholarpedia.org/w/index.php?title=User:Eugene_M._Izhikevich/Proposed/GABA_receptors&oldid=135947" ...
Timeline for Protein GABA-B receptor 1 from g.18.1.1: Complement control module/SCR domain: *Protein GABA-B receptor 1 from g. ... Protein GABA-B receptor 1 from g.18.1.1: Complement control module/SCR domain appears in SCOP 1.73. *Protein GABA-B receptor 1 ... Lineage for Protein: GABA-B receptor 1. *Root: SCOP 1.71 *. Class g: Small proteins [56992] (79 folds). ... More info for Protein GABA-B receptor 1 from g.18.1.1: Complement control module/SCR domain. ...
This invention describes compounds of Structures 1, 2, and 3 and their use as allosteric modulators of the GABA receptor ... Androstane and pregnane steroids with potent allosteric GABA receptor chloride ionophore modulating properties ... Androstane and pregnane steroids with potent allosteric GABA receptor chloride ionophore modulating properties. ... Androstane and pregnane steroids with potent allosteric GABA receptor chloride ionophore modulating properties. (U.S. Patent No ...
J:63409 Kneussel M, et al., The gamma-aminobutyric acid type A receptor (GABAAR)-associated protein GABARAP interacts with ... gephyrin but is not involved in receptor anchoring at the synapse. Proc Natl Acad Sci U S A. 2000 Jul 18;97(15):8594-9 ...
... of 78 flavanoid ligands towards the benzodiazepine site of GABA (A) receptor complex were estimated using the PRECLAV (Property ... "Modeling of the Interaction of Flavanoids with GABA (A) Receptor Using PRECLAV (Property-Evaluation by Class Variables)" ... Exploring QSARs of the interaction of flavonoids with GABA (A) receptor using MLR, ANN and SVM techniques. Journal of Enzyme ... Exploring QSARs of the interaction of flavonoids with GABA (A) receptor using MLR, ANN and SVM techniques ...
GABA-B receptors, composed of GABA-B 1 and GABA-B 2 subunits, belong to the G protein-coupled family [15]. GABA receptors ... To further investigate the function of GABA receptors in modulating IOP, GABA-A and GABA-B receptor antagonists were injected ... Louis, MO). Anti-GABA-A receptor alpha 1 (ab94585, mouse-origin monoclonal antibody, 1:200), anti-GABA-B receptor 1 (ab55051, ... the GABA receptors were expressed at low levels in the ARC. Compared to the control group, the expression of the GABA receptors ...
... exerts its actions through GABA(A), GABA(B) and GABA(C) receptors. GABA and GABA receptors are, however, also present in ... receptors, but neither testicular sources of GABA, nor the precise nature of testicular GABA receptors are fully known. We ... In addition, several GABA(A) receptor subunits (alpha1-3, beta1-3, gamma1-3), as well as GABAB receptor subunits R1 and R2, ... Local GABA production and GABA receptors. In: Neuroendocrinology, No. 5: pp. 314-323 [PDF, 197kB] ...
Modulation of GABA receptors and of GABAergic synapses by the natural alkaloid gelsemine.. ... Modulation of GABA receptors and of GABAergic synapses by the natural alkaloid gelsemine. ... Modulation of GABA receptors and of GABAergic synapses by the natural alkaloid gelsemine. ... The behavioral activity profile of gelsemine suggests the involvement of GABA receptors (GABARs), which are the main biological ...
... The GABA receptors (GABAA and GABAB) respond to the neurotransmitter gamma-aminobutyric acid ... Antagonists of GABA receptors inhibit the action of GABA. In general they produce stimulant and convulsant effects. Therefore, ... GABA), the chief inhibitory compound in the mature vertebrate central nervous system. GABA receptors agonists produce typically ... The GABA Receptors Targeted Libraries (DB, SD, XLS, PDF format) as well as the price-list are available on request. Feel free ...
For the binding site on the GABA(A) receptor, it was confirmed that the thirteen most C-terminal residues of the intracellular ... In accordance with the strong conservation of these residues among the alpha subunits of the GABA(A) receptor, it could be ... The biochemical studies of the interaction of muskelin and the alpha1 subunit of the GABA(A) receptor demonstrated a direct ... Für die Bindungsstelle auf Seite des GABA(A)-Rezeptors wurde bestätigt, dass die dreizehn C-terminalen Reste der ...
Bidirectional regulation of distinct memory domains by α5-subunit-containing GABA$_{A}$ receptors in CA1 pyramidal neurons ... Bidirectional regulation of distinct memory domains by α5-subunit-containing GABA$_{A}$ receptors in CA1 pyramidal neurons. ... Reduction in the expression or function of α5-subunit-containing GABAA receptors (α5GABAARs) leads to improvement in several ... Reduction in the expression or function of α5-subunit-containing GABAA receptors (α5GABAARs) leads to improvement in several ...
5-HT1B receptors are located on GABA terminals in the SCN and that 5-HT inhibits GABA release via a 5-HT1B presynaptic receptor ... In mice lacking functional 5-HT1B receptors, CP-93,129 (1 mM) had no clear effect on the frequency or the amplitude of mIPSCs ... We therefore tested the hypothesis that 5-HT1B receptors might also be located on SCN GABAergic terminals by examining the ... Using CsCl-containing microelectrodes with QX314, we isolated mPSCs that were sensitive to the GABAA receptor antagonist, ...
To enhance our understanding of how insecticides act on GABA receptors, two other GABA receptor subunits were cloned and ... 2020) Heterogeneous expression of GABA receptor-like subunits LCCH3 and GRD reveals functional diversity of GABA receptors in ... 2012) GABA binding to an insect GABA receptor: a molecular dynamics and mutagenesis study. Biophys J 103:2071-2081. ... Four subunits of GABA receptors have been described in insects: resistance to dieldrin (RDL), glycine-like receptor of ...
Spontaneous and γ-Aminobutyric Acid (GABA)-Activated GABAA Receptor Channels Formed by ε Subunit-Containing Isoforms. Torben R ... Spontaneous and γ-Aminobutyric Acid (GABA)-Activated GABAA Receptor Channels Formed by ε Subunit-Containing Isoforms. Torben R ... Spontaneous and γ-Aminobutyric Acid (GABA)-Activated GABAA Receptor Channels Formed by ε Subunit-Containing Isoforms. Torben R ... A new γ-aminobutyric acid (GABA)A receptor (GABAR) subunit class, ε, has recently been cloned and shown to form functional ...
11C]Ro15 4513 PET to characterise GABA-benzodiazepine receptors in opiate addiction: Similarities and differences with ... 11C]Ro15 4513 PET to characterise GABA-benzodiazepine receptors in opiate addiction: Similarities and differences with ...
These findings suggest an important role in anxiety regulation of the amygdalar GABA levels, and the assumed GABA hemispheric ... receptors agonist (muscimol hydrobromide, 0.1 μg/0.5 μl) injections into the right or left basolateral amygdala (BLA) on the ... For example, local injection of a specific GABAA receptor agonist muscimol in amygdala has been shown to result in the decrease ... The influence of γ-aminobutyric type-A (GABAA) receptors agonist (muscimol hydrobromide, 0.1 µg/0.5 µl) injections into the ...
GABA A Receptor α3 Rabbit Polyclonal Antibody. GABA A Receptor ?2 Polyclonal Antibody. ... Description: A polyclonal antibody for detection of GABA A Receptor Alpha2 from Human, Mouse, Rat. This GABA A Receptor Alpha2 ... Description: A polyclonal antibody for detection of GABA A Receptor Alpha2 from Human, Mouse, Rat. This GABA A Receptor Alpha2 ... Description: A polyclonal antibody for detection of GABA A Receptor Alpha2 from Human, Mouse, Rat. This GABA A Receptor Alpha2 ...
It has recently become appreciated that activation of γ-aminobutyric acid receptors (GABA-Rs) on ß-cells can promote their ... These findings suggest that PAMs may potentiate the actions of GABA secreted by islet ß-cells on GABAA-Rs and provide a new ... A number of positive allosteric modulators (PAMs) that enhance GABAs actions on neuronal GABAA-Rs are in clinical use. ... The combination of a PAM and low levels of exogenous GABA further increased human islet cell replication. ...
Further evidence for clustering of human GABA(A) receptor subunit genes - localization of the alpha(6)-subunit gene (GABRA6) to ... Further evidence for clustering of human GABA(A) receptor subunit genes - localization of the alpha(6)-subunit gene (GABRA6) to ...
Receptor. Ionotropic γ-aminobutyric acid (GABA) receptors (also named GABA type A receptors or GABA (A) receptors) are ion ... Ionotropic GABA receptors are pentameric receptors that are composed of numerous subunit isoforms (α1-α6, β1-β3, γ1-γ3, δ, ε, π ... Receptor Toxins from different taxa that target receptors.. Click on to retrieve toxins of interest. ... θ, and ρ1-ρ3); the subunits combine to make up a GABA receptor via multiple arrangements. The most common type in the brain is ...
GABA Receptor. The GABA receptors are a class of receptors that respond to the neurotransmitter gamma-aminobutyric acid (GABA ... There are two classes of GABA receptors: GABAA and GABAB. GABAA receptors are ligand-gated ion channels (also known as ... Radequinil is a benzodiazepine receptor partial inverse agonist. Rade quinil binds to GABA(-) and GABA(+) ligand (Kis: 5.15 and ... Radequinil is a benzodiazepine receptor partial inverse agonist. Rade quinil binds to GABA(-) and GABA(+) ligand (Kis: 5.15 and ...
About 29 item dissertation in line with GABA receptor query results,the following is 1 to 50 ... Effects of Abamectin and Heat Stresses on the Expression of GABA and GABA Receptor in Tetranychus Cinnabarinus,LuWenCai/ ... About 29 item dissertation in line with GABA receptor query results,the following is 1 to 50(Search took 0.014 seconds). * ... The Role of GABA_B Receptor in Ocular Dominance Plasticity,ZhangLi/University of Science and Technology of China,0/26 ...
Substantia nigra GABA receptors can mediate anticonvulsant or proconvulsant effects. / Moshé, S. L.; Garant, D. S. In: Epilepsy ... Substantia nigra GABA receptors can mediate anticonvulsant or proconvulsant effects. Epilepsy research. Supplement. 1996;12:247 ... Moshé, S. L. ; Garant, D. S. / Substantia nigra GABA receptors can mediate anticonvulsant or proconvulsant effects. In: ... title = "Substantia nigra GABA receptors can mediate anticonvulsant or proconvulsant effects.",. author = "Mosh{\e}, {S. L.} ...
Each is a neuroactive steroid (NAS) GABA-A receptor-positive allosteric modulator (PAM). The GABA system is the major ... GABA receptor positive modulators. The US Food and Drug Administration (FDA) approved an injection (brexanolone) in 2019 and an ... Administration of a GABA-receptor-positive modulator can be considered in the postpartum period for moderate to severe ... but is believed to be related to positive allosteric modulation of both synaptic and extrasynaptic GABA-A receptors. ...
Posted in Antibody , Tagged Factor Xa, GABA receptor, hts screening, small molecule library, {Paclitaxel , Leave a comment ... Tag Archives: GABA receptor. Paclitaxel oligopeptide synthesis plays a novel purpose in uterine carcinoma. Posted on October 18 ... Dihydrofolate Reductase DNA-PK Ecdysone effect Entinostat Enzastaurin Enzastaurin DCC-2036 Factor Xa FTY720p GABA receptor GFP ...
The GABA-B receptor subfamily has 22 members , canSARS ...
  • In addition, activation of GABA receptors lead to the so-called shunting inhibition, which reduces the excitability of the cell independent of the changes in membrane potential. (wikipedia.org)
  • GABAС receptors are exclusively composed of ρ (rho) subunits that are related to GABAA receptor subunits. (wikipedia.org)
  • However, since GABAС receptors are closely related in sequence, structure, and function to GABAA receptors and since other GABAA receptors besides those containing ρ subunits appear to exhibit GABAС pharmacology, the Nomenclature Committee of the IUPHAR has recommended that the GABAС term no longer be used and these ρ receptors should be designated as the ρ subfamily of the GABAA receptors (GABAA-ρ). (wikipedia.org)
  • Surface expression of GABA(B) receptors requires heterodimerization of GB1 and GB2 subunits, but little is known about mechanisms that ensure efficient heterodimer assembly. (nih.gov)
  • Because individual GABA(B) receptor subunits and improperly assembled receptor complexes are not functional even if expressed on the cell surface, we conclude that a trafficking checkpoint ensures efficient assembly of functional GABA(B) receptors. (nih.gov)
  • In addition, several GABA(A) receptor subunits (alpha1-3, beta1-3, gamma1-3), as well as GABAB receptor subunits R1 and R2, were detected by RT-PCR. (uni-muenchen.de)
  • Western blot analysis confirmed the results for GABA(A) receptor subunits beta2/3 in the rat, and immunohistochemistry identified interstitial Leydig cells to possess immunoreactive GABA(A) receptor subunits beta2/3 and alpha1. (uni-muenchen.de)
  • In accordance with the strong conservation of these residues among the alpha subunits of the GABA(A) receptor, it could be shown that an interaction with muskelin in vitro is also possible for the alpha2 and alpha5 subunits. (uni-wuerzburg.de)
  • A new γ-aminobutyric acid (GABA) A receptor (GABAR) subunit class, ε, has recently been cloned and shown to form functional channels when coexpressed with both α and β subunits. (aspetjournals.org)
  • the subunits combine to make up a GABA receptor via multiple arrangements. (expasy.org)
  • Homomeric glycine receptors composed of either alpha1 or alpha2 subunits are potentiated by concentrations of ethanol as low as 10 mM. (grantome.com)
  • Chimeric receptors made of glycine alpha1 and GABA rho1 subunits permitted the localization of ethanol action to a region of 63 amino acids on glycine receptors. (grantome.com)
  • Mutations of the glycine alpha1 subunit which yield interesting results will be tested at homologous positions in the different subunits of the GABAA receptor. (grantome.com)
  • Amino acid residues of both glycine and GABAA receptor subunits near these critical residues will also be studied. (grantome.com)
  • The type A GABA receptors are pentameric chloride channels assembled from among many genetic variants of GABA(A) subunits. (wikipedia.org)
  • Several genes associated with childhood absence epilepsy provide instructions for making pieces (subunits) of the GABA A receptor protein. (medlineplus.gov)
  • Hirose S. Mutant GABA(A) receptor subunits in genetic (idiopathic) epilepsy. (medlineplus.gov)
  • Each receptor is assembled as a pentamer from a pool of at least 19 different possible subunits. (bvsalud.org)
  • It has long been recognized that the fast response of neurons to GABA that is stimulated by bicuculline and picrotoxin is due to direct activation of an anion channel. (wikipedia.org)
  • The gelsemine actions were determined by electrophysiological recordings of recombinant GABARs expressed in HEK293 cells, and of native receptors in cortical neurons. (iasp-pain.org)
  • In a study from 2011, the protein muskelin was described as a central coordinator of the retrograde transport of GABA(A) receptors in neurons. (uni-wuerzburg.de)
  • To establish a basis for understanding the mode of operation of muskelin, the aim of this thesis was an in-depth In a study from 2011, the protein muskelin was described as a central coordinator of the retrograde transport of GABA(A) receptors in neurons. (uni-wuerzburg.de)
  • The decrease in the frequency of mIPSCs of SCN neurons produced by the selective 5-HT 1B receptor agonist CP-93,129 is consistent with the interpretation that 5-HT 1B receptors are located on GABA terminals in the SCN and that 5-HT inhibits GABA release via a 5-HT 1B presynaptic receptor-mediated mechanism. (unl.edu)
  • Many structures and processes are involved in the development of a seizure, including neurons, ion channels, receptors, glia, and inhibitory and excitatory synapses. (medscape.com)
  • The results indicate that GABA A receptor-mediated inhibition plays a crucial role in maintaining the balance of excitation and inhibition and in allowing ICC neurons to process temporal information more precisely. (jneurosci.org)
  • 2002a , b ), little is known about how activation of receptors influences temporal processing in ICC neurons. (jneurosci.org)
  • DA exposure was shown to cause potentiation of γ-amino-butyric acid (GABA) receptor type A (GABA A R)-mediated evoked inhibitory postsynaptic currents (eIPSCs), recorded from VTA DA neurons, under conditions of potassium channels blockade. (huji.ac.il)
  • The presence of functional ionotropic glutamate receptors (iGluRs) on GABAergic terminals that rapidly alter GABA release onto DMV motor neurons has been suggested previously, but the receptor subtypes contributing to the response are unknown. (uky.edu)
  • The GABA receptors are a class of receptors that respond to the neurotransmitter gamma-aminobutyric acid (GABA), the chief inhibitory compound in the mature vertebrate central nervous system. (wikipedia.org)
  • The effects of some conformationally restricted analogues of gamma-aminobutyric acid (GABA) on [3H](-)-baclofen binding indicated that GABA interacts with (-)-baclofen-sensitive binding sites (GABAB) in extended rather than folded conformations, and that folded analogues of GABA may interact with a class of binding site (GABAc? (nih.gov)
  • The major neurotransmitter of the central nervous system, gamma-aminobutyric acid (GABA), exerts its actions through GABA(A), GABA(B) and GABA(C) receptors. (uni-muenchen.de)
  • The main groups include sodium channel blockers, calcium current inhibitors, gamma-aminobutyric acid (GABA) enhancers, glutamate blockers, carbonic anhydrase inhibitors, hormones, and drugs with unknown mechanisms of action (see the image below). (medscape.com)
  • STX 209), a derivative of gamma-aminobutyric acid, is a selective GABAB receptor agonist that has been primarily used to treat spasticity. (sparkjadesd.com)
  • Gamma-aminobutyric acid receptor subunit gamma-2 is a protein that in humans is encoded by the GABRG2 gene. (wikipedia.org)
  • Gamma-aminobutyric acid (GABA), the major inhibitory neurotransmitter in the brain, mediates neuronal inhibition by binding to GABA receptors. (wikipedia.org)
  • Gamma-Aminobutyric Acid (GABA) Inhibits α-Melanocyte-Stimulating Hormone-Induced Melanogenesis through GABA A and GABA B Receptors. (bvsalud.org)
  • They affect the gamma-aminobutyric acid (GABA) system and cause a CNS suppressive effect, which ranges from anxiolysis, sedation, and coma to fatal cardiovascular and respiratory arrest upon overdose. (medscape.com)
  • Using CsCl-containing microelectrodes with QX314, we isolated mPSCs that were sensitive to the GABA A receptor antagonist, bicuculline. (unl.edu)
  • This effect was abrogated by a GABA A -R antagonist. (escholarship.org)
  • CGP 36742 is a selective antagonist of the GABAB receptor that can penetrate the blood-brain barrier after peripheral administration (IC50: 32 μM). (targetmol.com)
  • CGP 35348 is a selective antagonist of GABAB receptor (EC50 = 34 μM). (targetmol.com)
  • 6,2'-Dihydroxyflavone is a novel antagonist of GABAA receptor. (targetmol.com)
  • In a model of Up-Down states expressed in slices of rat entorhinal cortex, the GABA(A) receptor antagonist, gabazine (50-500 nM), concentration-dependently decreased Up state duration, eventually leading to epileptiform bursts. (ox.ac.uk)
  • In contrast, the GABA(B) receptor antagonist, CGP55845 (50 nM to 1 microM), increased the duration of persistent network activity, and prevented stimulus-induced Down state transitions. (ox.ac.uk)
  • In studies focused on the control of neurotransmitter release, it was noted that a GABA receptor was responsible for modulating evoked release in a variety of isolated tissue preparations. (wikipedia.org)
  • γ-Aminobutyric acid (GABA) is the major inhibitory neurotransmitter in the vertebrate brain, and fast inhibitory postsynaptic potentials are mediated by GABA A receptors (GABARs). (aspetjournals.org)
  • Ionotropic γ-aminobutyric acid (GABA) receptors (also named GABA type A receptors or GABA (A) receptors) are ion channels that are activated by GABA, the major inhibitory neurotransmitter in the central nervous system. (expasy.org)
  • Because GABAA and glycine receptors are the major inhibitory neurotransmitter receptors in the brain and brain stem/spinal cord, respectively, enhancement of the function of these receptors by ethanol may be responsible for some of the behavioral effects of ethanol observed in vivo. (grantome.com)
  • Radequinil is a benzodiazepine receptor partial inverse agonist. (targetmol.com)
  • Imepitoin, formerly known as AWD 131-138 and ELB 138, is a novel partial BZD (benzodiazepine) receptor agonist that has the potential use as an antiepileptic drug for the treatment of canine idiopathic epilepsy. (sparkjadesd.com)
  • Triazoloquinazolinediones as novel high affinity ligands for the benzodiazepine site of GABA(A) receptors. (lu.se)
  • Gelsemine inhibited the agonist-evoked currents of recombinant and native receptors. (iasp-pain.org)
  • However, spontaneous channel activity has been reported in recombinant α4β1 receptors as well as β1 or β3 homomeric receptors, although these isoforms are insensitive to activation by GABA. (aspetjournals.org)
  • Influence of subunit configuration on the interaction of picrotoxin-site ligands with recombinant GABA(A) receptors. (bvsalud.org)
  • Spontaneous and GABAR single-channel currents from α1β3ε receptors had single-channel conductances of ∼24 pS. (aspetjournals.org)
  • We therefore tested the hypothesis that 5-HT 1B receptors might also be located on SCN GABAergic terminals by examining the effects of the highly selective 5-HT 1B receptor agonist CP-93,129 on SCN miniature inhibitory postsynaptic currents (mIPSCs). (unl.edu)
  • The excitatory synaptic currents mediated by AMPA and NMDA receptors and the inhibitory current mediated by GABA A receptors were pharmacologically isolated and recorded by whole-cell patch-clamp techniques. (jneurosci.org)
  • The potentiation of these eIPSCs lasted for more than twenty minutes, could be mimicked by activation of D2-like but not D1-like DA receptors, and was accompanied by an increase in the frequency of GABA A R-mediated spontaneous miniature inhibitory postsynaptic currents (mIPSCs). (huji.ac.il)
  • Furthermore, exposure to inhibitors of DA transporter (DAT) led to potentiation of GABA A currents in a manner similar to the DA-mediated potentiation. (huji.ac.il)
  • Finally, a prolonged presence of l-NAME, an inhibitor of nitric-oxide (NO) signaling was found to conceal the potentiation of GABA A currents induced by the DA-related drugs. (huji.ac.il)
  • The influence of γ-aminobutyric type-A (GABA A ) receptors agonist (muscimol hydrobromide, 0.1 µg/0.5 µl) injections into the right or left basolateral amygdala (BLA) on the behavior of high-an- xiety (HA) and low-anxiety (LA) rats subjected to the elevated plus-maze (EPM) test was investigated. (scirp.org)
  • Sample results obtained for [3H]GABA binding to the homomeric subunit GABAA receptors in rats are shown in /em Fig. GABAB, and homomeric subunit GABAA site, formally referred to as the GABAc receptor (Table 1.7.1). (buyresearchchemicalss.net)
  • Modulation of GABA receptors and of GABAergic synapses by the natural alkaloid gelsemine. (iasp-pain.org)
  • Cellular, molecular and biochemical studies in human subjects report changes affecting the gamma-amino butyric acid (GABA) system, specifically somatostatin-expressing (SST+) GABAergic interneurons, across brain disorders and during aging. (nature.com)
  • Fig. 3: GABAergic inverted U-shape for optimal function: effects of disease and modulation of SST+ cell-mediated signaling through α5-GABA-A receptors. (nature.com)
  • Inhibition of AMPA/KA receptors reduced mIPSC frequency, but selective antagonism of AMPA receptors did not alter GABA release, implicating the presence of presynaptic KA receptors on GABAergic terminals. (uky.edu)
  • There are two classes of GABA receptors: GABAA and GABAB. (wikipedia.org)
  • whereas GABAB receptors are G protein-coupled receptors, also called metabotropic receptors. (wikipedia.org)
  • A slow response to GABA is mediated by GABAB receptors, originally defined on the basis of pharmacological properties. (wikipedia.org)
  • GABAB receptors are metabotropic receptors which produce slow inhibitory signals. (sparkjadesd.com)
  • Description: A Rabbit Polyclonal antibody against GABA A Receptor ?2 from Human/ Rat/ Mouse. (bd-ibr.org)
  • Zinc and copper modulate differentially the P2X receptor. (cdc.gov)
  • In ionotropic GABAA receptors, binding of GABA molecules to their binding sites in the extracellular part of the receptor triggers opening of a chloride ion-selective pore. (wikipedia.org)
  • A subclass of ionotropic GABA receptors, insensitive to typical allosteric modulators of GABAA receptor channels such as benzodiazepines and barbiturates, was designated GABAС receptor. (wikipedia.org)
  • Fast-responding GABA receptors are members of a family of Cys-loop ligand-gated ion channels. (wikipedia.org)
  • GABARs belong to the superfamily of ligand-gated ion channels that includes the glycine, nicotinic cholinergic (nAChR), and 5-hydroxytryptamine receptors. (aspetjournals.org)
  • Mutations in GABA A receptor subunit genes lead to production of altered subunit proteins that cannot form functional receptors, so fewer GABA A receptors are available. (medlineplus.gov)
  • Native responses of the GABAC receptor type occur in retinal bipolar or horizontal cells across vertebrate species. (wikipedia.org)
  • The GABA binding site formerly designated as GABAC is now recognized as a homomeric subunit GABAA site, rendering the GABAC designation obsolete (http://www.iuphar-db.org/DATABASE/FamilyMenuForward?familyID=72). (buyresearchchemicalss.net)
  • Members of this superfamily, which includes nicotinic acetylcholine receptors, GABAA receptors, glycine and 5-HT3 receptors, possess a characteristic loop formed by a disulfide bond between two cysteine residues. (wikipedia.org)
  • More recently, the function of the phylogenetically-related glycine receptors has also been shown to be affected by ethanol. (grantome.com)
  • The work proposed involves the study of the interactions of ethanol with glycine and GABAA receptors on the molecular level. (grantome.com)
  • Further work identified two amino acids which, when mutated, completely prevented ethanol enhancement of glycine and/or GABAA receptor function. (grantome.com)
  • This proposal aims to further characterize the molecular mechanisms of ethanol action on glycine and GABAA receptors. (grantome.com)
  • To obtain a clearer understanding of the nature of ethanol interactions with the glycine receptor, the amino acids implicated in ethanol action will be mutated to other amino acids, and the resulting receptors expressed in Xenopus oocytes and tested for ethanol sensitivity using the two-electrode voltage-clamp technique. (grantome.com)
  • Evidence suggests that amino acid residues in GABAA receptors equivalent to those shown to determine ethanol sensitivity of glycine receptors are also important for ethanol effects on the former. (grantome.com)
  • Clinically applicable GABA receptor positive allosteric modulators promote ß-cell replication. (escholarship.org)
  • A number of positive allosteric modulators (PAMs) that enhance GABA's actions on neuronal GABA A -Rs are in clinical use. (escholarship.org)
  • Many GABA A receptor modulators exhibit clear subunit selectivity ( Olsen and Macdonald, 2002 ). (jneurosci.org)
  • Description: A polyclonal antibody for detection of GABA A Receptor Alpha2 from Human, Mouse, Rat. (bd-ibr.org)
  • This GABA A Receptor Alpha2 antibody is for WB, IHC-P. It is affinity-purified from rabbit antiserum by affinity-chromatography using the specific immunogenand is unconjugated. (bd-ibr.org)
  • Allosteric conversion of partial to full agonism may be a general mechanism for reversibly scaling the efficacy of GABA A receptors to endogenous partial agonists. (jneurosci.org)
  • It is even more intriguing to consider the potential plasticity of allosteric modulation given the observation of agonist-dependent functional properties of GABA A receptors. (jneurosci.org)
  • Reacts with N-terminal region of human GABA BR2 protein. (covalab.com)
  • Prepare homomeric subunit GABAA receptors In 50-ml polypropylene centrifuge tubes, resuspend cerebellar membranes in sufficient 50 mM TrisCl to yield a final concentration of ~8.0 mg protein/ml ARRY-520 R enantiomer using the tissue homogenizer (midpoint setting for ~30 sec). (buyresearchchemicalss.net)
  • 40 M isoguvacine + 5 nM [3H]GABA + various concentrations of unlabeled GABA (5 nM to 5 M). 11 Add 100 l of the tissue suspension (300 g protein) to each tube and gently vortex to mix the contents. (buyresearchchemicalss.net)
  • The non-protein amino acid γ-aminobutyric acid (GABA) has been proposed to be an ancient messenger for cellular communication conserved across biological kingdoms. (nature.com)
  • We report that the combination of α1β3ε subunit subtypes expressed in L929 cells produced functional chloride ion channels that were both spontaneously active and gated by the application of extracellular GABA. (aspetjournals.org)
  • In mice lacking functional 5-HT 1B receptors, CP-93,129 (1 mM) had no clear effect on the frequency or the amplitude of mIPSCs recorded in any of the cells tested ( n = 4). (unl.edu)
  • However, the excitatory GABA theory has been questioned as potentially being an artefact of experimental conditions, with most data acquired in in-vitro brain slice experiments susceptible to un-physiological milieu such as deficient energy metabolism and neuronal damage. (wikipedia.org)
  • The controversy arose when a number of studies have shown that GABA in neonatal brain slices becomes inhibitory if glucose in perfusate is supplemented with ketone bodies, pyruvate, or lactate, or that the excitatory GABA was an artefact of neuronal damage. (wikipedia.org)
  • Together, this suggests that reduced signaling of the SST+ neuron/α5-GABA-A receptor pathway contributes to cognitive dysfunctions, and that it represents a novel therapeutic target for remediating mood and cognitive symptoms in depression, other psychiatric disorders and during aging. (nature.com)
  • In marked contrast, homomeric receptors composed of the related GABA rho1 subunit show strong inhibition by ethanol. (grantome.com)
  • RT-PCR followed by sequencing showed that the GABA-synthesizing enzymes glutamate decarboxylase (GAD) 65 and/or GAD67, as well as the vesicular GABA transporter vesicular inhibitory amino acid transporter (VIAAT/VGAT) are expressed. (uni-muenchen.de)
  • Capsaicin, which activates transient receptor potential vanilloid type 1 (TRPV1) receptors and increases mIPSC frequency in the DMV via an iGluR-mediated, heterosynaptic mechanism, was also applied to assess GABA release subsequent to capsaicin-stimulated glutamate release. (uky.edu)
  • Whereas NMDA application increased mIPSC frequency, blocking NMDA receptors was without effect, indicating that presynaptic NMDA receptors were present, but not activated by ambient glutamate levels in the slice. (uky.edu)
  • There have been numerous reports of excitatory GABAA receptors. (wikipedia.org)
  • Others have argued that the differences between GABAС and GABAA receptors are large enough to justify maintaining the distinction between these two subclasses of GABA receptors. (wikipedia.org)
  • Reduction in the expression or function of α5-subunit-containing GABAA receptors (α5GABAARs) leads to improvement in several hippocampus-dependent memory domains. (uzh.ch)
  • These is abundant biochemical and electrophysiological evidence implicating GABAA receptors as important sites of action of ethanol. (grantome.com)
  • These data thus substantiate that partial agonism at the BZD site of GABAA receptors offers advantages versus full agonism and constitutes a valuable approach for treatment of seizures. (sparkjadesd.com)
  • Furthermore, we treated the ARC with GABA-A/B receptor antagonists separately, and IOP was evaluated, as well as retinal ganglion cell apoptosis in the chronic high IOP rat model. (molvis.org)
  • Antagonists of GABA receptors inhibit the action of GABA. (otavachemicals.com)
  • Agonists and antagonists of GABA A and GABA B were taken from ChEMBL database. (otavachemicals.com)
  • In this study, we recorded the postsynaptic responses to repetitive stimulation of the lateral lemniscus and examined the effects of AMPA, NMDA, and GABA A receptor antagonists. (jneurosci.org)
  • The presence of GABA(A) receptor subunit alpha1 mRNA in interstitial cells of the rat testis was further shown after laser microdissection followed by RT-PCR analysis. (uni-muenchen.de)
  • The biochemical studies of the interaction of muskelin and the alpha1 subunit of the GABA(A) receptor demonstrated a direct binding with an affinity in the low micromolar range, which is mediated primarily by the kelch repeat domain in muskelin. (uni-wuerzburg.de)
  • The purpose of this study was to determine the contribution of each of these synaptic receptors to temporal integration in the ICC. (jneurosci.org)
  • Although GABA activates synaptic (αβγ) GABA A receptors with high efficacy, partial agonist activation of αβγ isoforms and GABA activation of the primary extrasynaptic (αβδ) GABA A receptors are limited to low-efficacy activity, characterized by minimal desensitization and brief openings. (jneurosci.org)
  • Conversely, augmenting SST+ cell post-synaptic α5-GABA-A receptor activity has pro-cognitive efficacy in stress and aging models. (nature.com)
  • Results of these studies indicate that presynaptic NMDAR and KA receptors regulate GABA release in the DMV, representing a heterosynaptic arrangement for rapidly modulating parasympathetic output, especially when synaptic excitation is elevated. (uky.edu)
  • Open in a separate window Physique 1.7.3 Analysis of specific [3H]GABA binding to rat brain synaptic membranes (Bowery et al. (buyresearchchemicalss.net)
  • GABA signal transduction via ALMT9 leads to reduced transpirational water loss, increased water use efficiency (WUE) and improved drought resilience. (nature.com)
  • GABRG2 has been shown to interact with GABARAP and Dopamine receptor D5. (wikipedia.org)
  • Therefore, small molecule compounds modulating GABA receptors activity may have significant therapeutic potential. (otavachemicals.com)
  • Most GABAR isoforms require binding of GABA to initiate entry into open states. (aspetjournals.org)
  • As a result, further GABA binding becomes inhibited and inhibitory postsynaptic potentials are no longer relevant. (wikipedia.org)
  • When associated with mutations in GABA A receptor or calcium channel genes, it seems to follow an autosomal dominant inheritance pattern, which means one copy of the altered gene in each cell is sufficient to increase the likelihood of the disorder. (medlineplus.gov)
  • The behavioral activity profile of gelsemine suggests the involvement of GABA receptors (GABARs), which are the main biological targets of benzodiazepines (BDZs), a group of drugs with anxiolytic, hypnotic, and analgesic properties. (iasp-pain.org)
  • These data extend the pharmacological characterization of ε-containing GABARs and demonstrate that incorporation of the ε subunit permits spontaneous channel gating while preserving the structural information necessary for GABA sensitivity. (aspetjournals.org)
  • abstract = "Regulation of GABA release in the dorsal motor nucleus of the vagus (DMV) potently influences vagal output to the viscera. (uky.edu)
  • To investigate the relationship between intraocular pressure (IOP) and GABA receptors within the arcuate nucleus (ARC). (molvis.org)
  • em Caution must be exercised to ensure the tissue pellets, or portions of them, are not dislodged from the bottom of the tube during the rinsing.Hooked on benzodiazepines: GABAA receptor subtypes and addiction. (buyresearchchemicalss.net)
  • Since then, using technology such as in-vivo electrophysiology/imaging and optogenetics, two in-vivo studies have reported the effect of GABA on neonatal brain, and both have shown that GABA is indeed overall inhibitory, with its activation in the developing rodent brain not resulting in network activation, and instead leading to a decrease of activity. (wikipedia.org)
  • It has recently become appreciated that activation of γ-aminobutyric acid receptors (GABA-Rs) on ß-cells can promote their survival and replication. (escholarship.org)
  • GABA A inhibition suppressed activation of NMDA receptors and reduced both the degree of AMPA EPSC depression and the extent of temporal summation of NMDA EPSCs. (jneurosci.org)
  • These results suggest that while GABA(A) receptor-mediated inhibition is necessary for balancing persistent activity, activation of GABA(B) receptors contributes to terminating Up states. (ox.ac.uk)
  • Activation of the GABA system in the cerebellum causes ataxia. (medscape.com)
  • The unusual sensitivity of αβδ receptor channels to neurosteroid modulation prompted investigation of whether this high sensitivity was dependent on the δ subunit or the low-efficacy channel function that it confers. (jneurosci.org)
  • αβγ) of neurosteroid modulation could be reversed by conditions that reversed isoform-specific activity modes, including the use of β-alanine to achieve increased efficacy with αβδ receptors and taurine to render αβγ receptors low efficacy. (jneurosci.org)
  • We find GABA modulation of stomata occurs in multiple plants, including dicot and monocot crops. (nature.com)
  • Subsequent studies from originators and proponents of the excitatory GABA theory have questioned these results, but the truth remained elusive until the real effects of GABA could be reliably elucidated in intact living brain. (wikipedia.org)
  • Homocarnosine acetate is a dipeptide unique to brain consisting of γ-aminobutyric acid (GABA) and histidine. (targetmol.com)
  • Barbiturates work primarily on GABA-A receptors, which are the main neurosuppressant receptors in the brain cortex. (medscape.com)
  • According to the excitatory GABA theory, this phenomenon is due to increased intracellular concentration of Cl¯ ions either during development of the nervous system or in certain cell populations. (wikipedia.org)
  • The receptors belong to a superfamily that share a common CYSTEINE loop. (bvsalud.org)
  • For the binding site on the GABA(A) receptor, it was confirmed that the thirteen most C-terminal residues of the intracellular domain are critical for the binding of muskelin. (uni-wuerzburg.de)
  • To establish a basis for understanding the mode of operation of muskelin, the aim of this thesis was an in-depth biochemical and structural characterization of muskelin and its interaction with the GABA(A) receptor. (uni-wuerzburg.de)
  • The response kinetics of AMPA receptor-mediated EPSCs and GABA A receptor-mediated IPSCs were similar and much faster than those of NMDA receptor-mediated EPSCs. (jneurosci.org)
  • With a single pulse of current stimulation, the AMPA, NMDA, and GABA A receptor-mediated responses overlap each other temporally. (jneurosci.org)
  • The effect of NMDA was prevented by AMPA/KA receptor blockade, suggesting indirect involvement of NMDA receptors. (uky.edu)
  • The stimulatory effect of capsaicin on GABA release was prevented when AMPA/KA or NMDA, but not AMPA receptors were blocked. (uky.edu)
  • These findings suggest that PAMs may potentiate the actions of GABA secreted by islet ß-cells on GABA A -Rs and provide a new class of drugs for diabetes treatment. (escholarship.org)
  • 5-HT 1B Receptor-Mediated Presynaptic Inhibition of GABA Rel" by Jayne R. Bramley, Patricia J. Sollars et al. (unl.edu)
  • The suprachiasmatic nucleus (SCN) receives a dense serotonergic innervation that modulates photic input to the SCN via serotonin 1B (5-HT 1B ) presynaptic receptors on retinal glutamatergic terminals. (unl.edu)
  • An impairment of GABA(A)-receptor-mediated inhibitory neurotransmission has been implicated in the development of epileptic seizures. (psu.edu)
  • Taken together, this study demonstrates a new modulatory form of VTA GABA A neurotransmission mediated by DA-related drugs. (huji.ac.il)
  • GABA receptors agonists produce typically sedative effects, and may also cause other effects such as anticonvulsant, anxiolytic and muscle relaxant effects. (otavachemicals.com)
  • Substantia nigra GABA receptors can mediate anticonvulsant or proconvulsant effects. (elsevierpure.com)
  • This study highlights a role for GABA metabolism in fine tuning physiology and opens alternative avenues for improving plant stress resilience. (nature.com)
  • The discovery that the activity of aluminium-activated malate transporters (ALMTs) can be regulated by GABA 18 represents a plausible mechanism by which GABA signals could be transduced in plants, providing a putative-but unproven-novel signalling link between primary metabolism and physiology 19 . (nature.com)
  • We suggest that neurosteroids preferentially enhance low-efficacy GABA A receptor activity independent of subunit composition. (jneurosci.org)
  • To determine whether seizures affect GABA(A)-receptor gene transcription in vivo, a transgenic mouse line carrying a lacZ-fusion gene driven by GABA(A)-receptor δ-subunit promoter and upstream sequences was subjected to pentylenetetrazol (PTZ)-induced seizures. (psu.edu)
  • These results show that transient changes in transcription of the GABA(A)-receptor δ-subunit gene occur after acute seizures, but not after kindling. (psu.edu)
  • This gene encodes the gamma 2 subunit of GABA(A) receptor. (wikipedia.org)
  • Stimulation of GABA-A receptors results in increasing seizure threshold by decreasing postsynaptic excitation. (medscape.com)