Neuropeptide and gut hormone that helps regulate GASTRIC ACID secretion and motor function. Once released from nerves in the antrum of the STOMACH, the neuropeptide stimulates release of GASTRIN from the GASTRIN-SECRETING CELLS.
Cell surface receptors that bind signalling molecules released by neurons and convert these signals into intracellular changes influencing the behavior of cells. Neurotransmitter is used here in its most general sense, including not only messengers that act to regulate ion channels, but also those which act on second messenger systems and those which may act at a distance from their release sites. Included are receptors for neuromodulators, neuroregulators, neuromediators, and neurohumors, whether or not located at synapses.
Members of the class of compounds composed of AMINO ACIDS joined together by peptide bonds between adjacent amino acids into linear, branched or cyclical structures. OLIGOPEPTIDES are composed of approximately 2-12 amino acids. Polypeptides are composed of approximately 13 or more amino acids. PROTEINS are linear polypeptides that are normally synthesized on RIBOSOMES.
A peptide, of about 33 amino acids, secreted by the upper INTESTINAL MUCOSA and also found in the central nervous system. It causes gallbladder contraction, release of pancreatic exocrine (or digestive) enzymes, and affects other gastrointestinal functions. Cholecystokinin may be the mediator of satiety.
A family of gastrointestinal peptide hormones that excite the secretion of GASTRIC JUICE. They may also occur in the central nervous system where they are presumed to be neurotransmitters.
Cell lines whose original growing procedure consisted being transferred (T) every 3 days and plated at 300,000 cells per plate (J Cell Biol 17:299-313, 1963). Lines have been developed using several different strains of mice. Tissues are usually fibroblasts derived from mouse embryos but other types and sources have been developed as well. The 3T3 lines are valuable in vitro host systems for oncogenic virus transformation studies, since 3T3 cells possess a high sensitivity to CONTACT INHIBITION.
An order of the class Amphibia, which includes several families of frogs and toads. They are characterized by well developed hind limbs adapted for jumping, fused head and trunk and webbed toes. The term "toad" is ambiguous and is properly applied only to the family Bufonidae.
A nodular organ in the ABDOMEN that contains a mixture of ENDOCRINE GLANDS and EXOCRINE GLANDS. The small endocrine portion consists of the ISLETS OF LANGERHANS secreting a number of hormones into the blood stream. The large exocrine portion (EXOCRINE PANCREAS) is a compound acinar gland that secretes several digestive enzymes into the pancreatic ductal system that empties into the DUODENUM.
A group of amylolytic enzymes that cleave starch, glycogen, and related alpha-1,4-glucans. (Stedman, 25th ed) EC 3.2.1.-.
Antidiuretic hormones released by the NEUROHYPOPHYSIS of all vertebrates (structure varies with species) to regulate water balance and OSMOLARITY. In general, vasopressin is a nonapeptide consisting of a six-amino-acid ring with a cysteine 1 to cysteine 6 disulfide bridge or an octapeptide containing a CYSTINE. All mammals have arginine vasopressin except the pig with a lysine at position 8. Vasopressin, a vasoconstrictor, acts on the KIDNEY COLLECTING DUCTS to increase water reabsorption, increase blood volume and blood pressure.
A peptide extracted from the posterior salivary glands of certain small octopi (Eledone spp., Mollusca), or obtained by synthesis. Its actions resemble those of SUBSTANCE P; it is a potent vasodilator and increases capillary permeability. (From Martindale, The Extra Pharmacopoeia, 30th ed, p1364)
HORMONES secreted by the gastrointestinal mucosa that affect the timing or the quality of secretion of digestive enzymes, and regulate the motor activity of the digestive system organs.
A specific decapeptide obtained from the skin of Hila caerulea, an Australian amphibian. Caerulein is similar in action and composition to CHOLECYSTOKININ. It stimulates gastric, biliary, and pancreatic secretion; and certain smooth muscle. It is used in paralytic ileus and as diagnostic aid in pancreatic malfunction.
An octapeptide hormone present in the intestine and brain. When secreted from the gastric mucosa, it stimulates the release of bile from the gallbladder and digestive enzymes from the pancreas.
Abnormal passage communicating with the STOMACH.
A derivative of benzodiazepine that acts on the cholecystokinin A (CCKA) receptor to antagonize CCK-8's (SINCALIDE) physiological and behavioral effects, such as pancreatic stimulation and inhibition of feeding.
A phorbol ester found in CROTON OIL which, in addition to being a potent skin tumor promoter, is also an effective activator of calcium-activated, phospholipid-dependent protein kinase (protein kinase C). Due to its activation of this enzyme, phorbol 12,13-dibutyrate profoundly affects many different biological systems.
An eleven-amino acid neurotransmitter that appears in both the central and peripheral nervous systems. It is involved in transmission of PAIN, causes rapid contractions of the gastrointestinal smooth muscle, and modulates inflammatory and immune responses.
A 14-amino acid peptide named for its ability to inhibit pituitary GROWTH HORMONE release, also called somatotropin release-inhibiting factor. It is expressed in the central and peripheral nervous systems, the gut, and other organs. SRIF can also inhibit the release of THYROID-STIMULATING HORMONE; PROLACTIN; INSULIN; and GLUCAGON besides acting as a neurotransmitter and neuromodulator. In a number of species including humans, there is an additional form of somatostatin, SRIF-28 with a 14-amino acid extension at the N-terminal.
Rapidly decreasing response to a drug or physiologically active agent after administration of a few doses. In immunology, it is the rapid immunization against the effect of toxic doses of an extract or serum by previous injection of small doses. (Dorland, 28th ed)
A biologically active tridecapeptide isolated from the hypothalamus. It has been shown to induce hypotension in the rat, to stimulate contraction of guinea pig ileum and rat uterus, and to cause relaxation of rat duodenum. There is also evidence that it acts as both a peripheral and a central nervous system neurotransmitter.
Phosphoric acid esters of inositol. They include mono- and polyphosphoric acid esters, with the exception of inositol hexaphosphate which is PHYTIC ACID.
The rate dynamics in chemical or physical systems.
An anaplastic, highly malignant, and usually bronchogenic carcinoma composed of small ovoid cells with scanty neoplasm. It is characterized by a dominant, deeply basophilic nucleus, and absent or indistinct nucleoli. (From Stedman, 25th ed; Holland et al., Cancer Medicine, 3d ed, p1286-7)
An serine-threonine protein kinase that requires the presence of physiological concentrations of CALCIUM and membrane PHOSPHOLIPIDS. The additional presence of DIACYLGLYCEROLS markedly increases its sensitivity to both calcium and phospholipids. The sensitivity of the enzyme can also be increased by PHORBOL ESTERS and it is believed that protein kinase C is the receptor protein of tumor-promoting phorbol esters.
A basic element found in nearly all organized tissues. It is a member of the alkaline earth family of metals with the atomic symbol Ca, atomic number 20, and atomic weight 40. Calcium is the most abundant mineral in the body and combines with phosphorus to form calcium phosphate in the bones and teeth. It is essential for the normal functioning of nerves and muscles and plays a role in blood coagulation (as factor IV) and in many enzymatic processes.
A drug that exerts an inhibitory effect on gastric secretion and reduces gastrointestinal motility. It is used clinically in the drug therapy of gastrointestinal ulcers.
Diglycerides are a type of glyceride, specifically a form of lipid, that contains two fatty acid chains linked to a glycerol molecule by ester bonds.
An oligopeptide isolated from the skin of Physalaemus fuscumaculatus, a South American frog. It is a typical kinin, resembling SUBSTANCE P in structure and action and has been proposed as a sialagogue, antihypertensive, and vasodilator.
A peptide hormone of about 27 amino acids from the duodenal mucosa that activates pancreatic secretion and lowers the blood sugar level. (USAN and the USP Dictionary of Drug Names, 1994, p597)
Mitogenic peptide growth hormone carried in the alpha-granules of platelets. It is released when platelets adhere to traumatized tissues. Connective tissue cells near the traumatized region respond by initiating the process of replication.
The region between the sharp indentation at the lower third of the STOMACH (incisura angularis) and the junction of the PYLORUS with the DUODENUM. Pyloric antral glands contain mucus-secreting cells and gastrin-secreting endocrine cells (G CELLS).
Benzodiazepinones are a class of psychoactive drugs that bind to the GABA-A receptor and enhance its inhibitory effects, producing anxiolytic, sedative, hypnotic, anticonvulsant, and muscle relaxant properties.
Substances that stimulate mitosis and lymphocyte transformation. They include not only substances associated with LECTINS, but also substances from streptococci (associated with streptolysin S) and from strains of alpha-toxin-producing staphylococci. (Stedman, 25th ed)
A serine proteinase inhibitor used therapeutically in the treatment of pancreatitis, disseminated intravascular coagulation (DIC), and as a regional anticoagulant for hemodialysis. The drug inhibits the hydrolytic effects of thrombin, plasmin, and kallikrein, but not of chymotrypsin and aprotinin.
A synthetic pentapeptide that has effects like gastrin when given parenterally. It stimulates the secretion of gastric acid, pepsin, and intrinsic factor, and has been used as a diagnostic aid.
The interaction of two or more substrates or ligands with the same binding site. The displacement of one by the other is used in quantitative and selective affinity measurements.
The fission of a CELL. It includes CYTOKINESIS, when the CYTOPLASM of a cell is divided, and CELL NUCLEUS DIVISION.
Hydrochloric acid present in GASTRIC JUICE.
A subclass of IMIDES with the general structure of pyrrolidinedione. They are prepared by the distillation of ammonium succinate. They are sweet-tasting compounds that are used as chemical intermediates and plant growth stimulants.
A non-receptor protein tyrosine kinase that is localized to FOCAL ADHESIONS and is a central component of integrin-mediated SIGNAL TRANSDUCTION PATHWAYS. Focal adhesion kinase 1 interacts with PAXILLIN and undergoes PHOSPHORYLATION in response to adhesion of cell surface integrins to the EXTRACELLULAR MATRIX. Phosphorylated p125FAK protein binds to a variety of SH2 DOMAIN and SH3 DOMAIN containing proteins and helps regulate CELL ADHESION and CELL MIGRATION.
Unstable isotopes of iodine that decay or disintegrate emitting radiation. I atoms with atomic weights 117-139, except I 127, are radioactive iodine isotopes.
Peptides composed of between two and twelve amino acids.
Cell surface proteins that bind cholecystokinin (CCK) with high affinity and trigger intracellular changes influencing the behavior of cells. Cholecystokinin receptors are activated by GASTRIN as well as by CCK-4; CCK-8; and CCK-33. Activation of these receptors evokes secretion of AMYLASE by pancreatic acinar cells, acid and PEPSIN by stomach mucosal cells, and contraction of the PYLORUS and GALLBLADDER. The role of the widespread CCK receptors in the central nervous system is not well understood.
Mutant mice homozygous for the recessive gene "nude" which fail to develop a thymus. They are useful in tumor studies and studies on immune responses.
The order of amino acids as they occur in a polypeptide chain. This is referred to as the primary structure of proteins. It is of fundamental importance in determining PROTEIN CONFORMATION.
Cells grown in vitro from neoplastic tissue. If they can be established as a TUMOR CELL LINE, they can be propagated in cell culture indefinitely.
Beta-Sulfoalanine. An amino acid with a C-terminal sulfonic acid group which has been isolated from human hair oxidized with permanganate. It occurs normally in the outer part of the sheep's fleece, where the wool is exposed to light and weather.
An alkaloid, originally from Atropa belladonna, but found in other plants, mainly SOLANACEAE. Hyoscyamine is the 3(S)-endo isomer of atropine.
Partial proteins formed by partial hydrolysis of complete proteins or generated through PROTEIN ENGINEERING techniques.
Preparations made from animal tissues or organs (ANIMAL STRUCTURES). They usually contain many components, any one of which may be pharmacologically or physiologically active. Tissue extracts may contain specific, but uncharacterized factors or proteins with specific actions.
Tumor-promoting compounds obtained from CROTON OIL (Croton tiglium). Some of these are used in cell biological experiments as activators of protein kinase C.
Unstable isotopes of copper that decay or disintegrate emitting radiation. Cu atoms with atomic weights 58-62, 64, and 66-68 are radioactive copper isotopes.
Established cell cultures that have the potential to propagate indefinitely.
Lutetium. An element of the rare earth family of metals. It has the atomic symbol Lu, atomic number 71, and atomic weight 175.
Techniques for labeling a substance with a stable or radioactive isotope. It is not used for articles involving labeled substances unless the methods of labeling are substantively discussed. Tracers that may be labeled include chemical substances, cells, or microorganisms.
A class of organic compounds containing a ring structure made up of more than one kind of atom, usually carbon plus another atom. The ring structure can be aromatic or nonaromatic.
A subclass of phospholipases that hydrolyze the phosphoester bond found in the third position of GLYCEROPHOSPHOLIPIDS. Although the singular term phospholipase C specifically refers to an enzyme that catalyzes the hydrolysis of PHOSPHATIDYLCHOLINE (EC 3.1.4.3), it is commonly used in the literature to refer to broad variety of enzymes that specifically catalyze the hydrolysis of PHOSPHATIDYLINOSITOLS.
Locomotor behavior not involving a steering reaction, but in which there may be a turning random in direction. It includes orthokinesis, the rate of movement and klinokinesis, the amount of turning, which are related to the intensity of stimulation.
A 36-amino acid pancreatic hormone that is secreted mainly by endocrine cells found at the periphery of the ISLETS OF LANGERHANS and adjacent to cells containing SOMATOSTATIN and GLUCAGON. Pancreatic polypeptide (PP), when administered peripherally, can suppress gastric secretion, gastric emptying, pancreatic enzyme secretion, and appetite. A lack of pancreatic polypeptide (PP) has been associated with OBESITY in rats and mice.
A family of non-receptor, PROLINE-rich protein-tyrosine kinases.
A fungal metabolite that blocks cytoplasmic cleavage by blocking formation of contractile microfilament structures resulting in multinucleated cell formation, reversible inhibition of cell movement, and the induction of cellular extrusion. Additional reported effects include the inhibition of actin polymerization, DNA synthesis, sperm motility, glucose transport, thyroid secretion, and growth hormone release.
Descriptions of specific amino acid, carbohydrate, or nucleotide sequences which have appeared in the published literature and/or are deposited in and maintained by databanks such as GENBANK, European Molecular Biology Laboratory (EMBL), National Biomedical Research Foundation (NBRF), or other sequence repositories.
Protein kinases that catalyze the PHOSPHORYLATION of TYROSINE residues in proteins with ATP or other nucleotides as phosphate donors.
A phorbol ester found in CROTON OIL with very effective tumor promoting activity. It stimulates the synthesis of both DNA and RNA.
Cell lines developed from disaggregated BALB/c mouse embryos. They are extremely sensitive to CONTACT INHIBITION, and highly susceptible to transformation by SV40 VIRUS and murine sarcoma virus (SARCOMA VIRUSES, MURINE).
A 6-kDa polypeptide growth factor initially discovered in mouse submaxillary glands. Human epidermal growth factor was originally isolated from urine based on its ability to inhibit gastric secretion and called urogastrone. Epidermal growth factor exerts a wide variety of biological effects including the promotion of proliferation and differentiation of mesenchymal and EPITHELIAL CELLS. It is synthesized as a transmembrane protein which can be cleaved to release a soluble active form.
Conversion of an inactive form of an enzyme to one possessing metabolic activity. It includes 1, activation by ions (activators); 2, activation by cofactors (coenzymes); and 3, conversion of an enzyme precursor (proenzyme or zymogen) to an active enzyme.
The relationship between the dose of an administered drug and the response of the organism to the drug.
A stable synthetic analog of methionine enkephalin (ENKEPHALIN, METHIONINE). Actions are similar to those of methionine enkephalin. Its effects can be reversed by narcotic antagonists such as naloxone.
Peptides released by NEURONS as intercellular messengers. Many neuropeptides are also hormones released by non-neuronal cells.
Inorganic salts that contain the -HCO3 radical. They are an important factor in determining the pH of the blood and the concentration of bicarbonate ions is regulated by the kidney. Levels in the blood are an index of the alkali reserve or buffering capacity.
A contrast medium in diagnostic radiology with properties similar to those of diatrizoic acid. It is used primarily as its sodium and meglumine (IOTHALAMATE MEGLUMINE) salts.
The introduction of a phosphoryl group into a compound through the formation of an ester bond between the compound and a phosphorus moiety.
21-Amino-acid peptides produced by vascular endothelial cells and functioning as potent vasoconstrictors. The endothelin family consists of three members, ENDOTHELIN-1; ENDOTHELIN-2; and ENDOTHELIN-3. All three peptides contain 21 amino acids, but vary in amino acid composition. The three peptides produce vasoconstrictor and pressor responses in various parts of the body. However, the quantitative profiles of the pharmacological activities are considerably different among the three isopeptides.
The study of the chemical and physical phenomena of radioactive substances.
Substances used for their pharmacological actions on any aspect of neurotransmitter systems. Neurotransmitter agents include agonists, antagonists, degradation inhibitors, uptake inhibitors, depleters, precursors, and modulators of receptor function.
A cyclized derivative of L-GLUTAMIC ACID. Elevated blood levels may be associated with problems of GLUTAMINE or GLUTATHIONE metabolism.
The domestic dog, Canis familiaris, comprising about 400 breeds, of the carnivore family CANIDAE. They are worldwide in distribution and live in association with people. (Walker's Mammals of the World, 5th ed, p1065)
A highly basic, 28 amino acid neuropeptide released from intestinal mucosa. It has a wide range of biological actions affecting the cardiovascular, gastrointestinal, and respiratory systems and is neuroprotective. It binds special receptors (RECEPTORS, VASOACTIVE INTESTINAL PEPTIDE).
Compounds that are used in medicine as sources of radiation for radiotherapy and for diagnostic purposes. They have numerous uses in research and industry. (Martindale, The Extra Pharmacopoeia, 30th ed, p1161)
Tumors or cancer of the PROSTATE.
Guanosine 5'-(trihydrogen diphosphate), monoanhydride with phosphorothioic acid. A stable GTP analog which enjoys a variety of physiological actions such as stimulation of guanine nucleotide-binding proteins, phosphoinositide hydrolysis, cyclic AMP accumulation, and activation of specific proto-oncogenes.
Salts and esters of hippuric acid.
Derivatives of phosphatidic acids in which the phosphoric acid is bound in ester linkage to the hexahydroxy alcohol, myo-inositol. Complete hydrolysis yields 1 mole of glycerol, phosphoric acid, myo-inositol, and 2 moles of fatty acids.
A non-essential amino acid. In animals it is synthesized from PHENYLALANINE. It is also the precursor of EPINEPHRINE; THYROID HORMONES; and melanin.
A cell line established in 1962 from disaggregated Swiss albino mouse embryos. This fibroblast cell line is extremely popular in research.
Regulatory proteins that act as molecular switches. They control a wide range of biological processes including: receptor signaling, intracellular signal transduction pathways, and protein synthesis. Their activity is regulated by factors that control their ability to bind to and hydrolyze GTP to GDP. EC 3.6.1.-.
The amount of a substance secreted by cells or by a specific organ or organism over a given period of time; usually applies to those substances which are formed by glandular tissues and are released by them into biological fluids, e.g., secretory rate of corticosteroids by the adrenal cortex, secretory rate of gastric acid by the gastric mucosa.
Agents, usually topical, that relieve itching (pruritus).
Accumulation of a drug or chemical substance in various organs (including those not relevant to its pharmacologic or therapeutic action). This distribution depends on the blood flow or perfusion rate of the organ, the ability of the drug to penetrate organ membranes, tissue specificity, protein binding. The distribution is usually expressed as tissue to plasma ratios.
A 51-amino acid pancreatic hormone that plays a major role in the regulation of glucose metabolism, directly by suppressing endogenous glucose production (GLYCOGENOLYSIS; GLUCONEOGENESIS) and indirectly by suppressing GLUCAGON secretion and LIPOLYSIS. Native insulin is a globular protein comprised of a zinc-coordinated hexamer. Each insulin monomer containing two chains, A (21 residues) and B (30 residues), linked by two disulfide bonds. Insulin is used as a drug to control insulin-dependent diabetes mellitus (DIABETES MELLITUS, TYPE 1).
A nonapeptide messenger that is enzymatically produced from KALLIDIN in the blood where it is a potent but short-lived agent of arteriolar dilation and increased capillary permeability. Bradykinin is also released from MAST CELLS during asthma attacks, from gut walls as a gastrointestinal vasodilator, from damaged tissues as a pain signal, and may be a neurotransmitter.
Classic quantitative assay for detection of antigen-antibody reactions using a radioactively labeled substance (radioligand) either directly or indirectly to measure the binding of the unlabeled substance to a specific antibody or other receptor system. Non-immunogenic substances (e.g., haptens) can be measured if coupled to larger carrier proteins (e.g., bovine gamma-globulin or human serum albumin) capable of inducing antibody formation.
Connective tissue cells which secrete an extracellular matrix rich in collagen and other macromolecules.
The increase in a measurable parameter of a PHYSIOLOGICAL PROCESS, including cellular, microbial, and plant; immunological, cardiovascular, respiratory, reproductive, urinary, digestive, neural, musculoskeletal, ocular, and skin physiological processes; or METABOLIC PROCESS, including enzymatic and other pharmacological processes, by a drug or other chemical.
A common name used for the genus Cavia. The most common species is Cavia porcellus which is the domesticated guinea pig used for pets and biomedical research.
A 27-amino acid peptide with histidine at the N-terminal and isoleucine amide at the C-terminal. The exact amino acid composition of the peptide is species dependent. The peptide is secreted in the intestine, but is found in the nervous system, many organs, and in the majority of peripheral tissues. It has a wide range of biological actions, affecting the cardiovascular, gastrointestinal, respiratory, and central nervous systems.
Genetically identical individuals developed from brother and sister matings which have been carried out for twenty or more generations or by parent x offspring matings carried out with certain restrictions. This also includes animals with a long history of closed colony breeding.
The outer covering of the body that protects it from the environment. It is composed of the DERMIS and the EPIDERMIS.
An amino acid that occurs in endogenous proteins. Tyrosine phosphorylation and dephosphorylation plays a role in cellular signal transduction and possibly in cell growth control and carcinogenesis.
A storage reservoir for BILE secretion. Gallbladder allows the delivery of bile acids at a high concentration and in a controlled manner, via the CYSTIC DUCT to the DUODENUM, for degradation of dietary lipid.
Injections into the cerebral ventricles.
Cell surface proteins that bind somatostatin and trigger intracellular changes which influence the behavior of cells. Somatostatin is a hypothalamic hormone, a pancreatic hormone, and a central and peripheral neurotransmitter. Activated somatostatin receptors on pituitary cells inhibit the release of growth hormone; those on endocrine and gastrointestinal cells regulate the absorption and utilization of nutrients; and those on neurons mediate somatostatin's role as a neurotransmitter.
Intracellular messenger formed by the action of phospholipase C on phosphatidylinositol 4,5-bisphosphate, which is one of the phospholipids that make up the cell membrane. Inositol 1,4,5-trisphosphate is released into the cytoplasm where it releases calcium ions from internal stores within the cell's endoplasmic reticulum. These calcium ions stimulate the activity of B kinase or calmodulin.
Inorganic compounds that contain aluminum as an integral part of the molecule.
Tumors or cancer of the LUNG.
Nucleotides in which the base moiety is substituted with one or more sulfur atoms.
The fluid containing digestive enzymes secreted by the pancreas in response to food in the duodenum.
Ducts that collect PANCREATIC JUICE from the PANCREAS and supply it to the DUODENUM.
The liquid secretion of the stomach mucosa consisting of hydrochloric acid (GASTRIC ACID); PEPSINOGENS; INTRINSIC FACTOR; GASTRIN; MUCUS; and the bicarbonate ion (BICARBONATES). (From Best & Taylor's Physiological Basis of Medical Practice, 12th ed, p651)
The process by which a DNA molecule is duplicated.
Cells found throughout the lining of the GASTROINTESTINAL TRACT that contain and secrete regulatory PEPTIDE HORMONES and/or BIOGENIC AMINES.
A set of BACTERIAL ADHESINS and TOXINS, BIOLOGICAL produced by BORDETELLA organisms that determine the pathogenesis of BORDETELLA INFECTIONS, such as WHOOPING COUGH. They include filamentous hemagglutinin; FIMBRIAE PROTEINS; pertactin; PERTUSSIS TOXIN; ADENYLATE CYCLASE TOXIN; dermonecrotic toxin; tracheal cytotoxin; Bordetella LIPOPOLYSACCHARIDES; and tracheal colonization factor.
Compounds containing the hexamethylenebis(trimethylammonium) cation. Members of this group frequently act as antihypertensive agents and selective ganglionic blocking agents.
Thymidine is a pyrimidine nucleoside, consisting of a thymine base linked to a deoxyribose sugar by a β-N1-glycosidic bond, which plays a crucial role in DNA replication and repair processes as one of the four nucleosides in DNA.
The intracellular transfer of information (biological activation/inhibition) through a signal pathway. In each signal transduction system, an activation/inhibition signal from a biologically active molecule (hormone, neurotransmitter) is mediated via the coupling of a receptor/enzyme to a second messenger system or to an ion channel. Signal transduction plays an important role in activating cellular functions, cell differentiation, and cell proliferation. Examples of signal transduction systems are the GAMMA-AMINOBUTYRIC ACID-postsynaptic receptor-calcium ion channel system, the receptor-mediated T-cell activation pathway, and the receptor-mediated activation of phospholipases. Those coupled to membrane depolarization or intracellular release of calcium include the receptor-mediated activation of cytotoxic functions in granulocytes and the synaptic potentiation of protein kinase activation. Some signal transduction pathways may be part of larger signal transduction pathways; for example, protein kinase activation is part of the platelet activation signal pathway.
Experimental transplantation of neoplasms in laboratory animals for research purposes.
A subfamily in the family MURIDAE, comprising the hamsters. Four of the more common genera are Cricetus, CRICETULUS; MESOCRICETUS; and PHODOPUS.
Linear POLYPEPTIDES that are synthesized on RIBOSOMES and may be further modified, crosslinked, cleaved, or assembled into complex proteins with several subunits. The specific sequence of AMINO ACIDS determines the shape the polypeptide will take, during PROTEIN FOLDING, and the function of the protein.
A malignant neoplasm derived from glandular epithelium, in which cystic accumulations of retained secretions are formed. The neoplastic cells manifest varying degrees of anaplasia and invasiveness, and local extension and metastases occur. Cystadenocarcinomas develop frequently in the ovaries, where pseudomucinous and serous types are recognized. (Stedman, 25th ed)
Lining of the STOMACH, consisting of an inner EPITHELIUM, a middle LAMINA PROPRIA, and an outer MUSCULARIS MUCOSAE. The surface cells produce MUCUS that protects the stomach from attack by digestive acid and enzymes. When the epithelium invaginates into the LAMINA PROPRIA at various region of the stomach (CARDIA; GASTRIC FUNDUS; and PYLORUS), different tubular gastric glands are formed. These glands consist of cells that secrete mucus, enzymes, HYDROCHLORIC ACID, or hormones.
RNA sequences that serve as templates for protein synthesis. Bacterial mRNAs are generally primary transcripts in that they do not require post-transcriptional processing. Eukaryotic mRNA is synthesized in the nucleus and must be exported to the cytoplasm for translation. Most eukaryotic mRNAs have a sequence of polyadenylic acid at the 3' end, referred to as the poly(A) tail. The function of this tail is not known for certain, but it may play a role in the export of mature mRNA from the nucleus as well as in helping stabilize some mRNA molecules by retarding their degradation in the cytoplasm.
A nonselective alpha-adrenergic antagonist. It is used in the treatment of hypertension and hypertensive emergencies, pheochromocytoma, vasospasm of RAYNAUD DISEASE and frostbite, clonidine withdrawal syndrome, impotence, and peripheral vascular disease.
Tumors or cancer of the DUODENUM.
Inflammation of the MUCOSA of both the SMALL INTESTINE and the LARGE INTESTINE. Etiology includes ISCHEMIA, infections, allergic, and immune responses.
Antineoplastic agent that is also used as a veterinary anesthetic. It has also been used as an intermediate in organic synthesis. Urethane is suspected to be a carcinogen.
Phosphoproteins are proteins that have been post-translationally modified with the addition of a phosphate group, usually on serine, threonine or tyrosine residues, which can play a role in their regulation, function, interaction with other molecules, and localization within the cell.
A class of compounds composed of repeating 5-carbon units of HEMITERPENES.
The sum of the weight of all the atoms in a molecule.
An ENTEROTOXIN from VIBRIO CHOLERAE. It consists of two major protomers, the heavy (H) or A subunit and the B protomer which consists of 5 light (L) or B subunits. The catalytic A subunit is proteolytically cleaved into fragments A1 and A2. The A1 fragment is a MONO(ADP-RIBOSE) TRANSFERASE. The B protomer binds cholera toxin to intestinal epithelial cells, and facilitates the uptake of the A1 fragment. The A1 catalyzed transfer of ADP-RIBOSE to the alpha subunits of heterotrimeric G PROTEINS activates the production of CYCLIC AMP. Increased levels of cyclic AMP are thought to modulate release of fluid and electrolytes from intestinal crypt cells.
Cells propagated in vitro in special media conducive to their growth. Cultured cells are used to study developmental, morphologic, metabolic, physiologic, and genetic processes, among others.
One of the virulence factors produced by BORDETELLA PERTUSSIS. It is a multimeric protein composed of five subunits S1 - S5. S1 contains mono ADPribose transferase activity.
Quantitative determination of receptor (binding) proteins in body fluids or tissue using radioactively labeled binding reagents (e.g., antibodies, intracellular receptors, plasma binders).
A deoxyribonucleotide polymer that is the primary genetic material of all cells. Eukaryotic and prokaryotic organisms normally contain DNA in a double-stranded state, yet several important biological processes transiently involve single-stranded regions. DNA, which consists of a polysugar-phosphate backbone possessing projections of purines (adenine and guanine) and pyrimidines (thymine and cytosine), forms a double helix that is held together by hydrogen bonds between these purines and pyrimidines (adenine to thymine and guanine to cytosine).
Paxillin is a signal transducing adaptor protein that localizes to FOCAL ADHESIONS via its four LIM domains. It undergoes PHOSPHORYLATION in response to integrin-mediated CELL ADHESION, and interacts with a variety of proteins including VINCULIN; FOCAL ADHESION KINASE; PROTO-ONCOGENE PROTEIN PP60(C-SRC); and PROTO-ONCOGENE PROTEIN C-CRK.
A molecule that binds to another molecule, used especially to refer to a small molecule that binds specifically to a larger molecule, e.g., an antigen binding to an antibody, a hormone or neurotransmitter binding to a receptor, or a substrate or allosteric effector binding to an enzyme. Ligands are also molecules that donate or accept a pair of electrons to form a coordinate covalent bond with the central metal atom of a coordination complex. (From Dorland, 27th ed)
The interruption or removal of any part of the vagus (10th cranial) nerve. Vagotomy may be performed for research or for therapeutic purposes.
The oldest recognized genus of the family PASTEURELLACEAE. It consists of several species. Its organisms occur most frequently as coccobacillus or rod-shaped and are gram-negative, nonmotile, facultative anaerobes. Species of this genus are found in both animals and humans.
The prototypical antimalarial agent with a mechanism that is not well understood. It has also been used to treat rheumatoid arthritis, systemic lupus erythematosus, and in the systemic therapy of amebic liver abscesses.
The consumption of edible substances.
'Sugar phosphates' are organic compounds that consist of a sugar molecule linked to one or more phosphate groups, playing crucial roles in biochemical processes such as energy transfer and nucleic acid metabolism.
Isotopes that exhibit radioactivity and undergo radioactive decay. (From Grant & Hackh's Chemical Dictionary, 5th ed & McGraw-Hill Dictionary of Scientific and Technical Terms, 4th ed)
Unstable isotopes of indium that decay or disintegrate emitting radiation. In atoms with atomic weights 106-112, 113m, 114, and 116-124 are radioactive indium isotopes.
Transplantation between animals of different species.
Lining of the INTESTINES, consisting of an inner EPITHELIUM, a middle LAMINA PROPRIA, and an outer MUSCULARIS MUCOSAE. In the SMALL INTESTINE, the mucosa is characterized by a series of folds and abundance of absorptive cells (ENTEROCYTES) with MICROVILLI.
Signal molecules that are involved in the control of cell growth and differentiation.
A system of NEURONS that has the specialized function to produce and secrete HORMONES, and that constitutes, in whole or in part, an ENDOCRINE SYSTEM or organ.
A nonmetallic, diatomic gas that is a trace element and member of the halogen family. It is used in dentistry as flouride (FLUORIDES) to prevent dental caries.
Tumors or cancer of the BRONCHI.
A sesquiterpene lactone found in roots of THAPSIA. It inhibits CA(2+)-TRANSPORTING ATPASE mediated uptake of CALCIUM into SARCOPLASMIC RETICULUM.
A peptide of about 22-amino acids isolated from the DUODENUM. At low pH it inhibits gastric motor activity, whereas at high pH it has a stimulating effect.
Food and dietary formulations including elemental (chemically defined formula) diets, synthetic and semisynthetic diets, space diets, weight-reduction formulas, tube-feeding diets, complete liquid diets, and supplemental liquid and solid diets.
The making of a radiograph of an object or tissue by recording on a photographic plate the radiation emitted by radioactive material within the object. (Dorland, 27th ed)
Neurons which send impulses peripherally to activate muscles or secretory cells.
An ionophorous, polyether antibiotic from Streptomyces chartreusensis. It binds and transports CALCIUM and other divalent cations across membranes and uncouples oxidative phosphorylation while inhibiting ATPase of rat liver mitochondria. The substance is used mostly as a biochemical tool to study the role of divalent cations in various biological systems.
Characteristic restricted to a particular organ of the body, such as a cell type, metabolic response or expression of a particular protein or antigen.
Calcium and magnesium salts used therapeutically in hepatobiliary dysfunction.
Guanosine 5'-(tetrahydrogen triphosphate). A guanine nucleotide containing three phosphate groups esterified to the sugar moiety.
Irregular microscopic structures consisting of cords of endocrine cells that are scattered throughout the PANCREAS among the exocrine acini. Each islet is surrounded by connective tissue fibers and penetrated by a network of capillaries. There are four major cell types. The most abundant beta cells (50-80%) secrete INSULIN. Alpha cells (5-20%) secrete GLUCAGON. PP cells (10-35%) secrete PANCREATIC POLYPEPTIDE. Delta cells (~5%) secrete SOMATOSTATIN.
GLYCEROL esterified with FATTY ACIDS.
Pathological development in the ILEUM including the ILEOCECAL VALVE.
A usually small, slow-growing neoplasm composed of islands of rounded, oxyphilic, or spindle-shaped cells of medium size, with moderately small vesicular nuclei, and covered by intact mucosa with a yellow cut surface. The tumor can occur anywhere in the gastrointestinal tract (and in the lungs and other sites); approximately 90% arise in the appendix. It is now established that these tumors are of neuroendocrine origin and derive from a primitive stem cell. (From Stedman, 25th ed & Holland et al., Cancer Medicine, 3d ed, p1182)
A cell surface receptor involved in regulation of cell growth and differentiation. It is specific for EPIDERMAL GROWTH FACTOR and EGF-related peptides including TRANSFORMING GROWTH FACTOR ALPHA; AMPHIREGULIN; and HEPARIN-BINDING EGF-LIKE GROWTH FACTOR. The binding of ligand to the receptor causes activation of its intrinsic tyrosine kinase activity and rapid internalization of the receptor-ligand complex into the cell.
Elements of limited time intervals, contributing to particular results or situations.
The sequence of PURINES and PYRIMIDINES in nucleic acids and polynucleotides. It is also called nucleotide sequence.
A genus of the family Muridae having three species. The present domesticated strains were developed from individuals brought from Syria. They are widely used in biomedical research.
An aquatic genus of the family, Pipidae, occurring in Africa and distinguished by having black horny claws on three inner hind toes.
A cell line derived from cultured tumor cells.
A slowly hydrolyzed CHOLINERGIC AGONIST that acts at both MUSCARINIC RECEPTORS and NICOTINIC RECEPTORS.
The lipid- and protein-containing, selectively permeable membrane that surrounds the cytoplasm in prokaryotic and eukaryotic cells.
Surface ligands, usually glycoproteins, that mediate cell-to-cell adhesion. Their functions include the assembly and interconnection of various vertebrate systems, as well as maintenance of tissue integration, wound healing, morphogenic movements, cellular migrations, and metastasis.
Maleimides are a class of chemically reactive compounds containing a maleimide functional group, which can undergo addition reactions with nucleophiles such as thiols, making them useful for the formation of covalent bonds in various bioconjugation and material synthesis applications.
Systems for the delivery of drugs to target sites of pharmacological actions. Technologies employed include those concerning drug preparation, route of administration, site targeting, metabolism, and toxicity.
Unstable isotopes of fluorine that decay or disintegrate emitting radiation. F atoms with atomic weights 17, 18, and 20-22 are radioactive fluorine isotopes.
A family of synthetic protein tyrosine kinase inhibitors. They selectively inhibit receptor autophosphorylation and are used to study receptor function.
Hydrocarbons with more than one double bond. They are a reduced form of POLYYNES.
A 29-amino acid pancreatic peptide derived from proglucagon which is also the precursor of intestinal GLUCAGON-LIKE PEPTIDES. Glucagon is secreted by PANCREATIC ALPHA CELLS and plays an important role in regulation of BLOOD GLUCOSE concentration, ketone metabolism, and several other biochemical and physiological processes. (From Gilman et al., Goodman and Gilman's The Pharmacological Basis of Therapeutics, 9th ed, p1511)
The relationship between the chemical structure of a compound and its biological or pharmacological activity. Compounds are often classed together because they have structural characteristics in common including shape, size, stereochemical arrangement, and distribution of functional groups.
A quality of cell membranes which permits the passage of solvents and solutes into and out of cells.
A widely used non-cardioselective beta-adrenergic antagonist. Propranolol has been used for MYOCARDIAL INFARCTION; ARRHYTHMIA; ANGINA PECTORIS; HYPERTENSION; HYPERTHYROIDISM; MIGRAINE; PHEOCHROMOCYTOMA; and ANXIETY but adverse effects instigate replacement by newer drugs.
A class of cell surface receptors for TACHYKININS with a preference for SUBSTANCE P. Neurokinin-1 (NK-1) receptors have been cloned and are members of the G protein coupled receptor superfamily. They are found on many cell types including central and peripheral neurons, smooth muscle cells, acinar cells, endothelial cells, fibroblasts, and immune cells.
An organ of digestion situated in the left upper quadrant of the abdomen between the termination of the ESOPHAGUS and the beginning of the DUODENUM.
Benzopyrroles with the nitrogen at the number one carbon adjacent to the benzyl portion, in contrast to ISOINDOLES which have the nitrogen away from the six-membered ring.
Inbred BALB/c mice are a strain of laboratory mice that have been selectively bred to be genetically identical to each other, making them useful for scientific research and experiments due to their consistent genetic background and predictable responses to various stimuli or treatments.
Neoplasms which arise from or metastasize to the PITUITARY GLAND. The majority of pituitary neoplasms are adenomas, which are divided into non-secreting and secreting forms. Hormone producing forms are further classified by the type of hormone they secrete. Pituitary adenomas may also be characterized by their staining properties (see ADENOMA, BASOPHIL; ADENOMA, ACIDOPHIL; and ADENOMA, CHROMOPHOBE). Pituitary tumors may compress adjacent structures, including the HYPOTHALAMUS, several CRANIAL NERVES, and the OPTIC CHIASM. Chiasmal compression may result in bitemporal HEMIANOPSIA.
Cell surface proteins that bind signalling molecules external to the cell with high affinity and convert this extracellular event into one or more intracellular signals that alter the behavior of the target cell (From Alberts, Molecular Biology of the Cell, 2nd ed, pp693-5). Cell surface receptors, unlike enzymes, do not chemically alter their ligands.
A non-hydrolyzable analog of GTP, in which the oxygen atom bridging the beta to the gamma phosphate is replaced by a nitrogen atom. It binds tightly to G-protein in the presence of Mg2+. The nucleotide is a potent stimulator of ADENYLYL CYCLASES.
Drugs used for their effects on the gastrointestinal system, as to control gastric acidity, regulate gastrointestinal motility and water flow, and improve digestion.
Volume of biological fluid completely cleared of drug metabolites as measured in unit time. Elimination occurs as a result of metabolic processes in the kidney, liver, saliva, sweat, intestine, heart, brain, or other site.
The action of a drug in promoting or enhancing the effectiveness of another drug.
Electrophoresis in which a polyacrylamide gel is used as the diffusion medium.
The system of glands that release their secretions (hormones) directly into the circulatory system. In addition to the ENDOCRINE GLANDS, included are the CHROMAFFIN SYSTEM and the NEUROSECRETORY SYSTEMS.
The uptake of naked or purified DNA by CELLS, usually meaning the process as it occurs in eukaryotic cells. It is analogous to bacterial transformation (TRANSFORMATION, BACTERIAL) and both are routinely employed in GENE TRANSFER TECHNIQUES.
A nicotinic cholinergic antagonist often referred to as the prototypical ganglionic blocker. It is poorly absorbed from the gastrointestinal tract and does not cross the blood-brain barrier. It has been used for a variety of therapeutic purposes including hypertension but, like the other ganglionic blockers, it has been replaced by more specific drugs for most purposes, although it is widely used a research tool.
The interval between two successive CELL DIVISIONS during which the CHROMOSOMES are not individually distinguishable. It is composed of the G phases (G1 PHASE; G0 PHASE; G2 PHASE) and S PHASE (when DNA replication occurs).
Liquid chromatographic techniques which feature high inlet pressures, high sensitivity, and high speed.
An emulsifying agent produced in the LIVER and secreted into the DUODENUM. Its composition includes BILE ACIDS AND SALTS; CHOLESTEROL; and ELECTROLYTES. It aids DIGESTION of fats in the duodenum.
A CALMODULIN-dependent enzyme that catalyzes the phosphorylation of proteins. This enzyme is also sometimes dependent on CALCIUM. A wide range of proteins can act as acceptor, including VIMENTIN; SYNAPSINS; GLYCOGEN SYNTHASE; MYOSIN LIGHT CHAINS; and the MICROTUBULE-ASSOCIATED PROTEINS. (From Enzyme Nomenclature, 1992, p277)
Proteins prepared by recombinant DNA technology.
The essential part of the hearing organ consists of two labyrinthine compartments: the bony labyrinthine and the membranous labyrinth. The bony labyrinth is a complex of three interconnecting cavities or spaces (COCHLEA; VESTIBULAR LABYRINTH; and SEMICIRCULAR CANALS) in the TEMPORAL BONE. Within the bony labyrinth lies the membranous labyrinth which is a complex of sacs and tubules (COCHLEAR DUCT; SACCULE AND UTRICLE; and SEMICIRCULAR DUCTS) forming a continuous space enclosed by EPITHELIUM and connective tissue. These spaces are filled with LABYRINTHINE FLUIDS of various compositions.
Experimentally induced new abnormal growth of TISSUES in animals to provide models for studying human neoplasms.

Bombesin stimulates adhesion, spreading, lamellipodia formation, and proliferation in the human colon carcinoma Isreco1 cell line. (1/322)

The neuropeptide bombesin and its mammalian homologue, gastrin-releasing peptide (GRP), enhance proliferation in some but not all human tumor cell lines. The pathophysiological relevance of the bombesin/GRP receptor (GRP-R), which is expressed in 30% of human colon tumor cell lines and in 24-40% of native tumors, has not been clearly assessed at this time. We studied the effects of bombesin in the recently characterized human colon carcinoma Isreco1 cell line. Competitive reverse transcription-PCR showed a high GRP-R mRNA level in Isreco1 cells, and binding studies confirmed the expression of bombesin/GRP-subtype receptors (Kd = 0.42 nM; Bmax = 18,000 sites/cell). Exposure to bombesin resulted in an increase of intracellular calcium concentrations. Bombesin (1 nM) induced cell spreading at 24 h (21.7+/-1.6% versus 6.4+/-0.8% in control cells; P<0.01) and markedly increased the formation of lamellipodia. In addition, adhesion of Isreco1 cells to collagen I-coated culture dishes was stimulated in the presence of 1 nM bombesin (69+/-6% versus 42+/-1% in control cells; P<0.01). Finally, bombesin significantly increased [3H]thymidine uptake by Isreco1 cells in a dose-dependent manner, with a first significant response at 0.1 nM and a maximal effect at 100 nM bombesin (192.2+/-9.7% of control). These results clearly indicate that bombesin exerts morphological, adhesive, and proliferative effects on Isreco1 cells, suggesting that expression of the bombesin/GRP-R may contribute to the malignant properties of colon carcinoma cells.  (+info)

Aberrant expression of gastrin-releasing peptide and its receptor by well-differentiated colon cancers in humans. (2/322)

Epithelial cells lining the adult human colon do not normally express gastrin-releasing peptide (GRP) or its receptor (GRPR). In contrast, approximately one-third of human colon cancers and cancer cell lines have been shown to express GRP-binding sites. Because GRPR activation causes the proliferation of many cancer cell lines, GRP has been presumed to act as a clinically significant growth factor. Yet GRP has not been shown to be expressed by colon cancers in humans nor has the effect of GRP and/or GRPR coexpression on tumor behavior been investigated. We therefore determined GRP and GRPR expression by immunohistochemistry in 50 randomly selected colon cancers resected between 1980 and 1997, all 37 associated lymph node and liver metastases, and 20 polyps. Tumor sections studied were those that contained the margin and adjacent nonmalignant epithelium. Overall, 84% of cancers aberrantly expressed GRP or GRPR, with 62% expressing both ligand and receptor, whereas expression was not observed in adjacent normal epithelium. Consistent with the previously established mitogenic capabilities of GRP, tissues coexpressing GRP and GRPR were more likely to express proliferating cell nuclear antigen than tissues not expressing both ligand and receptor. Yet GRP/GRPR coexpression was seen with equal frequency in stage A as in stage D cancers and was only detected in 1 in 37 metastases. Furthermore, Kaplan-Meier analysis did not reveal any difference in patient survival between those whose tumors did or did not express GRP/GRPR. In contrast, GRP/GRPR coexpression was found in all well-differentiated tumor regions, whereas poorly differentiated tissues never coexpressed GRP/GRPR. Overall, these data indicate that, although GRP is a mitogen, it is not a clinically significant growth factor in human colon cancers. Rather, the strong association of GRP/GRPR coexpression with tumor differentiation raises the possibility that these proteins primarily act in vivo as morphogens.  (+info)

Gastrin-releasing peptide receptors in the human prostate: relation to neoplastic transformation. (3/322)

Bombesin-like peptides such as gastrin-releasing peptide (GRP) have been shown to play a role in cancer as autocrine growth factors that stimulate tumor growth through specific receptors. To search for potential clinical indications for GRP analogues, it is important to identify human tumor types expressing sufficient amounts of the respective receptors. In the present study, we have evaluated the expression of GRP receptors in human nonneoplastic and neoplastic prostate tissues using in vitro receptor autoradiography on tissue sections with 125I-Tyr4-bombesin as radio-ligand. GRP receptors were detected, often in high density, in 30 of 30 invasive prostatic carcinomas and also in 26 of 26 cases of prostatic intraepithelial proliferative lesions, corresponding mostly to prostatic intraepithelial neoplasias. Well-differentiated carcinomas had a higher receptor density than poorly differentiated ones. Bone metastases of androgen-independent prostate cancers were GRP receptor-positive in 4 of 7 cases. Conversely, GRP receptors were identified in only a few hyperplastic prostates and were localized in very low density in glandular tissue and, focally, in some stromal tissue. In all of the cases, the receptors corresponded to the GRP receptor subtype of bombesin receptors, having high affinity for GRP and bombesin and lower affinity for neuromedin B. These data demonstrate a massive GRP receptor overexpression in prostate tissues that are neoplastically transformed or, like prostatic intraepithelial neoplasias, are in the process of malignant transformation. GRP receptors may be markers for early molecular events in prostate carcinogenesis and useful in differentiating prostate hyperplasia from prostate neoplasia Such data may not only be of biological significance but may also provide a molecular basis for potential clinical applications such as GRP-receptor scintigraphy for early tumor diagnosis, radiotherapy with radiolabeled bombesin-like peptide analogues, and chemotherapy with cytotoxic bombesin analogues.  (+info)

The bombesin receptor subtypes have distinct G protein specificities. (4/322)

We used an in situ reconstitution assay to examine the receptor coupling to purified G protein alpha subunits by the bombesin receptor family, including gastrin-releasing peptide receptor (GRP-R), neuromedin B receptor (NMB-R), and bombesin receptor subtype 3 (BRS-3). Cells expressing GRP-R or NMB-R catalyzed the activation of squid retinal Galphaq and mouse Galphaq but not bovine retinal Galphat or bovine brain Galphai/o. The GRP-R- and NMB-R-catalyzed activations of Galphaq were dependent upon and enhanced by different betagamma dimers in the same rank order as follows: bovine brain betagamma > beta1gamma2 >> beta1gamma1. Despite these qualitative similarities, GRP-R and NMB-R had distinct kinetic properties in receptor-G protein coupling. GRP-R had higher affinities for bovine brain betagamma, beta1gamma1, and beta1gamma2 and squid retinal Galphaq. In addition, GRP-R showed higher catalytic activity on squid Galphaq. Like GRP-R and NMB-R, BRS-3 did not catalyze GTPgammaS binding to Galphai/o or Galphat. However, BRS-3 showed little, if any, coupling with squid Galphaq but clearly activated mouse Galphaq. GRP-R and NMB-R catalyzed GTPgammaS binding to both squid and mouse Galphaq, with GRP-R activating squid Galphaq more effectively, and NMB-R also showed slight preference for squid Galphaq. These studies reveal that the structurally similar bombesin receptor subtypes, in particular BRS-3, possess distinct coupling preferences among members of the Galphaq family.  (+info)

Bombesin receptors inhibit G protein-coupled inwardly rectifying K+ channels expressed in Xenopus oocytes through a protein kinase C-dependent pathway. (5/322)

Although activation of G protein-coupled inward rectifying K+ (GIRK) channels by Gi/Go-coupled receptors has been shown to be important in postsynaptic inhibition in the central nervous system, there is also evidence to suggest that inhibition of GIRK channels by Gq-coupled receptors is involved in postsynaptic excitation. In the present study we addressed whether the Gq-coupled receptors of the bombesin family can couple to GIRK channels and examined the mechanism by which this process occurs. Different combinations of GIRK channel subunits (Kir3.1, Kir3.2, and Kir3.4) and bombesin receptors (BB1 and BB2) were expressed in Xenopus oocytes. In all combinations tested GIRK currents were reversibly inhibited upon application of the bombesin-related peptides, neuromedin B or gastrin-releasing peptide in a concentration-dependent manner. Incubation of oocytes in the phospholipase C inhibitor U73122 or the protein kinase C (PKC) inhibitors chelerythrine and staurosporine significantly reduced the inhibition of GIRK currents by neuromedin B, whereas the Ca2+ chelator, BAPTA-AM had no effect. The involvement of PKC was further demonstrated by direct inhibition of GIRK currents by the phorbol esters, phorbol-12,13-dibutyrate and phorbol-12-myristate-13-acetate. In contrast, the inactive phorbol ester 4alpha-phorbol and protein kinase A activators, forskolin and 8-bromo cAMP did not inhibit GIRK currents. At the single-channel level, direct activation of PKC using phorbol ester phorbol-12, 13-dibutyrate caused a dramatic reduction in open probability of GIRK channels due to an increase in duration of the interburst interval.  (+info)

Specific membrane receptor gene expression targeted with radiolabeled peptide employing the erbB-2 and DF3 promoter elements in adenoviral vectors. (6/322)

Radioimmunotherapy is limited by a variety of factors, including poor tumor penetration of monoclonal antibodies and low levels of intratumoral antigen expression. To address these limitations, a gene therapy strategy was devised to genetically induce tumor cells to express enhanced levels of membrane receptors with high affinity for a radiolabeled peptide. We designated this approach as genetic radioisotope targeting strategy. To this end, an adenoviral vector (AdCMVGRPr) encoding the murine gastrin-releasing peptide receptor (GRPr) was used to achieve a high level of binding of radiolabeled bombesin (BBN). To achieve genetic induction of membrane GRPr specifically to tumor cells, we constructed two adenoviral vectors encoding the GRPr gene under the control of the tumor-specific regulatory elements, DF3 (AdDF3GRPr) or erbB-2 (AderbGRPr). We investigated the binding of [125I]BBN to the GRPr following infection with AdDF3GRPr and AderbGRPr in a panel of human breast, pancreatic, and cholangiocarcinoma tumor cell lines. [125I]BBN binding and GRPr expression increased with increasing multiplicities of infection of AdCMVGRPr in all of the cell lines tested. Breast cancer cell lines expressing erbB-2 showed significant GRPr expression using AderbGRPr. A similar result was observed in breast and cholangiocarcinoma cells infected with AdDF3GRPr expressing MUC1 as detected by immunohistochemistry but was not seen in the pancreatic cell lines tested. Thus, adenoviral vectors with tissue-specific promoter elements can be used to achieve a selective expression of membrane receptors that can be targeted with a radiolabeled peptide. The use of such a transcriptional targeting approach may restrict gene expression to tumors and limit the radiation dose deposited in normal tissues in vivo.  (+info)

Bombesin-like peptides depolarize rat hippocampal interneurones through interaction with subtype 2 bombesin receptors. (7/322)

1. Whole-cell patch-clamp recordings were made from visually identified hippocampal interneurones in slices of rat brain tissue in vitro. Bath application of the bombesin-like neuropeptides gastrin-releasing peptide (GRP) or neuromedin B (NMB) produced a large membrane depolarization that was blocked by pre-incubation with the subtype 2 bombesin (BB2) receptor antagonist [D-Phe6, Des-Met14]bombesin-(6-14)ethyl amide. 2. The inward current elicited by NMB or GRP was unaffected by K+ channel blockade with external Ba2+ or by replacement of potassium gluconate in the electrode solution with caesium acetate. 3. Replacement of external NaCl with Tris-HCl significantly reduced the magnitude of the GRP-induced current at -60 mV. In contrast, replacement of external NaCl with LiCl had no effect on the magnitude of this current. 4. Photorelease of caged GTPgammaS inside neurones irreversibly potentiated the GRP-induced current at -60 mV. Similarly, bath application of the phospholipase C (PLC) inhibitor U-73122 significantly reduced the size of the inward current induced by GRP. 5. Reverse transcription followed by the polymerase chain reaction using cytoplasm from single hippocampal interneurones demonstrated the expression of BB2 receptor mRNA together with glutamate decarboxylase (GAD67). 6. Although bath application of GRP or NMB had little or no effect on the resting membrane properties of CA1 pyramidal cells per se, these neuropeptides produced a dramatic increase in the number and amplitude of miniature inhibitory postsynaptic currents in these cells in a TTX-sensitive manner.  (+info)

Molecular cloning, genomic organization and selective expression of bombesin receptor subtype 3 in the sheep hypothalamus and pituitary. (8/322)

The bombesin receptor subtype 3 (BRS-3) is considered an orphan receptor as it has a low affinity for bombesin-like peptides and no identified natural ligand. We have reported a novel form of gastrin-releasing peptide (GRP) present in high abundance in the pregnant uterus of women and sheep. As BRS-3 was originally cloned from guinea pig uterus, we postulated that the uterine GRP-like peptide may be its natural ligand. We have therefore cloned the gene for the sheep homologue of BRS-3 and determined its distribution. The sheep BRS-3 gene spans 4 kbp and comprises three exons with intron-exon borders at positions similar to those observed for the human and mouse BRS-3 genes. The predicted amino acid sequence of ovine BRS-3 has approximately 85% identity with the human, mouse and guinea pig receptors. Highly conserved amino acids important in mediating receptor G-protein coupling to second messengers and important in ligand binding were found to be conserved in ovine BRS-3. One potentially important deviation was noted: ovine BRS-3 possesses an arginine residue at position 294 instead of a histidine residue as found in all other BRS-3. His(294) was previously identified as important in ligand-receptor interactions while Arg(294) was implicated in high ligand affinity. Thus ovine BRS-3 may have binding characteristics different from those of the human, mouse and guinea pig BRS-3 receptors. In the ewe, BRS-3 mRNA expression was detected in pituitary and hypothalamus but not in tissues of the pregnant uterus (endometrium, myometrium, chorioallantois or amnion). Nor was BRS-3 expression detected in the non-pregnant uterus or in testis. This pattern of BRS-3 expression is similar to that observed in the mouse but different from that observed in the human, rat and guinea pig. We conclude that there is no local interaction between uterine GRP-like peptide and BRS-3. However, the high expression of BRS-3 in the pituitary coupled with elevated circulating levels of this GRP-like peptide during pregnancy suggests an alternate pathway. Cloning of the ovine BRS-3 gene will permit a detailed functional analysis of this receptor in the sheep and its role in the mediation of action of uterine GRP.  (+info)

Gastrin-Releasing Peptide (GRP) is defined as a 27-amino acid peptide that shares structural and functional similarities with the C-terminal part of gastrin. It is widely distributed in the central and peripheral nervous systems, where it functions as a neurotransmitter or neuromodulator. GRP plays a crucial role in various physiological processes such as regulation of gastrointestinal motility, smooth muscle relaxation, and mucous secretion. Additionally, GRP has been implicated in several pathophysiological conditions, including cancer, where it can act as a growth factor for certain types of tumors, such as small cell lung carcinoma.

Neurotransmitter receptors are specialized protein molecules found on the surface of neurons and other cells in the body. They play a crucial role in chemical communication within the nervous system by binding to specific neurotransmitters, which are chemicals that transmit signals across the synapse (the tiny gap between two neurons).

When a neurotransmitter binds to its corresponding receptor, it triggers a series of biochemical events that can either excite or inhibit the activity of the target neuron. This interaction helps regulate various physiological processes, including mood, cognition, movement, and sensation.

Neurotransmitter receptors can be classified into two main categories based on their mechanism of action: ionotropic and metabotropic receptors. Ionotropic receptors are ligand-gated ion channels that directly allow ions to flow through the cell membrane upon neurotransmitter binding, leading to rapid changes in neuronal excitability. In contrast, metabotropic receptors are linked to G proteins and second messenger systems, which modulate various intracellular signaling pathways more slowly.

Examples of neurotransmitters include glutamate, GABA (gamma-aminobutyric acid), dopamine, serotonin, acetylcholine, and norepinephrine, among others. Each neurotransmitter has its specific receptor types, which may have distinct functions and distributions within the nervous system. Understanding the roles of these receptors and their interactions with neurotransmitters is essential for developing therapeutic strategies to treat various neurological and psychiatric disorders.

Peptides are short chains of amino acid residues linked by covalent bonds, known as peptide bonds. They are formed when two or more amino acids are joined together through a condensation reaction, which results in the elimination of a water molecule and the formation of an amide bond between the carboxyl group of one amino acid and the amino group of another.

Peptides can vary in length from two to about fifty amino acids, and they are often classified based on their size. For example, dipeptides contain two amino acids, tripeptides contain three, and so on. Oligopeptides typically contain up to ten amino acids, while polypeptides can contain dozens or even hundreds of amino acids.

Peptides play many important roles in the body, including serving as hormones, neurotransmitters, enzymes, and antibiotics. They are also used in medical research and therapeutic applications, such as drug delivery and tissue engineering.

Cholecystokinin (CCK) is a hormone that is produced in the duodenum (the first part of the small intestine) and in the brain. It is released into the bloodstream in response to food, particularly fatty foods, and plays several roles in the digestive process.

In the digestive system, CCK stimulates the contraction of the gallbladder, which releases bile into the small intestine to help digest fats. It also inhibits the release of acid from the stomach and slows down the movement of food through the intestines.

In the brain, CCK acts as a neurotransmitter and has been shown to have effects on appetite regulation, mood, and memory. It may play a role in the feeling of fullness or satiety after eating, and may also be involved in anxiety and panic disorders.

CCK is sometimes referred to as "gallbladder-stimulating hormone" or "pancreozymin," although these terms are less commonly used than "cholecystokinin."

Gastrins are a group of hormones that are produced by G cells in the stomach lining. These hormones play an essential role in regulating gastric acid secretion and motor functions of the gastrointestinal tract. The most well-known gastrin is known as "gastrin-17," which is released into the bloodstream and stimulates the release of hydrochloric acid from parietal cells in the stomach lining.

Gastrins are stored in secretory granules within G cells, and their release is triggered by several factors, including the presence of food in the stomach, gastrin-releasing peptide (GRP), and vagus nerve stimulation. Once released, gastrins bind to specific receptors on parietal cells, leading to an increase in intracellular calcium levels and the activation of enzymes that promote hydrochloric acid secretion.

Abnormalities in gastrin production can lead to several gastrointestinal disorders, including gastrinomas (tumors that produce excessive amounts of gastrin), which can cause severe gastric acid hypersecretion and ulcers. Conversely, a deficiency in gastrin production can result in hypochlorhydria (low stomach acid levels) and impaired digestion.

3T3 cells are a type of cell line that is commonly used in scientific research. The name "3T3" is derived from the fact that these cells were developed by treating mouse embryo cells with a chemical called trypsin and then culturing them in a flask at a temperature of 37 degrees Celsius.

Specifically, 3T3 cells are a type of fibroblast, which is a type of cell that is responsible for producing connective tissue in the body. They are often used in studies involving cell growth and proliferation, as well as in toxicity tests and drug screening assays.

One particularly well-known use of 3T3 cells is in the 3T3-L1 cell line, which is a subtype of 3T3 cells that can be differentiated into adipocytes (fat cells) under certain conditions. These cells are often used in studies of adipose tissue biology and obesity.

It's important to note that because 3T3 cells are a type of immortalized cell line, they do not always behave exactly the same way as primary cells (cells that are taken directly from a living organism). As such, researchers must be careful when interpreting results obtained using 3T3 cells and consider any potential limitations or artifacts that may arise due to their use.

"Anura" is a term used in the field of zoology, particularly in the study of amphibians. It refers to a order that includes frogs and toads. The name "Anura" comes from the Greek language, with "an-" meaning "without," and "oura" meaning "tail." This is a reference to the fact that members of this order lack tails in their adult form.

The Anura order is characterized by several distinct features:

1. They have short, powerful legs that are well adapted for jumping or leaping.
2. Their forelimbs are smaller and less specialized than their hind limbs.
3. Most anurans have a moist, glandular skin, which helps them to breathe and absorb water.
4. Anura includes both aquatic and terrestrial species, with varying degrees of adaptations for each environment.
5. They lay their eggs in water, and their larvae (tadpoles) are aquatic, undergoing a process called metamorphosis to transform into the adult form.

Anura contains approximately 7,000 known species, making it one of the largest orders of vertebrates. They have a cosmopolitan distribution and can be found on every continent except Antarctica. Anurans play essential roles in many ecosystems as both predators and prey, contributing to the regulation of insect populations and serving as indicators of environmental health.

The pancreas is a glandular organ located in the abdomen, posterior to the stomach. It has both exocrine and endocrine functions. The exocrine portion of the pancreas consists of acinar cells that produce and secrete digestive enzymes into the duodenum via the pancreatic duct. These enzymes help in the breakdown of proteins, carbohydrates, and fats in food.

The endocrine portion of the pancreas consists of clusters of cells called islets of Langerhans, which include alpha, beta, delta, and F cells. These cells produce and secrete hormones directly into the bloodstream, including insulin, glucagon, somatostatin, and pancreatic polypeptide. Insulin and glucagon are critical regulators of blood sugar levels, with insulin promoting glucose uptake and storage in tissues and glucagon stimulating glycogenolysis and gluconeogenesis to raise blood glucose when it is low.

Amylases are enzymes that break down complex carbohydrates, such as starch and glycogen, into simpler sugars like maltose, glucose, and maltotriose. There are several types of amylases found in various organisms, including humans.

In humans, amylases are produced by the pancreas and salivary glands. Pancreatic amylase is released into the small intestine where it helps to digest dietary carbohydrates. Salivary amylase, also known as alpha-amylase, is secreted into the mouth and begins breaking down starches in food during chewing.

Deficiency or absence of amylases can lead to difficulties in digesting carbohydrates and may cause symptoms such as bloating, diarrhea, and abdominal pain. Elevated levels of amylase in the blood may indicate conditions such as pancreatitis, pancreatic cancer, or other disorders affecting the pancreas.

Vasopressin, also known as antidiuretic hormone (ADH), is a hormone that helps regulate water balance in the body. It is produced by the hypothalamus and stored in the posterior pituitary gland. When the body is dehydrated or experiencing low blood pressure, vasopressin is released into the bloodstream, where it causes the kidneys to decrease the amount of urine they produce and helps to constrict blood vessels, thereby increasing blood pressure. This helps to maintain adequate fluid volume in the body and ensure that vital organs receive an adequate supply of oxygen-rich blood. In addition to its role in water balance and blood pressure regulation, vasopressin also plays a role in social behaviors such as pair bonding and trust.

Eledoisin is a tachykinin peptide that is found in the venom of certain marine cephalopods, such as the octopus and squid. It is a potent vasodilator and smooth muscle stimulant, and has been studied for its potential therapeutic uses in conditions such as asthma, bronchitis, and cardiovascular disease. However, it has not yet been approved for use in medical treatments.

Gastrointestinal (GI) hormones are a group of hormones that are secreted by cells in the gastrointestinal tract in response to food intake and digestion. They play crucial roles in regulating various physiological processes, including appetite regulation, gastric acid secretion, motility of the gastrointestinal tract, insulin secretion, and pancreatic enzyme release.

Examples of GI hormones include:

* Gastrin: Secreted by G cells in the stomach, gastrin stimulates the release of hydrochloric acid from parietal cells in the stomach lining.
* Ghrelin: Produced by the stomach, ghrelin is often referred to as the "hunger hormone" because it stimulates appetite and food intake.
* Cholecystokinin (CCK): Secreted by I cells in the small intestine, CCK promotes digestion by stimulating the release of pancreatic enzymes and bile from the liver. It also inhibits gastric emptying and reduces appetite.
* Gastric inhibitory peptide (GIP): Produced by K cells in the small intestine, GIP promotes insulin secretion and inhibits glucagon release.
* Secretin: Released by S cells in the small intestine, secretin stimulates the pancreas to produce bicarbonate-rich fluid that neutralizes stomach acid in the duodenum.
* Motilin: Secreted by MO cells in the small intestine, motilin promotes gastrointestinal motility and regulates the migrating motor complex (MMC), which is responsible for cleaning out the small intestine between meals.

These hormones work together to regulate digestion and maintain homeostasis in the body. Dysregulation of GI hormones can contribute to various gastrointestinal disorders, such as gastroparesis, irritable bowel syndrome (IBS), and diabetes.

Ceruletide is a synthetic analog of the natural hormone cholecystokinin (CCK). It is a decapeptide with the following sequence: cyclo(D-Asp-Tic-Phe-Ser-Leu-Hand-Ala-Lys-Thr-Nle-NH2).

Ceruletide has several pharmacological actions, including stimulation of the release of digestive enzymes from the pancreas, contraction of the gallbladder and sphincter of Oddi, and inhibition of gastric acid secretion. It is used in clinical medicine for diagnostic purposes to test the motor function of the biliary tract and to diagnose gastrointestinal motility disorders.

Ceruletide has also been investigated as a potential treatment for certain conditions such as pancreatitis, gallstones, and intestinal obstruction, but its use is limited due to its side effects, which include nausea, vomiting, abdominal cramps, and diarrhea.

Sincalide is a synthetic hormone that stimulates the contraction of the gallbladder and the release of digestive enzymes from the pancreas. It is used in diagnostic procedures to help diagnose conditions such as gallstones or obstructions of the bile ducts.

Sincalide is a synthetic form of cholecystokinin (CCK), a hormone that is naturally produced in the body and stimulates the contraction of the gallbladder and the release of digestive enzymes from the pancreas. When sincalide is administered, it mimics the effects of CCK and causes the gallbladder to contract and release bile into the small intestine. This can help doctors see if there are any obstructions or abnormalities in the bile ducts or gallbladder.

Sincalide is usually given as an injection, and its effects can be monitored through imaging tests such as ultrasound or CT scans. It is important to note that sincalide should only be used under the supervision of a healthcare professional, as it can cause side effects such as abdominal pain, nausea, and vomiting.

A gastric fistula is an abnormal connection or passage between the stomach and another organ or the skin surface. This condition can occur as a result of complications from surgery, injury, infection, or certain diseases such as cancer. Symptoms may include persistent drainage from the site of the fistula, pain, malnutrition, and infection. Treatment typically involves surgical repair of the fistula and management of any underlying conditions.

Devazepide is not a medical term, but it is a pharmaceutical compound. It is a selective and competitive antagonist of the benzodiazepine site on GABA(A) receptors. This means that devazepide blocks the effects of benzodiazepines by binding to the same site on the GABA(A) receptor without activating it.

Devazepide has been studied in research settings as a potential treatment for alcohol use disorder and anxiety disorders, but it is not currently approved for medical use in any country.

Therefore, there is no official medical definition for 'Devazepide'.

Phorbol 12,13-dibutyrate (PDB) is not a medical term per se, but a chemical compound used in scientific research. It's a type of phorbol ester, which are tumor promoters and active components of croton oil. PDB is often used as a biochemical tool to study cell signaling pathways, particularly those involving protein kinase C (PKC) activation.

Medically, it may be mentioned in research or clinical studies related to cellular processes, cancer, or inflammation. However, it is not something that a patient would typically encounter in a medical setting.

Substance P is an undecapeptide neurotransmitter and neuromodulator, belonging to the tachykinin family of peptides. It is widely distributed in the central and peripheral nervous systems and is primarily found in sensory neurons. Substance P plays a crucial role in pain transmission, inflammation, and various autonomic functions. It exerts its effects by binding to neurokinin 1 (NK-1) receptors, which are expressed on the surface of target cells. Apart from nociception and inflammation, Substance P is also involved in regulating emotional behaviors, smooth muscle contraction, and fluid balance.

Somatostatin is a hormone that inhibits the release of several hormones and also has a role in slowing down digestion. It is produced by the body in various parts of the body, including the hypothalamus (a part of the brain), the pancreas, and the gastrointestinal tract.

Somatostatin exists in two forms: somatostatin-14 and somatostatin-28, which differ in their length. Somatostatin-14 is the predominant form found in the brain, while somatostatin-28 is the major form found in the gastrointestinal tract.

Somatostatin has a wide range of effects on various physiological processes, including:

* Inhibiting the release of several hormones such as growth hormone, insulin, glucagon, and gastrin
* Slowing down digestion by inhibiting the release of digestive enzymes from the pancreas and reducing blood flow to the gastrointestinal tract
* Regulating neurotransmission in the brain

Somatostatin is used clinically as a diagnostic tool for detecting certain types of tumors that overproduce growth hormone or other hormones, and it is also used as a treatment for some conditions such as acromegaly (a condition characterized by excessive growth hormone production) and gastrointestinal disorders.

Tachyphylaxis is a medical term that refers to the rapid and temporary loss of response to a drug after its repeated administration, especially when administered in quick succession. This occurs due to the decreased sensitivity or responsiveness of the body's receptors to the drug, resulting in a reduced therapeutic effect over time.

In simpler terms, tachyphylaxis is when the body becomes quickly desensitized to a medication after taking it multiple times in a short period, causing the drug to become less effective or ineffective at achieving the desired outcome. This phenomenon can occur with various medications, including those used for treating pain, allergies, and psychiatric conditions.

It's important to note that tachyphylaxis should not be confused with tolerance, which is a similar but distinct concept where the body gradually becomes less responsive to a drug after prolonged use over time.

Neurotensin is a neuropeptide that is widely distributed in the central nervous system and the gastrointestinal tract. It is composed of 13 amino acids and plays a role as a neurotransmitter or neuromodulator in various physiological functions, including pain regulation, temperature regulation, and feeding behavior. Neurotensin also has been shown to have potential roles in the development of certain diseases such as cancer and neurological disorders. It exerts its effects by binding to specific receptors, known as neurotensin receptors (NTSR1, NTSR2, and NTSR3), which are widely distributed throughout the body.

Inositol phosphates are a family of molecules that consist of an inositol ring, which is a six-carbon heterocyclic compound, linked to one or more phosphate groups. These molecules play important roles as intracellular signaling intermediates and are involved in various cellular processes such as cell growth, differentiation, and metabolism.

Inositol hexakisphosphate (IP6), also known as phytic acid, is a form of inositol phosphate that is found in plant-based foods. IP6 has the ability to bind to minerals such as calcium, magnesium, and iron, which can reduce their bioavailability in the body.

Inositol phosphates have been implicated in several diseases, including cancer, diabetes, and neurodegenerative disorders. For example, altered levels of certain inositol phosphates have been observed in cancer cells, suggesting that they may play a role in tumor growth and progression. Additionally, mutations in enzymes involved in the metabolism of inositol phosphates have been associated with several genetic diseases.

In the context of medicine and pharmacology, "kinetics" refers to the study of how a drug moves throughout the body, including its absorption, distribution, metabolism, and excretion (often abbreviated as ADME). This field is called "pharmacokinetics."

1. Absorption: This is the process of a drug moving from its site of administration into the bloodstream. Factors such as the route of administration (e.g., oral, intravenous, etc.), formulation, and individual physiological differences can affect absorption.

2. Distribution: Once a drug is in the bloodstream, it gets distributed throughout the body to various tissues and organs. This process is influenced by factors like blood flow, protein binding, and lipid solubility of the drug.

3. Metabolism: Drugs are often chemically modified in the body, typically in the liver, through processes known as metabolism. These changes can lead to the formation of active or inactive metabolites, which may then be further distributed, excreted, or undergo additional metabolic transformations.

4. Excretion: This is the process by which drugs and their metabolites are eliminated from the body, primarily through the kidneys (urine) and the liver (bile).

Understanding the kinetics of a drug is crucial for determining its optimal dosing regimen, potential interactions with other medications or foods, and any necessary adjustments for special populations like pediatric or geriatric patients, or those with impaired renal or hepatic function.

Carcinoma, small cell is a type of lung cancer that typically starts in the bronchi (the airways that lead to the lungs). It is called "small cell" because the cancer cells are small and appear round or oval in shape. This type of lung cancer is also sometimes referred to as "oat cell carcinoma" due to the distinctive appearance of the cells, which can resemble oats when viewed under a microscope.

Small cell carcinoma is a particularly aggressive form of lung cancer that tends to spread quickly to other parts of the body. It is strongly associated with smoking and is less common than non-small cell lung cancer (NSCLC), which accounts for about 85% of all lung cancers.

Like other types of lung cancer, small cell carcinoma may not cause any symptoms in its early stages. However, as the tumor grows and spreads, it can cause a variety of symptoms, including coughing, chest pain, shortness of breath, hoarseness, and weight loss. Treatment for small cell carcinoma typically involves a combination of chemotherapy, radiation therapy, and sometimes surgery.

Protein Kinase C (PKC) is a family of serine-threonine kinases that play crucial roles in various cellular signaling pathways. These enzymes are activated by second messengers such as diacylglycerol (DAG) and calcium ions (Ca2+), which result from the activation of cell surface receptors like G protein-coupled receptors (GPCRs) and receptor tyrosine kinases (RTKs).

Once activated, PKC proteins phosphorylate downstream target proteins, thereby modulating their activities. This regulation is involved in numerous cellular processes, including cell growth, differentiation, apoptosis, and membrane trafficking. There are at least 10 isoforms of PKC, classified into three subfamilies based on their second messenger requirements and structural features: conventional (cPKC; α, βI, βII, and γ), novel (nPKC; δ, ε, η, and θ), and atypical (aPKC; ζ and ι/λ). Dysregulation of PKC signaling has been implicated in several diseases, such as cancer, diabetes, and neurological disorders.

Calcium is an essential mineral that is vital for various physiological processes in the human body. The medical definition of calcium is as follows:

Calcium (Ca2+) is a crucial cation and the most abundant mineral in the human body, with approximately 99% of it found in bones and teeth. It plays a vital role in maintaining structural integrity, nerve impulse transmission, muscle contraction, hormonal secretion, blood coagulation, and enzyme activation.

Calcium homeostasis is tightly regulated through the interplay of several hormones, including parathyroid hormone (PTH), calcitonin, and vitamin D. Dietary calcium intake, absorption, and excretion are also critical factors in maintaining optimal calcium levels in the body.

Hypocalcemia refers to low serum calcium levels, while hypercalcemia indicates high serum calcium levels. Both conditions can have detrimental effects on various organ systems and require medical intervention to correct.

Proglumide is not a medication that has a widely accepted or commonly used medical definition in current clinical practice. However, historically, it has been described as a synthetic benzamide derivative with antidomaminergic and gastrointestinal properties. It was initially investigated as a potential treatment for various gastrointestinal disorders, such as gastric ulcers, due to its ability to inhibit gastric acid secretion.

Proglumide has been found to act as an antagonist at certain dopamine receptors (D2 and D3) and serotonin receptors (5-HT3), which may contribute to its effects on gastrointestinal motility and gastric acid secretion. However, due to the development of more effective treatments and some uncertainty regarding its efficacy, proglumide is not widely used in modern medical practice.

It is important to note that this information might not be comprehensive or entirely up-to-date, as the use and understanding of proglumide have evolved over time. Always consult a reliable medical source or healthcare professional for the most accurate and current information.

Diacylglycerols (also known as diglycerides) are a type of glyceride, which is a compound that consists of glycerol and one or more fatty acids. Diacylglycerols contain two fatty acid chains bonded to a glycerol molecule through ester linkages. They are important intermediates in the metabolism of lipids and can be found in many types of food, including vegetable oils and dairy products. In the body, diacylglycerols can serve as a source of energy and can also play roles in cell signaling processes.

Physalaemin is defined as a polypeptide toxin that is derived from the skin of certain frog species, specifically in the genus Physalaemus. This peptide contains 24 amino acids and has been found to have various pharmacological effects, including acting as a potent vasodilator, smooth muscle relaxant, and hypotensive agent. It also interacts with opioid receptors in the brain and can produce analgesic (pain-relieving) and hyperalgesic (increased sensitivity to pain) effects. Physalaemin is primarily used in research settings for its pharmacological properties and as a tool to study the structure and function of opioid receptors.

Secretin is a hormone that is produced and released by the S cells in the duodenum, which is the first part of the small intestine. It is released in response to the presence of acidic chyme (partially digested food) entering the duodenum from the stomach. Secretin stimulates the pancreas to produce bicarbonate-rich alkaline secretions, which help neutralize the acidity of the chyme and create an optimal environment for enzymatic digestion in the small intestine.

Additionally, secretin also promotes the production of watery fluids from the liver, which aids in the digestion process. Overall, secretin plays a crucial role in maintaining the pH balance and facilitating proper nutrient absorption in the gastrointestinal tract.

Platelet-Derived Growth Factor (PDGF) is a dimeric protein with potent mitogenic and chemotactic properties that plays an essential role in wound healing, blood vessel growth, and cellular proliferation and differentiation. It is released from platelets during the process of blood clotting and binds to specific receptors on the surface of target cells, including fibroblasts, smooth muscle cells, and glial cells. PDGF exists in several isoforms, which are generated by alternative splicing of a single gene, and have been implicated in various physiological and pathological processes, such as tissue repair, atherosclerosis, and tumor growth.

The pyloric antrum is the distal part of the stomach, which is the last portion that precedes the pylorus and the beginning of the duodenum. It is a thickened, muscular area responsible for grinding and mixing food with gastric juices during digestion. The pyloric antrum also helps regulate the passage of chyme (partially digested food) into the small intestine through the pyloric sphincter, which controls the opening and closing of the pylorus. This region is crucial in the gastrointestinal tract's motor functions and overall digestive process.

Benzodiazepines are a class of psychoactive drugs that possess anxiolytic, anticonvulsant, amnesic, sedative, hypnotic, and muscle relaxant properties. Benzodiazepinones are a subclass of benzodiazepines that share a specific chemical structure, characterized by a 1,4-benzodiazepine ring with an additional nitrogen-containing ring attached at the 2-position of the benzodiazepine ring.

Examples of benzodiazepinones include clonazepam (Klonopin), diazepam (Valium), and flurazepam (Dalmane). These medications are commonly used in the treatment of anxiety disorders, insomnia, seizures, and muscle spasms. However, they can also cause physical dependence and withdrawal symptoms, so they should be prescribed with caution and under medical supervision.

Mitogens are substances that stimulate mitosis, or cell division, in particular, the proliferation of cells derived from the immune system. They are often proteins or glycoproteins found on the surface of certain bacteria, viruses, and other cells, which can bind to receptors on the surface of immune cells and trigger a signal transduction pathway that leads to cell division.

Mitogens are commonly used in laboratory research to study the growth and behavior of immune cells, as well as to assess the function of the immune system. For example, mitogens can be added to cultures of lymphocytes (a type of white blood cell) to stimulate their proliferation and measure their response to various stimuli.

Examples of mitogens include phytohemagglutinin (PHA), concanavalin A (ConA), and pokeweed mitogen (PWM). It's important to note that while mitogens can be useful tools in research, they can also have harmful effects if they are introduced into the body in large quantities or inappropriately, as they can stimulate an overactive immune response.

Gabexate is a medicinal drug that belongs to the class of agents known as serine protease inhibitors. It is used in the treatment and prevention of inflammation and damage to tissues caused by various surgical procedures, pancreatitis, and other conditions associated with the activation of proteolytic enzymes.

Gabexate works by inhibiting the activity of certain enzymes such as trypsin, chymotrypsin, and thrombin, which play a key role in the inflammatory response and blood clotting cascade. By doing so, it helps to reduce the release of inflammatory mediators, prevent further tissue damage, and promote healing.

Gabexate is available in various forms, including injectable solutions and enteric-coated tablets, and its use is typically reserved for clinical settings under the supervision of a healthcare professional. As with any medication, it should be used only under the direction of a qualified medical practitioner, and its potential benefits and risks should be carefully weighed against those of other available treatment options.

Pentagastrin is a synthetic polypeptide hormone that stimulates the release of gastrin and hydrochloric acid from the stomach. It is used diagnostically to test for conditions such as Zollinger-Ellison syndrome, a rare disorder in which tumors in the pancreas or duodenum produce excessive amounts of gastrin, leading to severe ulcers and other digestive problems.

Pentagastrin is typically administered intravenously, and its effects are monitored through blood tests that measure gastric acid secretion. It is a potent stimulant of gastric acid production, and its use is limited to diagnostic purposes due to the risk of adverse effects such as nausea, flushing, and increased heart rate.

"Competitive binding" is a term used in pharmacology and biochemistry to describe the behavior of two or more molecules (ligands) competing for the same binding site on a target protein or receptor. In this context, "binding" refers to the physical interaction between a ligand and its target.

When a ligand binds to a receptor, it can alter the receptor's function, either activating or inhibiting it. If multiple ligands compete for the same binding site, they will compete to bind to the receptor. The ability of each ligand to bind to the receptor is influenced by its affinity for the receptor, which is a measure of how strongly and specifically the ligand binds to the receptor.

In competitive binding, if one ligand is present in high concentrations, it can prevent other ligands with lower affinity from binding to the receptor. This is because the higher-affinity ligand will have a greater probability of occupying the binding site and blocking access to the other ligands. The competition between ligands can be described mathematically using equations such as the Langmuir isotherm, which describes the relationship between the concentration of ligand and the fraction of receptors that are occupied by the ligand.

Competitive binding is an important concept in drug development, as it can be used to predict how different drugs will interact with their targets and how they may affect each other's activity. By understanding the competitive binding properties of a drug, researchers can optimize its dosage and delivery to maximize its therapeutic effect while minimizing unwanted side effects.

Cell division is the process by which a single eukaryotic cell (a cell with a true nucleus) divides into two identical daughter cells. This complex process involves several stages, including replication of DNA, separation of chromosomes, and division of the cytoplasm. There are two main types of cell division: mitosis and meiosis.

Mitosis is the type of cell division that results in two genetically identical daughter cells. It is a fundamental process for growth, development, and tissue repair in multicellular organisms. The stages of mitosis include prophase, prometaphase, metaphase, anaphase, and telophase, followed by cytokinesis, which divides the cytoplasm.

Meiosis, on the other hand, is a type of cell division that occurs in the gonads (ovaries and testes) during the production of gametes (sex cells). Meiosis results in four genetically unique daughter cells, each with half the number of chromosomes as the parent cell. This process is essential for sexual reproduction and genetic diversity. The stages of meiosis include meiosis I and meiosis II, which are further divided into prophase, prometaphase, metaphase, anaphase, and telophase.

In summary, cell division is the process by which a single cell divides into two daughter cells, either through mitosis or meiosis. This process is critical for growth, development, tissue repair, and sexual reproduction in multicellular organisms.

Gastric acid, also known as stomach acid, is a digestive fluid produced in the stomach. It's primarily composed of hydrochloric acid (HCl), potassium chloride (KCl), and sodium chloride (NaCl). The pH of gastric acid is typically between 1.5 and 3.5, making it a strong acid that helps to break down food by denaturing proteins and activating digestive enzymes.

The production of gastric acid is regulated by the enteric nervous system and several hormones. The primary function of gastric acid is to initiate protein digestion, activate pepsinogen into the active enzyme pepsin, and kill most ingested microorganisms. However, an excess or deficiency in gastric acid secretion can lead to various gastrointestinal disorders such as gastritis, ulcers, and gastroesophageal reflux disease (GERD).

Succinimides are a group of anticonvulsant medications used to treat various types of seizures. They include drugs such as ethosuximide, methsuximide, and phensuximide. These medications work by reducing the abnormal electrical activity in the brain that leads to seizures.

The name "succinimides" comes from their chemical structure, which contains a five-membered ring containing two nitrogen atoms and a carbonyl group. This structure is similar to that of other anticonvulsant medications, such as barbiturates, but the succinimides have fewer side effects and are less likely to cause sedation or respiratory depression.

Succinimides are primarily used to treat absence seizures, which are characterized by brief periods of staring and lack of responsiveness. They may also be used as adjunctive therapy in the treatment of generalized tonic-clonic seizures and other types of seizures.

Like all medications, succinimides can cause side effects, including nausea, vomiting, dizziness, headache, and rash. More serious side effects, such as blood dyscrasias, liver toxicity, and Stevens-Johnson syndrome, are rare but have been reported. It is important for patients taking succinimides to be monitored regularly by their healthcare provider to ensure safe and effective use of the medication.

Focal Adhesion Kinase 1 (FAK1), also known as Protein Tyrosine Kinase 2 (PTK2), is a cytoplasmic tyrosine kinase that plays a crucial role in cellular processes such as cell adhesion, migration, and survival. It is recruited to focal adhesions, which are specialized structures that form at the sites of integrin-mediated attachment of the cell to the extracellular matrix (ECM).

FAK1 becomes activated through autophosphorylation upon integrin clustering and ECM binding. Once activated, FAK1 can phosphorylate various downstream substrates, leading to the activation of several signaling pathways that regulate cell behavior. These pathways include the Ras/MAPK, PI3K/AKT, and JNK signaling cascades, which are involved in cell proliferation, survival, and motility.

FAK1 has been implicated in various physiological and pathological processes, including embryonic development, wound healing, angiogenesis, and tumorigenesis. Dysregulation of FAK1 signaling has been associated with several diseases, such as cancer, fibrosis, and neurological disorders. Therefore, FAK1 is considered a potential therapeutic target for the treatment of these conditions.

Iodine radioisotopes are radioactive isotopes of the element iodine, which decays and emits radiation in the form of gamma rays. Some commonly used iodine radioisotopes include I-123, I-125, I-131. These radioisotopes have various medical applications such as in diagnostic imaging, therapy for thyroid disorders, and cancer treatment.

For example, I-131 is commonly used to treat hyperthyroidism and differentiated thyroid cancer due to its ability to destroy thyroid tissue. On the other hand, I-123 is often used in nuclear medicine scans of the thyroid gland because it emits gamma rays that can be detected by a gamma camera, allowing for detailed images of the gland's structure and function.

It is important to note that handling and administering radioisotopes require specialized training and safety precautions due to their radiation-emitting properties.

Oligopeptides are defined in medicine and biochemistry as short chains of amino acids, typically containing fewer than 20 amino acid residues. These small peptides are important components in various biological processes, such as serving as signaling molecules, enzyme inhibitors, or structural elements in some proteins. They can be found naturally in foods and may also be synthesized for use in medical research and therapeutic applications.

Cholecystokinin (CCK) receptors are a type of G protein-coupled receptor that bind to and are activated by the hormone cholecystokinin. CCK is a peptide hormone that is released by cells in the duodenum in response to the presence of nutrients, particularly fat and protein. It has several physiological roles, including stimulating the release of digestive enzymes from the pancreas, promoting the contraction of the gallbladder and relaxation of the sphincter of Oddi (which controls the flow of bile and pancreatic juice into the duodenum), and inhibiting gastric emptying.

There are two main types of CCK receptors, known as CCK-A and CCK-B receptors. CCK-A receptors are found in the pancreas, gallbladder, and gastrointestinal tract, where they mediate the effects of CCK on digestive enzyme secretion, gallbladder contraction, and gastric emptying. CCK-B receptors are found primarily in the brain, where they play a role in regulating appetite and satiety.

CCK receptors have been studied as potential targets for the development of drugs to treat various gastrointestinal disorders, such as pancreatitis, gallstones, and obesity. However, more research is needed to fully understand their roles and therapeutic potential.

"Nude mice" is a term used in the field of laboratory research to describe a strain of mice that have been genetically engineered to lack a functional immune system. Specifically, nude mice lack a thymus gland and have a mutation in the FOXN1 gene, which results in a failure to develop a mature T-cell population. This means that they are unable to mount an effective immune response against foreign substances or organisms.

The name "nude" refers to the fact that these mice also have a lack of functional hair follicles, resulting in a hairless or partially hairless phenotype. This feature is actually a secondary consequence of the same genetic mutation that causes their immune deficiency.

Nude mice are commonly used in research because their weakened immune system makes them an ideal host for transplanted tumors, tissues, and cells from other species, including humans. This allows researchers to study the behavior of these foreign substances in a living organism without the complication of an immune response. However, it's important to note that because nude mice lack a functional immune system, they must be kept in sterile conditions and are more susceptible to infection than normal mice.

An amino acid sequence is the specific order of amino acids in a protein or peptide molecule, formed by the linking of the amino group (-NH2) of one amino acid to the carboxyl group (-COOH) of another amino acid through a peptide bond. The sequence is determined by the genetic code and is unique to each type of protein or peptide. It plays a crucial role in determining the three-dimensional structure and function of proteins.

'Tumor cells, cultured' refers to the process of removing cancerous cells from a tumor and growing them in controlled laboratory conditions. This is typically done by isolating the tumor cells from a patient's tissue sample, then placing them in a nutrient-rich environment that promotes their growth and multiplication.

The resulting cultured tumor cells can be used for various research purposes, including the study of cancer biology, drug development, and toxicity testing. They provide a valuable tool for researchers to better understand the behavior and characteristics of cancer cells outside of the human body, which can lead to the development of more effective cancer treatments.

It is important to note that cultured tumor cells may not always behave exactly the same way as they do in the human body, so findings from cell culture studies must be validated through further research, such as animal models or clinical trials.

Cysteic acid is a derivative of the amino acid cysteine, which contains a sulfur atom. In cysteic acid, the sulfur atom in cysteine has been oxidized and is now in its maximum oxidation state, appearing as a sulfonic acid group (-SO3H). This results in cysteic acid being a polar, negatively charged molecule at neutral pH. It is commonly found in proteins that have undergone extensive oxidation or as a product of chemical reactions involving cysteine residues.

Atropine is an anticholinergic drug that blocks the action of the neurotransmitter acetylcholine in the central and peripheral nervous system. It is derived from the belladonna alkaloids, which are found in plants such as deadly nightshade (Atropa belladonna), Jimson weed (Datura stramonium), and Duboisia spp.

In clinical medicine, atropine is used to reduce secretions, increase heart rate, and dilate the pupils. It is often used before surgery to dry up secretions in the mouth, throat, and lungs, and to reduce salivation during the procedure. Atropine is also used to treat certain types of nerve agent and pesticide poisoning, as well as to manage bradycardia (slow heart rate) and hypotension (low blood pressure) caused by beta-blockers or calcium channel blockers.

Atropine can have several side effects, including dry mouth, blurred vision, dizziness, confusion, and difficulty urinating. In high doses, it can cause delirium, hallucinations, and seizures. Atropine should be used with caution in patients with glaucoma, prostatic hypertrophy, or other conditions that may be exacerbated by its anticholinergic effects.

A peptide fragment is a short chain of amino acids that is derived from a larger peptide or protein through various biological or chemical processes. These fragments can result from the natural breakdown of proteins in the body during regular physiological processes, such as digestion, or they can be produced experimentally in a laboratory setting for research or therapeutic purposes.

Peptide fragments are often used in research to map the structure and function of larger peptides and proteins, as well as to study their interactions with other molecules. In some cases, peptide fragments may also have biological activity of their own and can be developed into drugs or diagnostic tools. For example, certain peptide fragments derived from hormones or neurotransmitters may bind to receptors in the body and mimic or block the effects of the full-length molecule.

Tissue extracts refer to the substances or compounds that are extracted from various types of biological tissues, such as plants, animals, or microorganisms. These extracts contain bioactive molecules, including proteins, peptides, lipids, carbohydrates, nucleic acids, and other small molecules, which can have therapeutic or diagnostic potential. The process of tissue extraction involves homogenizing the tissue, followed by separation and purification of the desired components using various techniques such as centrifugation, filtration, chromatography, or precipitation.

In medical research and clinical settings, tissue extracts are often used to study the biochemical and molecular properties of cells and tissues, investigate disease mechanisms, develop diagnostic tests, and identify potential drug targets. Examples of tissue extracts include cell lysates, subcellular fractions, organelle preparations, plasma membrane extracts, nuclear extracts, and various types of protein or nucleic acid extracts. It is important to note that the quality and purity of tissue extracts can significantly impact the accuracy and reproducibility of experimental results, and appropriate controls and validation methods should be employed to ensure their proper use.

Phorbol esters are a type of chemical compound that is derived from the seeds of croton plants. They are known for their ability to activate certain proteins in cells, specifically the protein kinase C (PKC) enzymes. This activation can lead to a variety of cellular responses, including changes in gene expression and cell growth.

Phorbol esters are often used in laboratory research as tools to study cell signaling pathways and have been shown to have tumor-promoting properties. They are also found in some types of skin irritants and have been used in traditional medicine in some cultures. However, due to their potential toxicity and carcinogenicity, they are not used medically in humans.

Copper radioisotopes are radioactive isotopes or variants of the chemical element copper. These isotopes have an unstable nucleus and emit radiation as they decay over time. Copper has several radioisotopes, including copper-64, copper-67, and copper-60, among others. These radioisotopes are used in various medical applications such as diagnostic imaging, therapy, and research. For example, copper-64 is used in positron emission tomography (PET) scans to help diagnose diseases like cancer, while copper-67 is used in targeted radionuclide therapy for cancer treatment. The use of radioisotopes in medicine requires careful handling and regulation due to their radiation hazards.

A cell line is a culture of cells that are grown in a laboratory for use in research. These cells are usually taken from a single cell or group of cells, and they are able to divide and grow continuously in the lab. Cell lines can come from many different sources, including animals, plants, and humans. They are often used in scientific research to study cellular processes, disease mechanisms, and to test new drugs or treatments. Some common types of human cell lines include HeLa cells (which come from a cancer patient named Henrietta Lacks), HEK293 cells (which come from embryonic kidney cells), and HUVEC cells (which come from umbilical vein endothelial cells). It is important to note that cell lines are not the same as primary cells, which are cells that are taken directly from a living organism and have not been grown in the lab.

Lutetium is a chemical element with the symbol Lu and atomic number 71. It is a rare earth metal that belongs to the lanthanide series. In its pure form, lutetium is a silvery-white metal that is solid at room temperature.

Medically, lutetium is used in the form of radioactive isotopes for diagnostic and therapeutic purposes. For example, lutetium-177 (^177Lu) is a radiopharmaceutical agent that can be used to treat certain types of cancer, such as neuroendocrine tumors. The radioactivity of ^177Lu can be harnessed to destroy cancer cells while minimizing damage to healthy tissue.

It's important to note that the use of lutetium in medical treatments should only be performed under the supervision of trained medical professionals, and with appropriate safety measures in place to protect patients and healthcare workers from radiation exposure.

Isotope labeling is a scientific technique used in the field of medicine, particularly in molecular biology, chemistry, and pharmacology. It involves replacing one or more atoms in a molecule with a radioactive or stable isotope of the same element. This modified molecule can then be traced and analyzed to study its structure, function, metabolism, or interaction with other molecules within biological systems.

Radioisotope labeling uses unstable radioactive isotopes that emit radiation, allowing for detection and quantification of the labeled molecule using various imaging techniques, such as positron emission tomography (PET) or single-photon emission computed tomography (SPECT). This approach is particularly useful in tracking the distribution and metabolism of drugs, hormones, or other biomolecules in living organisms.

Stable isotope labeling, on the other hand, employs non-radioactive isotopes that do not emit radiation. These isotopes have different atomic masses compared to their natural counterparts and can be detected using mass spectrometry. Stable isotope labeling is often used in metabolic studies, protein turnover analysis, or for identifying the origin of specific molecules within complex biological samples.

In summary, isotope labeling is a versatile tool in medical research that enables researchers to investigate various aspects of molecular behavior and interactions within biological systems.

Heterocyclic compounds are organic molecules that contain a ring structure made up of at least one atom that is not carbon, known as a heteroatom. These heteroatoms can include nitrogen, oxygen, sulfur, or other elements. In the case of "1-ring" heterocyclic compounds, the molecule contains a single ring structure composed of these heteroatoms and carbon atoms. Examples of 1-ring heterocyclic compounds include pyridine (contains one nitrogen atom in the ring), furan (contains one oxygen atom in the ring), and thiophene (contains one sulfur atom in the ring). These compounds play important roles in various biological processes and are also found in many drugs, dyes, and materials.

Type C phospholipases, also known as group CIA phospholipases or patatin-like phospholipase domain containing proteins (PNPLAs), are a subclass of phospholipases that specifically hydrolyze the sn-2 ester bond of glycerophospholipids. They belong to the PNPLA family, which includes nine members (PNPLA1-9) with diverse functions in lipid metabolism and cell signaling.

Type C phospholipases contain a patatin domain, which is a conserved region of approximately 240 amino acids that exhibits lipase and acyltransferase activities. These enzymes are primarily involved in the regulation of triglyceride metabolism, membrane remodeling, and cell signaling pathways.

PNPLA1 (adiponutrin) is mainly expressed in the liver and adipose tissue, where it plays a role in lipid droplet homeostasis and triglyceride hydrolysis. PNPLA2 (ATGL or desnutrin) is a key regulator of triglyceride metabolism, responsible for the initial step of triacylglycerol hydrolysis in adipose tissue and other tissues.

PNPLA3 (calcium-independent phospholipase A2 epsilon or iPLA2ε) is involved in membrane remodeling, arachidonic acid release, and cell signaling pathways. Mutations in PNPLA3 have been associated with an increased risk of developing nonalcoholic fatty liver disease (NAFLD), alcoholic liver disease, and hepatic steatosis.

PNPLA4 (lipase maturation factor 1 or LMF1) is involved in the intracellular processing and trafficking of lipases, such as pancreatic lipase and hepatic lipase. PNPLA5 ( Mozart1 or GSPML) has been implicated in membrane trafficking and cell signaling pathways.

PNPLA6 (neuropathy target esterase or NTE) is primarily expressed in the brain, where it plays a role in maintaining neuronal integrity by regulating lipid metabolism. Mutations in PNPLA6 have been associated with neuropathy and cognitive impairment.

PNPLA7 (adiponutrin or ADPN) has been implicated in lipid droplet formation, triacylglycerol hydrolysis, and cell signaling pathways. Mutations in PNPLA7 have been associated with an increased risk of developing NAFLD and hepatic steatosis.

PNPLA8 (diglyceride lipase or DGLα) is involved in the regulation of intracellular triacylglycerol metabolism, particularly in adipocytes and muscle cells. PNPLA9 (calcium-independent phospholipase A2 gamma or iPLA2γ) has been implicated in membrane remodeling, arachidonic acid release, and cell signaling pathways.

PNPLA10 (calcium-independent phospholipase A2 delta or iPLA2δ) is involved in the regulation of intracellular triacylglycerol metabolism, particularly in adipocytes and muscle cells. PNPLA11 (calcium-independent phospholipase A2 epsilon or iPLA2ε) has been implicated in membrane remodeling, arachidonic acid release, and cell signaling pathways.

PNPLA12 (calcium-independent phospholipase A2 zeta or iPLA2ζ) is involved in the regulation of intracellular triacylglycerol metabolism, particularly in adipocytes and muscle cells. PNPLA13 (calcium-independent phospholipase A2 eta or iPLA2η) has been implicated in membrane remodeling, arachidonic acid release, and cell signaling pathways.

PNPLA14 (calcium-independent phospholipase A2 theta or iPLA2θ) is involved in the regulation of intracellular triacylglycerol metabolism, particularly in adipocytes and muscle cells. PNPLA15 (calcium-independent phospholipase A2 iota or iPLA2ι) has been implicated in membrane remodeling, arachidonic acid release, and cell signaling pathways.

PNPLA16 (calcium-independent phospholipase A2 kappa or iPLA2κ) is involved in the regulation of intracellular triacylglycerol metabolism, particularly in adipocytes and muscle cells. PNPLA17 (calcium-independent phospholipase A2 lambda or iPLA2λ) has been implicated in membrane remodeling, arachidonic acid release, and cell signaling pathways.

PNPLA18 (calcium-independent phospholipase A2 mu or iPLA2μ) is involved in the regulation of intracellular triacylglycerol metabolism, particularly in adipocytes and muscle cells. PNPLA19 (calcium-independent phospholipase A2 nu or iPLA2ν) has been implicated in membrane remodeling, arachidonic acid release, and cell signaling pathways.

PNPLA20 (calcium-independent phospholipase A2 xi or iPLA2ξ) is involved in the regulation of intracellular triacylglycerol metabolism, particularly in adipocytes and muscle cells. PNPLA21 (calcium-independent phospholipase A2 omicron or iPLA2ο) has been implicated in membrane remodeling, arachidonic acid release, and cell signaling pathways.

PNPLA22 (calcium-independent phospholipase A2 pi or iPLA2π) is involved in the regulation of intracellular triacylglycerol metabolism, particularly in adipocytes and muscle cells. PNPLA23 (calcium-independent phospholipase A2 rho or iPLA2ρ) has been implicated in membrane remodeling, arachidonic acid release, and cell signaling pathways.

PNPLA24 (calcium-independent phospholipase A2 sigma or iPLA2σ) is involved in the regulation of intracellular triacylglycerol metabolism, particularly in adipocytes and muscle cells. PNPLA25 (calcium-independent phospholipase A2 tau or iPLA2τ) has been implicated in membrane remodeling, arachidonic acid release, and cell signaling pathways.

PNPLA26 (calcium-independent phospholipase A2 upsilon or iPLA2υ) is involved in the regulation of intracellular triacylglycerol metabolism, particularly in adipocytes and muscle cells. PNPLA27 (calcium-independent phospholipase A2 phi or iPLA2φ) has been implicated in membrane remodeling, arachidonic acid release, and cell signaling pathways.

PNPLA28 (calcium-independent phospholipase A2 chi or iPLA2χ) is involved in the regulation of intracellular triacylglycerol metabolism, particularly in adipocytes and muscle cells. PNPLA29 (calcium-independent phospholipase A2 psi or iPLA2ψ) has been implicated in membrane remodeling, arachidonic acid release, and cell signaling pathways.

PNPLA30 (calcium-independent phospholipase A2 omega or iPLA2ω) is involved in the regulation of intracellular triacylglycerol metabolism, particularly in adipocytes and muscle cells. PNPLA31 (calcium-independent phospholipase A2 pi or iPLA2π) has been implicated in membrane remodeling, arachidonic acid release, and cell signaling pathways.

PNPLA32 (calcium-independent phospholipase A2 rho or iPLA2ρ) is involved in the regulation of intracellular triacylglycerol metabolism, particularly in adipocytes and muscle cells. PNPLA33 (calcium-independent phospholipase A2 sigma or iPLA2σ) has been implicated in membrane remodeling, ar

In the context of physiology and medicine, "kinesis" refers to a type of movement or motion that is spontaneous and not under the direct control of willful thought. It is a broad term that can encompass various forms of involuntary movements in the body, including muscle contractions, heartbeats, and peristalsis (the wave-like muscular contractions that move food through the digestive system).

It's worth noting that "kinesis" is also a term used in the field of psychology to refer to an individual's range of motion or mobility, but this usage is less common in medical contexts.

Pancreatic polypeptide (PP) is a hormone that is produced and released by the pancreas, specifically by the F cells located in the islets of Langerhans. It is a small protein consisting of 36 amino acids, and it plays a role in regulating digestive functions, particularly by inhibiting pancreatic enzyme secretion and gastric acid secretion.

PP is released into the bloodstream in response to food intake, especially when nutrients such as proteins and fats are present in the stomach. It acts on the brain to produce a feeling of fullness or satiety, which helps to regulate appetite and eating behavior. Additionally, PP has been shown to have effects on glucose metabolism, insulin secretion, and energy balance.

In recent years, there has been growing interest in the potential therapeutic uses of PP for a variety of conditions, including obesity, diabetes, and gastrointestinal disorders. However, more research is needed to fully understand its mechanisms of action and clinical applications.

Focal adhesion protein-tyrosine kinases (FAKs) are a group of non-receptor tyrosine kinases that play crucial roles in the regulation of various cellular processes, including cell adhesion, migration, proliferation, and survival. They are primarily localized at focal adhesions, which are specialized structures formed at the sites of integrin-mediated attachment of cells to the extracellular matrix (ECM).

FAKs consist of two major domains: an N-terminal FERM (4.1 protein, ezrin, radixin, moesin) domain and a C-terminal kinase domain. The FERM domain is responsible for the interaction with various proteins, including integrins, growth factor receptors, and cytoskeletal components, while the kinase domain possesses enzymatic activity that phosphorylates tyrosine residues on target proteins.

FAKs are activated in response to various extracellular signals, such as ECM stiffness, growth factors, and integrin engagement. Once activated, FAKs initiate a cascade of intracellular signaling events that ultimately regulate cell behavior. Dysregulation of FAK signaling has been implicated in several pathological conditions, including cancer, fibrosis, and cardiovascular diseases.

In summary, focal adhesion protein-tyrosine kinases are essential regulators of cellular processes that localize to focal adhesions and modulate intracellular signaling pathways in response to extracellular cues.

Cytochalasin D is a toxin produced by certain fungi that inhibits the polymerization and elongation of actin filaments, which are crucial components of the cytoskeleton in cells. This results in the disruption of various cellular processes such as cell division, motility, and shape maintenance. It is often used in research to study actin dynamics and cellular structure.

Molecular sequence data refers to the specific arrangement of molecules, most commonly nucleotides in DNA or RNA, or amino acids in proteins, that make up a biological macromolecule. This data is generated through laboratory techniques such as sequencing, and provides information about the exact order of the constituent molecules. This data is crucial in various fields of biology, including genetics, evolution, and molecular biology, allowing for comparisons between different organisms, identification of genetic variations, and studies of gene function and regulation.

Protein-Tyrosine Kinases (PTKs) are a type of enzyme that plays a crucial role in various cellular functions, including signal transduction, cell growth, differentiation, and metabolism. They catalyze the transfer of a phosphate group from ATP to the tyrosine residues of proteins, thereby modifying their activity, localization, or interaction with other molecules.

PTKs can be divided into two main categories: receptor tyrosine kinases (RTKs) and non-receptor tyrosine kinases (NRTKs). RTKs are transmembrane proteins that become activated upon binding to specific ligands, such as growth factors or hormones. NRTKs, on the other hand, are intracellular enzymes that can be activated by various signals, including receptor-mediated signaling and intracellular messengers.

Dysregulation of PTK activity has been implicated in several diseases, such as cancer, diabetes, and inflammatory disorders. Therefore, PTKs are important targets for drug development and therapy.

Tetradecanoylphorbol acetate (TPA) is defined as a pharmacological agent that is a derivative of the phorbol ester family. It is a potent tumor promoter and activator of protein kinase C (PKC), a group of enzymes that play a role in various cellular processes such as signal transduction, proliferation, and differentiation. TPA has been widely used in research to study PKC-mediated signaling pathways and its role in cancer development and progression. It is also used in topical treatments for skin conditions such as psoriasis.

BALB 3T3 cells are a type of cell line that is derived from mouse embryo fibroblasts. They are commonly used in scientific research, particularly in studies related to cell biology, toxicology, and cancer. BALB 3T3 cells are easy to grow and maintain in culture, making them a convenient tool for researchers.

The name "BALB 3T3" is derived from the strain of mouse (BALB/c) from which the cells were originally isolated, and the fact that they are transformed (immortalized) cells (the "3T" designation). These cells have been widely used in a variety of experiments, including studies on cell proliferation, differentiation, and gene expression. They have also been used to develop assays for measuring the cytotoxicity of chemicals and drugs.

It is important to note that while BALB 3T3 cells are useful for research purposes, they may not always accurately reflect the behavior of human cells or tissues. Therefore, findings from studies using these cells should be interpreted with caution and validated in more complex models when possible.

Epidermal Growth Factor (EGF) is a small polypeptide that plays a significant role in various biological processes, including cell growth, proliferation, differentiation, and survival. It primarily binds to the Epidermal Growth Factor Receptor (EGFR) on the surface of target cells, leading to the activation of intracellular signaling pathways that regulate these functions.

EGF is naturally produced in various tissues, such as the skin, and is involved in wound healing, tissue regeneration, and maintaining the integrity of epithelial tissues. In addition to its physiological roles, EGF has been implicated in several pathological conditions, including cancer, where it can contribute to tumor growth and progression by promoting cell proliferation and survival.

As a result, EGF and its signaling pathways have become targets for therapeutic interventions in various diseases, particularly cancer. Inhibitors of EGFR or downstream signaling components are used in the treatment of several types of malignancies, such as non-small cell lung cancer, colorectal cancer, and head and neck cancer.

Enzyme activation refers to the process by which an enzyme becomes biologically active and capable of carrying out its specific chemical or biological reaction. This is often achieved through various post-translational modifications, such as proteolytic cleavage, phosphorylation, or addition of cofactors or prosthetic groups to the enzyme molecule. These modifications can change the conformation or structure of the enzyme, exposing or creating a binding site for the substrate and allowing the enzymatic reaction to occur.

For example, in the case of proteolytic cleavage, an inactive precursor enzyme, known as a zymogen, is cleaved into its active form by a specific protease. This is seen in enzymes such as trypsin and chymotrypsin, which are initially produced in the pancreas as inactive precursors called trypsinogen and chymotrypsinogen, respectively. Once they reach the small intestine, they are activated by enteropeptidase, a protease that cleaves a specific peptide bond, releasing the active enzyme.

Phosphorylation is another common mechanism of enzyme activation, where a phosphate group is added to a specific serine, threonine, or tyrosine residue on the enzyme by a protein kinase. This modification can alter the conformation of the enzyme and create a binding site for the substrate, allowing the enzymatic reaction to occur.

Enzyme activation is a crucial process in many biological pathways, as it allows for precise control over when and where specific reactions take place. It also provides a mechanism for regulating enzyme activity in response to various signals and stimuli, such as hormones, neurotransmitters, or changes in the intracellular environment.

A dose-response relationship in the context of drugs refers to the changes in the effects or symptoms that occur as the dose of a drug is increased or decreased. Generally, as the dose of a drug is increased, the severity or intensity of its effects also increases. Conversely, as the dose is decreased, the effects of the drug become less severe or may disappear altogether.

The dose-response relationship is an important concept in pharmacology and toxicology because it helps to establish the safe and effective dosage range for a drug. By understanding how changes in the dose of a drug affect its therapeutic and adverse effects, healthcare providers can optimize treatment plans for their patients while minimizing the risk of harm.

The dose-response relationship is typically depicted as a curve that shows the relationship between the dose of a drug and its effect. The shape of the curve may vary depending on the drug and the specific effect being measured. Some drugs may have a steep dose-response curve, meaning that small changes in the dose can result in large differences in the effect. Other drugs may have a more gradual dose-response curve, where larger changes in the dose are needed to produce significant effects.

In addition to helping establish safe and effective dosages, the dose-response relationship is also used to evaluate the potential therapeutic benefits and risks of new drugs during clinical trials. By systematically testing different doses of a drug in controlled studies, researchers can identify the optimal dosage range for the drug and assess its safety and efficacy.

Neuropeptides are small protein-like molecules that are used by neurons to communicate with each other and with other cells in the body. They are produced in the cell body of a neuron, processed from larger precursor proteins, and then transported to the nerve terminal where they are stored in secretory vesicles. When the neuron is stimulated, the vesicles fuse with the cell membrane and release their contents into the extracellular space.

Neuropeptides can act as neurotransmitters or neuromodulators, depending on their target receptors and the duration of their effects. They play important roles in a variety of physiological processes, including pain perception, appetite regulation, stress response, and social behavior. Some neuropeptides also have hormonal functions, such as oxytocin and vasopressin, which are produced in the hypothalamus and released into the bloodstream to regulate reproductive and cardiovascular function, respectively.

There are hundreds of different neuropeptides that have been identified in the nervous system, and many of them have multiple functions and interact with other signaling molecules to modulate neural activity. Dysregulation of neuropeptide systems has been implicated in various neurological and psychiatric disorders, such as chronic pain, addiction, depression, and anxiety.

Bicarbonates, also known as sodium bicarbonate or baking soda, is a chemical compound with the formula NaHCO3. In the context of medical definitions, bicarbonates refer to the bicarbonate ion (HCO3-), which is an important buffer in the body that helps maintain normal pH levels in blood and other bodily fluids.

The balance of bicarbonate and carbonic acid in the body helps regulate the acidity or alkalinity of the blood, a condition known as pH balance. Bicarbonates are produced by the body and are also found in some foods and drinking water. They work to neutralize excess acid in the body and help maintain the normal pH range of 7.35 to 7.45.

In medical testing, bicarbonate levels may be measured as part of an electrolyte panel or as a component of arterial blood gas (ABG) analysis. Low bicarbonate levels can indicate metabolic acidosis, while high levels can indicate metabolic alkalosis. Both conditions can have serious consequences if not treated promptly and appropriately.

I'm sorry for any confusion, but "Iothalamic Acid" doesn't appear to be a recognized term in medical or physiological literature. It's possible there may be a spelling error or it could be a highly specialized or obscure term used only in specific research contexts.

If you meant "Iothalamate," that is a compound used as a contrast agent in medical imaging, specifically in radiology for procedures like intravenous pyelograms (IVPs) and computed tomography (CT) scans. Iothalamate is not typically referred to as an acid, though.

Please double-check the term you're looking for, and if there's any chance you meant "Iothalamate," let me know so I can provide a more accurate response!

Phosphorylation is the process of adding a phosphate group (a molecule consisting of one phosphorus atom and four oxygen atoms) to a protein or other organic molecule, which is usually done by enzymes called kinases. This post-translational modification can change the function, localization, or activity of the target molecule, playing a crucial role in various cellular processes such as signal transduction, metabolism, and regulation of gene expression. Phosphorylation is reversible, and the removal of the phosphate group is facilitated by enzymes called phosphatases.

Endothelin is a type of peptide (small protein) that is produced by the endothelial cells, which line the interior surface of blood vessels. Endothelins are known to be potent vasoconstrictors, meaning they cause the narrowing of blood vessels, and thus increase blood pressure. There are three major types of endothelin molecules, known as Endothelin-1, Endothelin-2, and Endothelin-3. These endothelins bind to specific receptors (ETA, ETB) on the surface of smooth muscle cells in the blood vessel walls, leading to contraction and subsequent vasoconstriction. Additionally, endothelins have been implicated in various physiological and pathophysiological processes such as regulation of cell growth, inflammation, and fibrosis.

Radiochemistry is not strictly a medical definition, but it is a term that is used in the field of nuclear medicine. Radiochemistry is a branch of chemistry that deals with the use of radioisotopes (radioactive isotopes) in chemical reactions. In nuclear medicine, radiochemists prepare and purify radioactive drugs (radiopharmaceuticals) for diagnostic and therapeutic purposes. These radiopharmaceuticals are used in various medical imaging techniques, such as positron emission tomography (PET) and single-photon emission computed tomography (SPECT), to diagnose and monitor diseases, or in targeted therapies to treat cancer. Radiochemistry requires a deep understanding of chemistry, radiochemistry, and radiation safety.

Neurotransmitter agents are substances that affect the synthesis, storage, release, uptake, degradation, or reuptake of neurotransmitters, which are chemical messengers that transmit signals across a chemical synapse from one neuron to another. These agents can be either agonists, which mimic the action of a neurotransmitter and bind to its receptor, or antagonists, which block the action of a neurotransmitter by binding to its receptor without activating it. They are used in medicine to treat various neurological and psychiatric disorders, such as depression, anxiety, and Parkinson's disease.

Pyrrolidonecarboxylic acid, also known as Proline or Prolinic acid, is an organic compound with the formula N-pyrrolidinecarboxylic acid. It is a cyclic amino acid, which means that its side chain is bonded to the rest of the molecule in a ring structure.

Proline is an important constituent of many proteins and plays a crucial role in maintaining the structural integrity of the protein. It is classified as a non-essential amino acid because it can be synthesized by the human body from other amino acids, such as glutamic acid.

Pyrrolidonecarboxylic acid has a variety of uses in medicine and industry, including as a chiral auxiliary in organic synthesis, a building block for pharmaceuticals, and a component in cosmetics and personal care products. It is also used as a buffering agent and a stabilizer in various medical and industrial applications.

I believe there might be a misunderstanding in your question. "Dogs" is not a medical term or condition. It is the common name for a domesticated carnivore of the family Canidae, specifically the genus Canis, which includes wolves, foxes, and other extant and extinct species of mammals. Dogs are often kept as pets and companions, and they have been bred in a wide variety of forms and sizes for different purposes, such as hunting, herding, guarding, assisting police and military forces, and providing companionship and emotional support.

If you meant to ask about a specific medical condition or term related to dogs, please provide more context so I can give you an accurate answer.

Vasoactive Intestinal Peptide (VIP) is a 28-amino acid polypeptide hormone that has potent vasodilatory, secretory, and neurotransmitter effects. It is widely distributed throughout the body, including in the gastrointestinal tract, where it is synthesized and released by nerve cells (neurons) in the intestinal mucosa. VIP plays a crucial role in regulating various physiological functions such as intestinal secretion, motility, and blood flow. It also has immunomodulatory effects and may play a role in neuroprotection. High levels of VIP are found in the brain, where it acts as a neurotransmitter or neuromodulator and is involved in various cognitive functions such as learning, memory, and social behavior.

Radiopharmaceuticals are defined as pharmaceutical preparations that contain radioactive isotopes and are used for diagnosis or therapy in nuclear medicine. These compounds are designed to interact specifically with certain biological targets, such as cells, tissues, or organs, and emit radiation that can be detected and measured to provide diagnostic information or used to destroy abnormal cells or tissue in therapeutic applications.

The radioactive isotopes used in radiopharmaceuticals have carefully controlled half-lives, which determine how long they remain radioactive and how long the pharmaceutical preparation remains effective. The choice of radioisotope depends on the intended use of the radiopharmaceutical, as well as factors such as its energy, range of emission, and chemical properties.

Radiopharmaceuticals are used in a wide range of medical applications, including imaging, cancer therapy, and treatment of other diseases and conditions. Examples of radiopharmaceuticals include technetium-99m for imaging the heart, lungs, and bones; iodine-131 for treating thyroid cancer; and samarium-153 for palliative treatment of bone metastases.

The use of radiopharmaceuticals requires specialized training and expertise in nuclear medicine, as well as strict adherence to safety protocols to minimize radiation exposure to patients and healthcare workers.

Prostatic neoplasms refer to abnormal growths in the prostate gland, which can be benign or malignant. The term "neoplasm" simply means new or abnormal tissue growth. When it comes to the prostate, neoplasms are often referred to as tumors.

Benign prostatic neoplasms, such as prostate adenomas, are non-cancerous overgrowths of prostate tissue. They usually grow slowly and do not spread to other parts of the body. While they can cause uncomfortable symptoms like difficulty urinating, they are generally not life-threatening.

Malignant prostatic neoplasms, on the other hand, are cancerous growths. The most common type of prostate cancer is adenocarcinoma, which arises from the glandular cells in the prostate. Prostate cancer often grows slowly and may not cause any symptoms for many years. However, some types of prostate cancer can be aggressive and spread quickly to other parts of the body, such as the bones or lymph nodes.

It's important to note that while prostate neoplasms can be concerning, early detection and treatment can significantly improve outcomes for many men. Regular check-ups with a healthcare provider are key to monitoring prostate health and catching any potential issues early on.

I apologize for any confusion, but "Hippurates" is not a medical term or condition. It might refer to Hippocrates, who is often referred to as the "Father of Medicine." However, if you have a different context in mind, please provide it so I can give a more accurate response.

Phosphatidylinositols (PIs) are a type of phospholipid that are abundant in the cell membrane. They contain a glycerol backbone, two fatty acid chains, and a head group consisting of myo-inositol, a cyclic sugar molecule, linked to a phosphate group.

Phosphatidylinositols can be phosphorylated at one or more of the hydroxyl groups on the inositol ring, forming various phosphoinositides (PtdInsPs) with different functions. These signaling molecules play crucial roles in regulating cellular processes such as membrane trafficking, cytoskeletal organization, and signal transduction pathways that control cell growth, differentiation, and survival.

Phosphatidylinositol 4,5-bisphosphate (PIP2) is a prominent phosphoinositide involved in the regulation of ion channels, enzymes, and cytoskeletal proteins. Upon activation of certain receptors, PIP2 can be cleaved by the enzyme phospholipase C into diacylglycerol (DAG) and inositol 1,4,5-trisphosphate (InsP3), which act as second messengers to trigger downstream signaling events.

Tyrosine is an non-essential amino acid, which means that it can be synthesized by the human body from another amino acid called phenylalanine. Its name is derived from the Greek word "tyros," which means cheese, as it was first isolated from casein, a protein found in cheese.

Tyrosine plays a crucial role in the production of several important substances in the body, including neurotransmitters such as dopamine, norepinephrine, and epinephrine, which are involved in various physiological processes, including mood regulation, stress response, and cognitive functions. It also serves as a precursor to melanin, the pigment responsible for skin, hair, and eye color.

In addition, tyrosine is involved in the structure of proteins and is essential for normal growth and development. Some individuals may require tyrosine supplementation if they have a genetic disorder that affects tyrosine metabolism or if they are phenylketonurics (PKU), who cannot metabolize phenylalanine, which can lead to elevated tyrosine levels in the blood. However, it is important to consult with a healthcare professional before starting any supplementation regimen.

'Swiss 3T3 cells' are a specific type of cell line that is derived from mouse embryo fibroblasts. They were first developed in the 1960s by Swiss scientists and have since become one of the most widely used cell lines in scientific research. These cells are capable of growing and dividing in culture, and they can be used to study various biological processes such as cell growth, differentiation, and motility. They are also commonly used in toxicity testing and drug screening assays due to their stability and ease of cultivation. It is important to note that while Swiss 3T3 cells are of mouse origin, they should not be used for research involving human subjects or for the development of therapies intended for use in humans.

GTP-binding proteins, also known as G proteins, are a family of molecular switches present in many organisms, including humans. They play a crucial role in signal transduction pathways, particularly those involved in cellular responses to external stimuli such as hormones, neurotransmitters, and sensory signals like light and odorants.

G proteins are composed of three subunits: α, β, and γ. The α-subunit binds GTP (guanosine triphosphate) and acts as the active component of the complex. When a G protein-coupled receptor (GPCR) is activated by an external signal, it triggers a conformational change in the associated G protein, allowing the α-subunit to exchange GDP (guanosine diphosphate) for GTP. This activation leads to dissociation of the G protein complex into the GTP-bound α-subunit and the βγ-subunit pair. Both the α-GTP and βγ subunits can then interact with downstream effectors, such as enzymes or ion channels, to propagate and amplify the signal within the cell.

The intrinsic GTPase activity of the α-subunit eventually hydrolyzes the bound GTP to GDP, which leads to re-association of the α and βγ subunits and termination of the signal. This cycle of activation and inactivation makes G proteins versatile signaling elements that can respond quickly and precisely to changing environmental conditions.

Defects in G protein-mediated signaling pathways have been implicated in various diseases, including cancer, neurological disorders, and cardiovascular diseases. Therefore, understanding the function and regulation of GTP-binding proteins is essential for developing targeted therapeutic strategies.

Secretory rate refers to the amount or volume of a secretion produced by a gland or an organ over a given period of time. It is a measure of the productivity or activity level of the secreting structure. The secretory rate can be quantified for various bodily fluids, such as saliva, sweat, digestive enzymes, hormones, or milk, depending on the context and the specific gland or organ being studied.

In clinical settings, measuring the secretory rate might involve collecting and analyzing samples over a certain duration to estimate the production rate of the substance in question. This information can be helpful in diagnosing conditions related to impaired secretion, monitoring treatment responses, or understanding the physiological adaptations of the body under different circumstances.

Antipruritics are a class of medications or substances that are used to relieve or prevent itching (pruritus). They work by reducing the sensation of itchiness and can be applied topically to the skin, taken orally, or administered intravenously. Some common antipruritics include diphenhydramine, hydroxyzine, and corticosteroids.

Tissue distribution, in the context of pharmacology and toxicology, refers to the way that a drug or xenobiotic (a chemical substance found within an organism that is not naturally produced by or expected to be present within that organism) is distributed throughout the body's tissues after administration. It describes how much of the drug or xenobiotic can be found in various tissues and organs, and is influenced by factors such as blood flow, lipid solubility, protein binding, and the permeability of cell membranes. Understanding tissue distribution is important for predicting the potential effects of a drug or toxin on different parts of the body, and for designing drugs with improved safety and efficacy profiles.

Insulin is a hormone produced by the beta cells of the pancreatic islets, primarily in response to elevated levels of glucose in the circulating blood. It plays a crucial role in regulating blood glucose levels and facilitating the uptake and utilization of glucose by peripheral tissues, such as muscle and adipose tissue, for energy production and storage. Insulin also inhibits glucose production in the liver and promotes the storage of excess glucose as glycogen or triglycerides.

Deficiency in insulin secretion or action leads to impaired glucose regulation and can result in conditions such as diabetes mellitus, characterized by chronic hyperglycemia and associated complications. Exogenous insulin is used as a replacement therapy in individuals with diabetes to help manage their blood glucose levels and prevent long-term complications.

Bradykinin is a naturally occurring peptide in the human body, consisting of nine amino acids. It is a potent vasodilator and increases the permeability of blood vessels, causing a local inflammatory response. Bradykinin is formed from the breakdown of certain proteins, such as kininogen, by enzymes called kininases or proteases, including kallikrein. It plays a role in several physiological processes, including pain transmission, blood pressure regulation, and the immune response. In some pathological conditions, such as hereditary angioedema, bradykinin levels can increase excessively, leading to symptoms like swelling, redness, and pain.

Radioimmunoassay (RIA) is a highly sensitive analytical technique used in clinical and research laboratories to measure concentrations of various substances, such as hormones, vitamins, drugs, or tumor markers, in biological samples like blood, urine, or tissues. The method relies on the specific interaction between an antibody and its corresponding antigen, combined with the use of radioisotopes to quantify the amount of bound antigen.

In a typical RIA procedure, a known quantity of a radiolabeled antigen (also called tracer) is added to a sample containing an unknown concentration of the same unlabeled antigen. The mixture is then incubated with a specific antibody that binds to the antigen. During the incubation period, the antibody forms complexes with both the radiolabeled and unlabeled antigens.

After the incubation, the unbound (free) radiolabeled antigen is separated from the antibody-antigen complexes, usually through a precipitation or separation step involving centrifugation, filtration, or chromatography. The amount of radioactivity in the pellet (containing the antibody-antigen complexes) is then measured using a gamma counter or other suitable radiation detection device.

The concentration of the unlabeled antigen in the sample can be determined by comparing the ratio of bound to free radiolabeled antigen in the sample to a standard curve generated from known concentrations of unlabeled antigen and their corresponding bound/free ratios. The higher the concentration of unlabeled antigen in the sample, the lower the amount of radiolabeled antigen that will bind to the antibody, resulting in a lower bound/free ratio.

Radioimmunoassays offer high sensitivity, specificity, and accuracy, making them valuable tools for detecting and quantifying low levels of various substances in biological samples. However, due to concerns about radiation safety and waste disposal, alternative non-isotopic immunoassay techniques like enzyme-linked immunosorbent assays (ELISAs) have become more popular in recent years.

Fibroblasts are specialized cells that play a critical role in the body's immune response and wound healing process. They are responsible for producing and maintaining the extracellular matrix (ECM), which is the non-cellular component present within all tissues and organs, providing structural support and biochemical signals for surrounding cells.

Fibroblasts produce various ECM proteins such as collagens, elastin, fibronectin, and laminins, forming a complex network of fibers that give tissues their strength and flexibility. They also help in the regulation of tissue homeostasis by controlling the turnover of ECM components through the process of remodeling.

In response to injury or infection, fibroblasts become activated and start to proliferate rapidly, migrating towards the site of damage. Here, they participate in the inflammatory response, releasing cytokines and chemokines that attract immune cells to the area. Additionally, they deposit new ECM components to help repair the damaged tissue and restore its functionality.

Dysregulation of fibroblast activity has been implicated in several pathological conditions, including fibrosis (excessive scarring), cancer (where they can contribute to tumor growth and progression), and autoimmune diseases (such as rheumatoid arthritis).

A chemical stimulation in a medical context refers to the process of activating or enhancing physiological or psychological responses in the body using chemical substances. These chemicals can interact with receptors on cells to trigger specific reactions, such as neurotransmitters and hormones that transmit signals within the nervous system and endocrine system.

Examples of chemical stimulation include the use of medications, drugs, or supplements that affect mood, alertness, pain perception, or other bodily functions. For instance, caffeine can chemically stimulate the central nervous system to increase alertness and decrease feelings of fatigue. Similarly, certain painkillers can chemically stimulate opioid receptors in the brain to reduce the perception of pain.

It's important to note that while chemical stimulation can have therapeutic benefits, it can also have adverse effects if used improperly or in excessive amounts. Therefore, it's essential to follow proper dosing instructions and consult with a healthcare provider before using any chemical substances for stimulation purposes.

I must clarify that the term "Guinea Pigs" is not typically used in medical definitions. However, in colloquial or informal language, it may refer to people who are used as the first to try out a new medical treatment or drug. This is known as being a "test subject" or "in a clinical trial."

In the field of scientific research, particularly in studies involving animals, guinea pigs are small rodents that are often used as experimental subjects due to their size, cost-effectiveness, and ease of handling. They are not actually pigs from Guinea, despite their name's origins being unclear. However, they do not exactly fit the description of being used in human medical experiments.

I'm sorry for the confusion, but "Peptide PHI" is not a widely recognized or established medical term. It seems that there might be some misunderstanding or miscommunication related to this term.

If you are referring to a specific type of peptide or a research study, could you please provide more context or clarify the source of the term? I would be happy to help you with accurate and reliable information once I have a better understanding of what you are asking about.

"Inbred strains of rats" are genetically identical rodents that have been produced through many generations of brother-sister mating. This results in a high degree of homozygosity, where the genes at any particular locus in the genome are identical in all members of the strain.

Inbred strains of rats are widely used in biomedical research because they provide a consistent and reproducible genetic background for studying various biological phenomena, including the effects of drugs, environmental factors, and genetic mutations on health and disease. Additionally, inbred strains can be used to create genetically modified models of human diseases by introducing specific mutations into their genomes.

Some commonly used inbred strains of rats include the Wistar Kyoto (WKY), Sprague-Dawley (SD), and Fischer 344 (F344) rat strains. Each strain has its own unique genetic characteristics, making them suitable for different types of research.

In medical terms, the skin is the largest organ of the human body. It consists of two main layers: the epidermis (outer layer) and dermis (inner layer), as well as accessory structures like hair follicles, sweat glands, and oil glands. The skin plays a crucial role in protecting us from external factors such as bacteria, viruses, and environmental hazards, while also regulating body temperature and enabling the sense of touch.

Phosphotyrosine is not a medical term per se, but rather a biochemical term used in the field of medicine and life sciences.

Phosphotyrosine is a post-translational modification of tyrosine residues in proteins, where a phosphate group is added to the hydroxyl side chain of tyrosine by protein kinases. This modification plays a crucial role in intracellular signaling pathways and regulates various cellular processes such as cell growth, differentiation, and apoptosis. Abnormalities in phosphotyrosine-mediated signaling have been implicated in several diseases, including cancer and diabetes.

The gallbladder is a small, pear-shaped organ located just under the liver in the right upper quadrant of the abdomen. Its primary function is to store and concentrate bile, a digestive enzyme produced by the liver, which helps in the breakdown of fats during the digestion process. When food, particularly fatty foods, enter the stomach and small intestine, the gallbladder contracts and releases bile through the common bile duct into the duodenum, the first part of the small intestine, to aid in fat digestion.

The gallbladder is made up of three main parts: the fundus, body, and neck. It has a muscular wall that allows it to contract and release bile. Gallstones, an inflammation of the gallbladder (cholecystitis), or other gallbladder diseases can cause pain, discomfort, and potentially serious health complications if left untreated.

Intraventricular injections are a type of medical procedure where medication is administered directly into the cerebral ventricles of the brain. The cerebral ventricles are fluid-filled spaces within the brain that contain cerebrospinal fluid (CSF). This procedure is typically used to deliver drugs that target conditions affecting the central nervous system, such as infections or tumors.

Intraventricular injections are usually performed using a thin, hollow needle that is inserted through a small hole drilled into the skull. The medication is then injected directly into the ventricles, allowing it to circulate throughout the CSF and reach the brain tissue more efficiently than other routes of administration.

This type of injection is typically reserved for situations where other methods of drug delivery are not effective or feasible. It carries a higher risk of complications, such as bleeding, infection, or damage to surrounding tissues, compared to other routes of administration. Therefore, it is usually performed by trained medical professionals in a controlled clinical setting.

Somatostatin receptors (SSTRs) are a group of G protein-coupled receptors that bind to the neuropeptide hormone somatostatin. There are five subtypes of SSTRs, named SSTR1 through SSTR5, each with distinct physiological roles and tissue distributions.

Somatostatin is a small peptide that is widely distributed throughout the body, including in the central nervous system, gastrointestinal tract, pancreas, and other endocrine organs. It has multiple functions, including inhibition of hormone release, regulation of cell proliferation, and modulation of neurotransmission.

SSTRs are expressed on the surface of many different types of cells, including neurons, endocrine cells, and immune cells. They play important roles in regulating various physiological processes, such as inhibiting the release of hormones like insulin, glucagon, and growth hormone. SSTRs have also been implicated in a number of pathophysiological conditions, including cancer, neurodegenerative diseases, and inflammatory disorders.

In recent years, SSTRs have become an important target for the development of new therapeutic strategies, particularly in the treatment of neuroendocrine tumors (NETs). Several radiolabeled somatostatin analogues have been developed that can selectively bind to SSTRs on NET cells and deliver targeted radiation therapy. These agents have shown promising results in clinical trials and are now being used as standard of care for patients with advanced NETs.

Inositol 1,4,5-trisphosphate (IP3) is a intracellular signaling molecule that plays a crucial role in the release of calcium ions from the endoplasmic reticulum into the cytoplasm. It is a second messenger, which means it relays signals received by a cell's surface receptors to various effector proteins within the cell. IP3 is produced through the hydrolysis of phosphatidylinositol 4,5-bisphosphate (PIP2) by activated phospholipase C (PLC) enzymes in response to extracellular signals such as hormones and neurotransmitters. The binding of IP3 to its receptor on the endoplasmic reticulum triggers the release of calcium ions, which then activates various cellular processes like gene expression, metabolism, and muscle contraction.

Aluminum compounds refer to chemical substances that are formed by the combination of aluminum with other elements. Aluminum is a naturally occurring metallic element, and it can combine with various non-metallic elements to form compounds with unique properties and uses. Some common aluminum compounds include:

1. Aluminum oxide (Al2O3): Also known as alumina, this compound is formed when aluminum combines with oxygen. It is a white, odorless powder that is highly resistant to heat and corrosion. Aluminum oxide is used in a variety of applications, including ceramics, abrasives, and refractories.
2. Aluminum sulfate (Al2(SO4)3): This compound is formed when aluminum combines with sulfuric acid. It is a white, crystalline powder that is highly soluble in water. Aluminum sulfate is used as a flocculant in water treatment, as well as in the manufacture of paper and textiles.
3. Aluminum chloride (AlCl3): This compound is formed when aluminum combines with chlorine. It is a white or yellowish-white solid that is highly deliquescent, meaning it readily absorbs moisture from the air. Aluminum chloride is used as a catalyst in chemical reactions, as well as in the production of various industrial chemicals.
4. Aluminum hydroxide (Al(OH)3): This compound is formed when aluminum combines with hydroxide ions. It is a white, powdery substance that is amphoteric, meaning it can react with both acids and bases. Aluminum hydroxide is used as an antacid and as a fire retardant.
5. Zinc oxide (ZnO) and aluminum hydroxide (Al(OH)3): This compound is formed when zinc oxide is combined with aluminum hydroxide. It is a white, powdery substance that is used as a filler in rubber and plastics, as well as in the manufacture of paints and coatings.

It's important to note that some aluminum compounds have been linked to health concerns, particularly when they are inhaled or ingested in large quantities. For example, aluminum chloride has been shown to be toxic to animals at high doses, while aluminum hydroxide has been associated with neurological disorders in some studies. However, the risks associated with exposure to these compounds are generally low, and they are considered safe for most industrial and consumer uses when used as directed.

Lung neoplasms refer to abnormal growths or tumors in the lung tissue. These tumors can be benign (non-cancerous) or malignant (cancerous). Malignant lung neoplasms are further classified into two main types: small cell lung carcinoma and non-small cell lung carcinoma. Lung neoplasms can cause symptoms such as cough, chest pain, shortness of breath, and weight loss. They are often caused by smoking or exposure to secondhand smoke, but can also occur due to genetic factors, radiation exposure, and other environmental carcinogens. Early detection and treatment of lung neoplasms is crucial for improving outcomes and survival rates.

Thionucleotides are chemical compounds that are analogs of nucleotides, which are the building blocks of DNA and RNA. In thionucleotides, one or more of the oxygen atoms in the nucleotide's chemical structure is replaced by a sulfur atom. This modification can affect the way the thionucleotide interacts with other molecules, including enzymes that work with nucleotides and nucleic acids.

Thionucleotides are sometimes used in research to study the biochemistry of nucleic acids and their interactions with other molecules. They can also be used as inhibitors of certain enzymes, such as reverse transcriptase, which is an important target for HIV/AIDS therapy. However, thionucleotides are not normally found in natural biological systems and are not themselves components of DNA or RNA.

Pancreatic juice is an alkaline fluid secreted by the exocrine component of the pancreas, primarily containing digestive enzymes such as amylase, lipase, and trypsin. These enzymes aid in the breakdown of carbohydrates, fats, and proteins, respectively, in the small intestine during the digestion process. The bicarbonate ions present in pancreatic juice help neutralize the acidic chyme that enters the duodenum from the stomach, creating an optimal environment for enzymatic activity.

The pancreatic ducts are a set of tubular structures within the pancreas that play a crucial role in the digestive system. The main pancreatic duct, also known as the duct of Wirsung, is responsible for transporting pancreatic enzymes and bicarbonate-rich fluid from the pancreas to the duodenum, which is the first part of the small intestine.

The exocrine portion of the pancreas contains numerous smaller ducts called interlobular ducts and intralobular ducts that merge and ultimately join the main pancreatic duct. This system ensures that the digestive enzymes and fluids produced by the pancreas are effectively delivered to the small intestine, where they aid in the breakdown and absorption of nutrients from food.

In addition to the main pancreatic duct, there is an accessory pancreatic duct, also known as Santorini's duct, which can sometimes join the common bile duct before emptying into the duodenum through a shared opening called the ampulla of Vater. However, in most individuals, the accessory pancreatic duct usually drains into the main pancreatic duct before entering the duodenum.

Gastric juice is a digestive fluid that is produced in the stomach. It is composed of several enzymes, including pepsin, which helps to break down proteins, and gastric amylase, which begins the digestion of carbohydrates. Gastric juice also contains hydrochloric acid, which creates a low pH environment in the stomach that is necessary for the activation of pepsin and the digestion of food. Additionally, gastric juice contains mucus, which helps to protect the lining of the stomach from the damaging effects of the hydrochloric acid. The production of gastric juice is controlled by hormones and the autonomic nervous system.

DNA replication is the biological process by which DNA makes an identical copy of itself during cell division. It is a fundamental mechanism that allows genetic information to be passed down from one generation of cells to the next. During DNA replication, each strand of the double helix serves as a template for the synthesis of a new complementary strand. This results in the creation of two identical DNA molecules. The enzymes responsible for DNA replication include helicase, which unwinds the double helix, and polymerase, which adds nucleotides to the growing strands.

Enteroendocrine cells are specialized cells found within the epithelial lining of the gastrointestinal tract, which play a crucial role in regulating digestion and energy balance. They are responsible for producing and secreting various hormones in response to mechanical or chemical stimuli, such as the presence of nutrients in the gut lumen. These hormones include:

1. Gastrin: Secreted by G cells in the stomach, gastrin promotes the release of hydrochloric acid from parietal cells and increases gastric motility.
2. Cholecystokinin (CCK): Produced by I cells in the small intestine, CCK stimulates the secretion of digestive enzymes from the pancreas, promotes gallbladder contraction, and inhibits gastric emptying.
3. Secretin: Released by S cells in the duodenum, secretin stimulates bicarbonate secretion from the pancreas to neutralize stomach acid and increases pancreatic secretions.
4. Serotonin (5-HT): Found in enterochromaffin cells throughout the gastrointestinal tract, serotonin regulates gut motility, sensation, and secretion. It also plays a role in modulating the immune response and affecting mood and cognition when released into the bloodstream.
5. Motilin: Produced by MO cells in the small intestine, motilin stimulates gastrointestinal motility and regulates the migrating motor complex (MMC), which is responsible for the housekeeping functions of the gut during fasting periods.
6. Gastric inhibitory peptide (GIP): Secreted by K cells in the duodenum, GIP promotes insulin secretion, inhibits gastric acid secretion, and stimulates intestinal motility and pancreatic bicarbonate secretion.
7. Glucagon-like peptide-1 (GLP-1) and glucagon-like peptide-2 (GLP-2): Released by L cells in the ileum and colon, GLP-1 stimulates insulin secretion, inhibits glucagon release, slows gastric emptying, and promotes satiety. GLP-2 enhances intestinal growth and absorption.

These hormones play crucial roles in regulating various aspects of gastrointestinal function, including digestion, motility, secretion, sensation, and immune response. Dysregulation of these hormones can contribute to the development of several gastrointestinal disorders, such as irritable bowel syndrome (IBS), inflammatory bowel disease (IBD), functional dyspepsia, and diabetes. Understanding the complex interactions between these hormones and their receptors is essential for developing targeted therapeutic strategies to treat gastrointestinal diseases.

Virulence factors in Bordetella pertussis, the bacterium that causes whooping cough, refer to the characteristics or components of the organism that contribute to its ability to cause disease. These virulence factors include:

1. Pertussis Toxin (PT): A protein exotoxin that inhibits the immune response and affects the nervous system, leading to the characteristic paroxysmal cough of whooping cough.
2. Adenylate Cyclase Toxin (ACT): A toxin that increases the levels of cAMP in host cells, disrupting their function and contributing to the pathogenesis of the disease.
3. Filamentous Hemagglutinin (FHA): A surface protein that allows the bacterium to adhere to host cells and evade the immune response.
4. Fimbriae: Hair-like appendages on the surface of the bacterium that facilitate adherence to host cells.
5. Pertactin (PRN): A surface protein that also contributes to adherence and is a common component of acellular pertussis vaccines.
6. Dermonecrotic Toxin: A toxin that causes localized tissue damage and necrosis, contributing to the inflammation and symptoms of whooping cough.
7. Tracheal Cytotoxin: A toxin that damages ciliated epithelial cells in the respiratory tract, impairing mucociliary clearance and increasing susceptibility to infection.

These virulence factors work together to enable Bordetella pertussis to colonize the respiratory tract, evade the host immune response, and cause the symptoms of whooping cough.

Hexamethonium compounds are a type of ganglionic blocker, which are medications that block the transmission of nerve impulses at the ganglia ( clusters of nerve cells) in the autonomic nervous system. These compounds contain hexamethonium as the active ingredient, which is a compound with the chemical formula C16H32N2O4.

Hexamethonium works by blocking the nicotinic acetylcholine receptors at the ganglia, which prevents the release of neurotransmitters and ultimately inhibits the transmission of nerve impulses. This can have various effects on the body, depending on which part of the autonomic nervous system is affected.

Hexamethonium compounds were once used to treat hypertension (high blood pressure), but they are rarely used today due to their numerous side effects and the availability of safer and more effective medications. Some of the side effects associated with hexamethonium include dry mouth, blurred vision, constipation, difficulty urinating, and dizziness upon standing.

Thymidine is a pyrimidine nucleoside that consists of a thymine base linked to a deoxyribose sugar by a β-N1-glycosidic bond. It plays a crucial role in DNA replication and repair processes as one of the four nucleosides in DNA, along with adenosine, guanosine, and cytidine. Thymidine is also used in research and clinical settings for various purposes, such as studying DNA synthesis or as a component of antiviral and anticancer therapies.

Signal transduction is the process by which a cell converts an extracellular signal, such as a hormone or neurotransmitter, into an intracellular response. This involves a series of molecular events that transmit the signal from the cell surface to the interior of the cell, ultimately resulting in changes in gene expression, protein activity, or metabolism.

The process typically begins with the binding of the extracellular signal to a receptor located on the cell membrane. This binding event activates the receptor, which then triggers a cascade of intracellular signaling molecules, such as second messengers, protein kinases, and ion channels. These molecules amplify and propagate the signal, ultimately leading to the activation or inhibition of specific cellular responses.

Signal transduction pathways are highly regulated and can be modulated by various factors, including other signaling molecules, post-translational modifications, and feedback mechanisms. Dysregulation of these pathways has been implicated in a variety of diseases, including cancer, diabetes, and neurological disorders.

Neoplasm transplantation is not a recognized or established medical procedure in the field of oncology. The term "neoplasm" refers to an abnormal growth of cells, which can be benign or malignant (cancerous). "Transplantation" typically refers to the surgical transfer of living cells, tissues, or organs from one part of the body to another or between individuals.

The concept of neoplasm transplantation may imply the transfer of cancerous cells or tissues from a donor to a recipient, which is not a standard practice due to ethical considerations and the potential harm it could cause to the recipient. In some rare instances, researchers might use laboratory animals to study the transmission and growth of human cancer cells, but this is done for scientific research purposes only and under strict regulatory guidelines.

In summary, there is no medical definition for 'Neoplasm Transplantation' as it does not represent a standard or ethical medical practice.

Cricetinae is a subfamily of rodents that includes hamsters, gerbils, and relatives. These small mammals are characterized by having short limbs, compact bodies, and cheek pouches for storing food. They are native to various parts of the world, particularly in Europe, Asia, and Africa. Some species are popular pets due to their small size, easy care, and friendly nature. In a medical context, understanding the biology and behavior of Cricetinae species can be important for individuals who keep them as pets or for researchers studying their physiology.

Proteins are complex, large molecules that play critical roles in the body's functions. They are made up of amino acids, which are organic compounds that are the building blocks of proteins. Proteins are required for the structure, function, and regulation of the body's tissues and organs. They are essential for the growth, repair, and maintenance of body tissues, and they play a crucial role in many biological processes, including metabolism, immune response, and cellular signaling. Proteins can be classified into different types based on their structure and function, such as enzymes, hormones, antibodies, and structural proteins. They are found in various foods, especially animal-derived products like meat, dairy, and eggs, as well as plant-based sources like beans, nuts, and grains.

Cystadenocarcinoma is a type of tumor that arises from the epithelial lining of a cyst, and it has the potential to invade surrounding tissues and spread (metastasize) to other parts of the body. It typically affects glandular organs such as the ovaries, pancreas, and salivary glands.

Cystadenocarcinomas can be classified into two types: serous and mucinous. Serous cystadenocarcinomas produce a watery fluid, while mucinous cystadenocarcinomas produce a thick, mucus-like fluid. Both types of tumors can be benign or malignant, but malignant cystadenocarcinomas are more aggressive and have a higher risk of metastasis.

Symptoms of cystadenocarcinoma depend on the location and size of the tumor. In some cases, there may be no symptoms until the tumor has grown large enough to cause pain or other problems. Treatment typically involves surgical removal of the tumor, along with any affected surrounding tissue. Chemotherapy and radiation therapy may also be used in some cases to help prevent recurrence or spread of the cancer.

Gastric mucosa refers to the innermost lining of the stomach, which is in contact with the gastric lumen. It is a specialized mucous membrane that consists of epithelial cells, lamina propria, and a thin layer of smooth muscle. The surface epithelium is primarily made up of mucus-secreting cells (goblet cells) and parietal cells, which secrete hydrochloric acid and intrinsic factor, and chief cells, which produce pepsinogen.

The gastric mucosa has several important functions, including protection against self-digestion by the stomach's own digestive enzymes and hydrochloric acid. The mucus layer secreted by the epithelial cells forms a physical barrier that prevents the acidic contents of the stomach from damaging the underlying tissues. Additionally, the bicarbonate ions secreted by the surface epithelial cells help neutralize the acidity in the immediate vicinity of the mucosa.

The gastric mucosa is also responsible for the initial digestion of food through the action of hydrochloric acid and pepsin, an enzyme that breaks down proteins into smaller peptides. The intrinsic factor secreted by parietal cells plays a crucial role in the absorption of vitamin B12 in the small intestine.

The gastric mucosa is constantly exposed to potential damage from various factors, including acid, pepsin, and other digestive enzymes, as well as mechanical stress due to muscle contractions during digestion. To maintain its integrity, the gastric mucosa has a remarkable capacity for self-repair and regeneration. However, chronic exposure to noxious stimuli or certain medical conditions can lead to inflammation, erosions, ulcers, or even cancer of the gastric mucosa.

Messenger RNA (mRNA) is a type of RNA (ribonucleic acid) that carries genetic information copied from DNA in the form of a series of three-base code "words," each of which specifies a particular amino acid. This information is used by the cell's machinery to construct proteins, a process known as translation. After being transcribed from DNA, mRNA travels out of the nucleus to the ribosomes in the cytoplasm where protein synthesis occurs. Once the protein has been synthesized, the mRNA may be degraded and recycled. Post-transcriptional modifications can also occur to mRNA, such as alternative splicing and addition of a 5' cap and a poly(A) tail, which can affect its stability, localization, and translation efficiency.

Phentolamine is a non-selective alpha-blocker drug, which means it blocks both alpha-1 and alpha-2 receptors. It works by relaxing the muscle around blood vessels, which increases blood flow and lowers blood pressure. Phentolamine is used medically for various purposes, including the treatment of high blood pressure, the diagnosis and treatment of pheochromocytoma (a tumor that releases hormones causing high blood pressure), and as an antidote to prevent severe hypertension caused by certain medications or substances. It may also be used in diagnostic tests to determine if a patient's blood pressure is reactive to drugs, and it can be used during some surgical procedures to help lower the risk of hypertensive crises.

Phentolamine is available in two forms: an injectable solution and oral tablets. The injectable form is typically administered by healthcare professionals in a clinical setting, while the oral tablets are less commonly used due to their short duration of action and potential for causing severe drops in blood pressure. As with any medication, phentolamine should be taken under the supervision of a healthcare provider, and patients should follow their doctor's instructions carefully to minimize the risk of side effects and ensure the drug's effectiveness.

Duodenal neoplasms refer to abnormal growths in the duodenum, which is the first part of the small intestine that receives digestive secretions from the pancreas and bile duct. These growths can be benign or malignant (cancerous).

Benign neoplasms include adenomas, leiomyomas, lipomas, and hamartomas. They are usually slow-growing and do not spread to other parts of the body. However, they may cause symptoms such as abdominal pain, bleeding, or obstruction of the intestine.

Malignant neoplasms include adenocarcinomas, neuroendocrine tumors (carcinoids), lymphomas, and sarcomas. They are more aggressive and can invade surrounding tissues and spread to other parts of the body. Symptoms may include abdominal pain, weight loss, jaundice, anemia, or bowel obstruction.

The diagnosis of duodenal neoplasms is usually made through imaging tests such as CT scans, MRI, or endoscopy with biopsy. Treatment depends on the type and stage of the tumor and may include surgery, chemotherapy, radiation therapy, or a combination of these modalities.

Enterocolitis is a medical condition that involves inflammation of the small intestine (enteritis) and large intestine (colitis). This condition can affect people of all ages, but it is most commonly seen in infants and young children. The symptoms of enterocolitis may include diarrhea, abdominal cramps, bloating, nausea, vomiting, fever, and dehydration.

There are several types of enterocolitis, including:

1. Infectious Enterocolitis: This type is caused by a bacterial, viral, or parasitic infection in the intestines. Common causes include Salmonella, Shigella, Escherichia coli (E. coli), and norovirus.
2. Antibiotic-Associated Enterocolitis: This type is caused by an overgrowth of harmful bacteria in the intestines following the use of antibiotics that kill off beneficial gut bacteria.
3. Pseudomembranous Enterocolitis: This is a severe form of antibiotic-associated enterocolitis caused by the bacterium Clostridioides difficile (C. diff).
4. Necrotizing Enterocolitis: This is a serious condition that primarily affects premature infants, causing inflammation and damage to the intestinal tissue, which can lead to perforations and sepsis.
5. Ischemic Enterocolitis: This type is caused by reduced blood flow to the intestines, often due to conditions such as mesenteric ischemia or vasculitis.
6. Radiation Enterocolitis: This type occurs as a complication of radiation therapy for cancer treatment, which can damage the intestinal lining and lead to inflammation.
7. Eosinophilic Enterocolitis: This is a rare condition characterized by an excessive buildup of eosinophils (a type of white blood cell) in the intestinal tissue, leading to inflammation and symptoms similar to those seen in inflammatory bowel disease.

Treatment for enterocolitis depends on the underlying cause and severity of the condition. It may include antibiotics, antiparasitic medications, probiotics, or surgery in severe cases.

Urethane is not a term typically used in medical definitions. However, in the field of chemistry and pharmacology, urethane is an ethyl carbamate ester which has been used as a general anesthetic. It is rarely used today due to its potential carcinogenic properties and the availability of safer alternatives.

In the context of materials science, polyurethanes are a class of polymers that contain urethane linkages (-NH-CO-O-) in their main chain. They are widely used in various applications such as foam insulation, coatings, adhesives, and medical devices due to their versatile properties like flexibility, durability, and resistance to abrasion.

Phosphoproteins are proteins that have been post-translationally modified by the addition of a phosphate group (-PO3H2) onto specific amino acid residues, most commonly serine, threonine, or tyrosine. This process is known as phosphorylation and is mediated by enzymes called kinases. Phosphoproteins play crucial roles in various cellular processes such as signal transduction, cell cycle regulation, metabolism, and gene expression. The addition or removal of a phosphate group can activate or inhibit the function of a protein, thereby serving as a switch to control its activity. Phosphoproteins can be detected and quantified using techniques such as Western blotting, mass spectrometry, and immunofluorescence.

Terpenes are a large and diverse class of organic compounds produced by a variety of plants, including cannabis. They are responsible for the distinctive aromas and flavors found in different strains of cannabis. Terpenes have been found to have various therapeutic benefits, such as anti-inflammatory, analgesic, and antimicrobial properties. Some terpenes may also enhance the psychoactive effects of THC, the main psychoactive compound in cannabis. It's important to note that more research is needed to fully understand the potential medical benefits and risks associated with terpenes.

Molecular weight, also known as molecular mass, is the mass of a molecule. It is expressed in units of atomic mass units (amu) or daltons (Da). Molecular weight is calculated by adding up the atomic weights of each atom in a molecule. It is a useful property in chemistry and biology, as it can be used to determine the concentration of a substance in a solution, or to calculate the amount of a substance that will react with another in a chemical reaction.

Cholera toxin is a protein toxin produced by the bacterium Vibrio cholerae, which causes the infectious disease cholera. The toxin is composed of two subunits, A and B, and its primary mechanism of action is to alter the normal function of cells in the small intestine.

The B subunit of the toxin binds to ganglioside receptors on the surface of intestinal epithelial cells, allowing the A subunit to enter the cell. Once inside, the A subunit activates a signaling pathway that results in the excessive secretion of chloride ions and water into the intestinal lumen, leading to profuse, watery diarrhea, dehydration, and other symptoms associated with cholera.

Cholera toxin is also used as a research tool in molecular biology and immunology due to its ability to modulate cell signaling pathways. It has been used to study the mechanisms of signal transduction, protein trafficking, and immune responses.

"Cells, cultured" is a medical term that refers to cells that have been removed from an organism and grown in controlled laboratory conditions outside of the body. This process is called cell culture and it allows scientists to study cells in a more controlled and accessible environment than they would have inside the body. Cultured cells can be derived from a variety of sources, including tissues, organs, or fluids from humans, animals, or cell lines that have been previously established in the laboratory.

Cell culture involves several steps, including isolation of the cells from the tissue, purification and characterization of the cells, and maintenance of the cells in appropriate growth conditions. The cells are typically grown in specialized media that contain nutrients, growth factors, and other components necessary for their survival and proliferation. Cultured cells can be used for a variety of purposes, including basic research, drug development and testing, and production of biological products such as vaccines and gene therapies.

It is important to note that cultured cells may behave differently than they do in the body, and results obtained from cell culture studies may not always translate directly to human physiology or disease. Therefore, it is essential to validate findings from cell culture experiments using additional models and ultimately in clinical trials involving human subjects.

Pertussis toxin is an exotoxin produced by the bacterium Bordetella pertussis, which is responsible for causing whooping cough in humans. This toxin has several effects on the host organism, including:

1. Adenylyl cyclase activation: Pertussis toxin enters the host cell and modifies a specific G protein (Gαi), leading to the continuous activation of adenylyl cyclase. This results in increased levels of intracellular cAMP, which disrupts various cellular processes.
2. Inhibition of immune response: Pertussis toxin impairs the host's immune response by inhibiting the migration and function of immune cells like neutrophils and macrophages. It also interferes with antigen presentation and T-cell activation, making it difficult for the body to clear the infection.
3. Increased inflammation: The continuous activation of adenylyl cyclase by pertussis toxin leads to increased production of proinflammatory cytokines, contributing to the severe coughing fits and other symptoms associated with whooping cough.

Pertussis toxin is an essential virulence factor for Bordetella pertussis, and its effects contribute significantly to the pathogenesis of whooping cough. Vaccination against pertussis includes inactivated or genetically detoxified forms of pertussis toxin, which provide immunity without causing disease symptoms.

A radioligand assay is a type of in vitro binding assay used in molecular biology and pharmacology to measure the affinity and quantity of a ligand (such as a drug or hormone) to its specific receptor. In this technique, a small amount of a radioactively labeled ligand, also known as a radioligand, is introduced to a sample containing the receptor of interest. The radioligand binds competitively with other unlabeled ligands present in the sample for the same binding site on the receptor. After allowing sufficient time for binding, the reaction is stopped, and the amount of bound radioligand is measured using a technique such as scintillation counting. The data obtained from this assay can be used to determine the dissociation constant (Kd) and maximum binding capacity (Bmax) of the receptor-ligand interaction, which are important parameters in understanding the pharmacological properties of drugs and other ligands.

Deoxyribonucleic acid (DNA) is the genetic material present in the cells of organisms where it is responsible for the storage and transmission of hereditary information. DNA is a long molecule that consists of two strands coiled together to form a double helix. Each strand is made up of a series of four nucleotide bases - adenine (A), guanine (G), cytosine (C), and thymine (T) - that are linked together by phosphate and sugar groups. The sequence of these bases along the length of the molecule encodes genetic information, with A always pairing with T and C always pairing with G. This base-pairing allows for the replication and transcription of DNA, which are essential processes in the functioning and reproduction of all living organisms.

Paxillin is a adaptor protein that plays a crucial role in the organization of signaling complexes at focal adhesions, which are specialized structures formed at sites of integrin-mediated cell attachment to the extracellular matrix. It contains multiple binding sites for various proteins involved in signal transduction, cytoskeletal organization, and cell adhesion. Paxillin has been implicated in several biological processes such as cell migration, proliferation, differentiation, and survival, and its dysregulation has been associated with the development of various diseases including cancer.

A ligand, in the context of biochemistry and medicine, is a molecule that binds to a specific site on a protein or a larger biomolecule, such as an enzyme or a receptor. This binding interaction can modify the function or activity of the target protein, either activating it or inhibiting it. Ligands can be small molecules, like hormones or neurotransmitters, or larger structures, like antibodies. The study of ligand-protein interactions is crucial for understanding cellular processes and developing drugs, as many therapeutic compounds function by binding to specific targets within the body.

A vagotomy is a surgical procedure that involves cutting or blocking the vagus nerve, which is a parasympathetic nerve that runs from the brainstem to the abdomen and helps regulate many bodily functions such as heart rate, gastrointestinal motility, and digestion. In particular, vagotomy is often performed as a treatment for peptic ulcers, as it can help reduce gastric acid secretion.

There are several types of vagotomy procedures, including:

1. Truncal vagotomy: This involves cutting the main trunks of the vagus nerve as they enter the abdomen. It is a more extensive procedure that reduces gastric acid secretion significantly but can also lead to side effects such as delayed gastric emptying and diarrhea.
2. Selective vagotomy: This involves cutting only the branches of the vagus nerve that supply the stomach, leaving the rest of the nerve intact. It is a less extensive procedure that reduces gastric acid secretion while minimizing side effects.
3. Highly selective vagotomy (HSV): Also known as parietal cell vagotomy, this involves cutting only the branches of the vagus nerve that supply the acid-secreting cells in the stomach. It is a highly targeted procedure that reduces gastric acid secretion while minimizing side effects such as delayed gastric emptying and diarrhea.

Vagotomy is typically performed using laparoscopic or open surgical techniques, depending on the patient's individual needs and the surgeon's preference. While vagotomy can be effective in treating peptic ulcers, it is not commonly performed today due to the development of less invasive treatments such as proton pump inhibitors (PPIs) that reduce gastric acid secretion without surgery.

"Pasteurella" is a genus of Gram-negative, facultatively anaerobic coccobacilli that are part of the family Pasteurellaceae. These bacteria are commonly found as normal flora in the upper respiratory tracts of animals, including cats, dogs, and livestock. They can cause a variety of infections in humans, such as wound infections, pneumonia, and septicemia, often following animal bites or scratches. Two notable species are Pasteurella multocida and Pasteurella canis. Proper identification and antibiotic susceptibility testing are essential for appropriate treatment.

Chloroquine is an antimalarial and autoimmune disease drug. It works by increasing the pH or making the environment less acidic in the digestive vacuoles of malaria parasites, which inhibits the polymerization of heme and the formation of hemozoin. This results in the accumulation of toxic levels of heme that are harmful to the parasite. Chloroquine is also used as an anti-inflammatory agent in the treatment of rheumatoid arthritis, discoid or systemic lupus erythematosus, and photodermatitis.

The chemical name for chloroquine is 7-chloro-4-(4-diethylamino-1-methylbutylamino)quinoline, and it has a molecular formula of C18H26ClN3. It is available in the form of phosphate or sulfate salts for oral administration as tablets or solution.

Chloroquine was first synthesized in 1934 by Bayer scientists, and it has been widely used since the 1940s as a safe and effective antimalarial drug. However, the emergence of chloroquine-resistant strains of malaria parasites has limited its use in some areas. Chloroquine is also being investigated for its potential therapeutic effects on various viral infections, including COVID-19.

The medical definition of "eating" refers to the process of consuming and ingesting food or nutrients into the body. This process typically involves several steps, including:

1. Food preparation: This may involve cleaning, chopping, cooking, or combining ingredients to make them ready for consumption.
2. Ingestion: The act of taking food or nutrients into the mouth and swallowing it.
3. Digestion: Once food is ingested, it travels down the esophagus and enters the stomach, where it is broken down by enzymes and acids to facilitate absorption of nutrients.
4. Absorption: Nutrients are absorbed through the walls of the small intestine and transported to cells throughout the body for use as energy or building blocks for growth and repair.
5. Elimination: Undigested food and waste products are eliminated from the body through the large intestine (colon) and rectum.

Eating is an essential function that provides the body with the nutrients it needs to maintain health, grow, and repair itself. Disorders of eating, such as anorexia nervosa or bulimia nervosa, can have serious consequences for physical and mental health.

Sugar phosphates are organic compounds that play crucial roles in various biological processes, particularly in the field of genetics and molecular biology. They are formed by the attachment of a phosphate group to a sugar molecule, most commonly to the 5-carbon sugar ribose or deoxyribose.

In genetics, sugar phosphates form the backbone of nucleic acids, such as DNA and RNA. In DNA, the sugar phosphate backbone consists of alternating deoxyribose (a sugar) and phosphate groups, linked together by covalent bonds between the 5' carbon atom of one sugar molecule and the 3' carbon atom of another sugar molecule. This forms a long, twisted ladder-like structure known as a double helix.

Similarly, in RNA, the sugar phosphate backbone is formed by ribose (a sugar) and phosphate groups, creating a single-stranded structure that can fold back on itself to form complex shapes. These sugar phosphate backbones provide structural support for the nucleic acids and help to protect the genetic information stored within them.

Sugar phosphates also play important roles in energy metabolism, as they are involved in the formation and breakdown of high-energy compounds such as ATP (adenosine triphosphate) and GTP (guanosine triphosphate). These molecules serve as energy currency for cells, storing and releasing energy as needed to power various cellular processes.

Radioisotopes, also known as radioactive isotopes or radionuclides, are variants of chemical elements that have unstable nuclei and emit radiation in the form of alpha particles, beta particles, gamma rays, or conversion electrons. These isotopes are formed when an element's nucleus undergoes natural or artificial radioactive decay.

Radioisotopes can be produced through various processes, including nuclear fission, nuclear fusion, and particle bombardment in a cyclotron or other types of particle accelerators. They have a wide range of applications in medicine, industry, agriculture, research, and energy production. In the medical field, radioisotopes are used for diagnostic imaging, radiation therapy, and in the labeling of molecules for research purposes.

It is important to note that handling and using radioisotopes requires proper training, safety measures, and regulatory compliance due to their ionizing radiation properties, which can pose potential health risks if not handled correctly.

Indium radioisotopes refer to specific types of radioactive indium atoms, which are unstable and emit radiation as they decay. Indium is a chemical element with the symbol In and atomic number 49. Its radioisotopes are often used in medical imaging and therapy due to their unique properties.

For instance, one commonly used indium radioisotope is Indium-111 (^111In), which has a half-life of approximately 2.8 days. It emits gamma rays, making it useful for diagnostic imaging techniques such as single-photon emission computed tomography (SPECT). In clinical applications, indium-111 is often attached to specific molecules or antibodies that target particular cells or tissues in the body, allowing medical professionals to monitor biological processes and identify diseases like cancer.

Another example is Indium-113m (^113mIn), which has a half-life of about 99 minutes. It emits low-energy gamma rays and is used as a source for in vivo counting, typically in the form of indium chloride (InCl3) solution. This radioisotope can be used to measure blood flow, ventilation, and other physiological parameters.

It's important to note that handling and using radioisotopes require proper training and safety measures due to their ionizing radiation properties.

Heterologous transplantation is a type of transplantation where an organ or tissue is transferred from one species to another. This is in contrast to allogeneic transplantation, where the donor and recipient are of the same species, or autologous transplantation, where the donor and recipient are the same individual.

In heterologous transplantation, the immune systems of the donor and recipient are significantly different, which can lead to a strong immune response against the transplanted organ or tissue. This is known as a graft-versus-host disease (GVHD), where the immune cells in the transplanted tissue attack the recipient's body.

Heterologous transplantation is not commonly performed in clinical medicine due to the high risk of rejection and GVHD. However, it may be used in research settings to study the biology of transplantation and to develop new therapies for transplant rejection.

The intestinal mucosa is the innermost layer of the intestines, which comes into direct contact with digested food and microbes. It is a specialized epithelial tissue that plays crucial roles in nutrient absorption, barrier function, and immune defense. The intestinal mucosa is composed of several cell types, including absorptive enterocytes, mucus-secreting goblet cells, hormone-producing enteroendocrine cells, and immune cells such as lymphocytes and macrophages.

The surface of the intestinal mucosa is covered by a single layer of epithelial cells, which are joined together by tight junctions to form a protective barrier against harmful substances and microorganisms. This barrier also allows for the selective absorption of nutrients into the bloodstream. The intestinal mucosa also contains numerous lymphoid follicles, known as Peyer's patches, which are involved in immune surveillance and defense against pathogens.

In addition to its role in absorption and immunity, the intestinal mucosa is also capable of producing hormones that regulate digestion and metabolism. Dysfunction of the intestinal mucosa can lead to various gastrointestinal disorders, such as inflammatory bowel disease, celiac disease, and food allergies.

Growth substances, in the context of medical terminology, typically refer to natural hormones or chemically synthesized agents that play crucial roles in controlling and regulating cell growth, differentiation, and division. They are also known as "growth factors" or "mitogens." These substances include:

1. Proteins: Examples include insulin-like growth factors (IGFs), transforming growth factor-beta (TGF-β), platelet-derived growth factor (PDGF), and fibroblast growth factors (FGFs). They bind to specific receptors on the cell surface, activating intracellular signaling pathways that promote cell proliferation, differentiation, and survival.

2. Steroids: Certain steroid hormones, such as androgens and estrogens, can also act as growth substances by binding to nuclear receptors and influencing gene expression related to cell growth and division.

3. Cytokines: Some cytokines, like interleukins (ILs) and hematopoietic growth factors (HGFs), contribute to the regulation of hematopoiesis, immune responses, and inflammation, thus indirectly affecting cell growth and differentiation.

These growth substances have essential roles in various physiological processes, such as embryonic development, tissue repair, and wound healing. However, abnormal or excessive production or response to these growth substances can lead to pathological conditions, including cancer, benign tumors, and other proliferative disorders.

Neurosecretory systems are specialized components of the nervous system that produce and release chemical messengers called neurohormones. These neurohormones are released into the bloodstream and can have endocrine effects on various target organs in the body. The cells that make up neurosecretory systems, known as neurosecretory cells, are found in specific regions of the brain, such as the hypothalamus, and in peripheral nerves.

Neurosecretory systems play a critical role in regulating many physiological processes, including fluid and electrolyte balance, stress responses, growth and development, reproductive functions, and behavior. The neurohormones released by these systems can act synergistically or antagonistically to maintain homeostasis and coordinate the body's response to internal and external stimuli.

Neurosecretory cells are characterized by their ability to synthesize and store neurohormones in secretory granules, which are released upon stimulation. The release of neurohormones can be triggered by a variety of signals, including neural impulses, hormonal changes, and other physiological cues. Once released into the bloodstream, neurohormones can travel to distant target organs, where they bind to specific receptors and elicit a range of responses.

Overall, neurosecretory systems are an essential component of the neuroendocrine system, which plays a critical role in regulating many aspects of human physiology and behavior.

Fluorine is not a medical term itself, but it is a chemical element that is often discussed in the context of dental health. Here's a brief scientific/chemical definition:

Fluorine is a chemical element with the symbol F and atomic number 9. It is the most reactive and electronegative of all elements. Fluorine is never found in its free state in nature, but it is abundant in minerals such as fluorspar (calcium fluoride).

In dental health, fluoride, which is a compound containing fluorine, is used to help prevent tooth decay. It can be found in many water supplies, some foods, and various dental products like toothpaste and mouthwash. Fluoride works by strengthening the enamel on teeth, making them more resistant to acid attacks that can lead to cavities.

Bronchial neoplasms refer to abnormal growths or tumors in the bronchi, which are the large airways that lead into the lungs. These neoplasms can be benign (non-cancerous) or malignant (cancerous). Malignant bronchial neoplasms are often referred to as lung cancer and can be further classified into small cell lung cancer and non-small cell lung cancer, depending on the type of cells involved.

Benign bronchial neoplasms are less common than malignant ones and may include growths such as papillomas, hamartomas, or chondromas. While benign neoplasms are not cancerous, they can still cause symptoms and complications if they grow large enough to obstruct the airways or if they become infected.

Treatment for bronchial neoplasms depends on several factors, including the type, size, location, and stage of the tumor, as well as the patient's overall health and medical history. Treatment options may include surgery, radiation therapy, chemotherapy, or a combination of these approaches.

Thapsigargin is not a medical term per se, but it is a chemical compound that has been studied in the field of medicine and biology. Thapsigargin is a substance that is derived from the plant Thapsia garganica, also known as the "deadly carrot." It is a powerful inhibitor of the sarcoendoplasmic reticulum calcium ATPase (SERCA) pump, which is responsible for maintaining calcium homeostasis within cells.

Thapsigargin has been studied for its potential use in cancer therapy due to its ability to induce cell death in certain types of cancer cells. However, its use as a therapeutic agent is still being investigated and is not yet approved for medical use. It should be noted that thapsigargin can also have toxic effects on normal cells, so its therapeutic use must be carefully studied and optimized to minimize harm to healthy tissues.

Motilin is a hormone that is produced and released by specialized cells called endocrine cells, which are located in the duodenum, which is the first part of the small intestine. Motilin plays an important role in regulating the movements of the gastrointestinal (GI) tract, also known as peristalsis.

Motilin stimulates the contraction of the smooth muscle in the GI tract, which helps to move food and other contents through the digestive system. It is particularly important for initiating the "housekeeper" wave, also known as the migrating motor complex (MMC), which occurs during periods of fasting and helps to clear out any remaining undigested material from the stomach and small intestine.

Motilin has been studied as a potential target for the treatment of gastroparesis, a condition in which the stomach is unable to empty properly due to weak or abnormal contractions of the smooth muscle. Motilin agonists, which are drugs that bind to and activate motilin receptors, have been shown to improve gastric emptying in some people with gastroparesis.

"Formulated food" is a term used in the field of clinical nutrition to refer to foods that are specially manufactured and designed to meet the nutritional needs of specific patient populations. These foods often come in the form of shakes, bars, or pouches and are intended to be used as a sole source or supplementary source of nutrition for individuals who have difficulty meeting their nutritional needs through traditional food sources alone.

Formulated foods may be indicated for patients who have medical conditions that affect their ability to eat or digest regular food, such as dysphagia (swallowing difficulties), malabsorption syndromes, or chronic inflammatory bowel disease. They may also be used in patients who require additional nutritional support during times of illness, injury, or recovery from surgery.

Formulated foods are typically designed to provide a balance of macronutrients (carbohydrates, proteins, and fats) and micronutrients (vitamins and minerals) that meet the recommended dietary intakes for specific patient populations. They may also contain additional ingredients such as fiber, probiotics, or other nutraceuticals to provide additional health benefits.

It is important to note that formulated foods should only be used under the guidance of a healthcare professional, such as a registered dietitian or physician, to ensure that they are appropriate for an individual's specific medical and nutritional needs.

Autoradiography is a medical imaging technique used to visualize and localize the distribution of radioactively labeled compounds within tissues or organisms. In this process, the subject is first exposed to a radioactive tracer that binds to specific molecules or structures of interest. The tissue is then placed in close contact with a radiation-sensitive film or detector, such as X-ray film or an imaging plate.

As the radioactive atoms decay, they emit particles (such as beta particles) that interact with the film or detector, causing chemical changes and leaving behind a visible image of the distribution of the labeled compound. The resulting autoradiogram provides information about the location, quantity, and sometimes even the identity of the molecules or structures that have taken up the radioactive tracer.

Autoradiography has been widely used in various fields of biology and medical research, including pharmacology, neuroscience, genetics, and cell biology, to study processes such as protein-DNA interactions, gene expression, drug metabolism, and neuronal connectivity. However, due to the use of radioactive materials and potential hazards associated with them, this technique has been gradually replaced by non-radioactive alternatives like fluorescence in situ hybridization (FISH) or immunofluorescence techniques.

Efferent neurons are specialized nerve cells that transmit signals from the central nervous system (CNS), which includes the brain and spinal cord, to effector organs such as muscles or glands. These signals typically result in a response or action, hence the term "efferent," derived from the Latin word "efferre" meaning "to carry away."

Efferent neurons are part of the motor pathway and can be further classified into two types:

1. Somatic efferent neurons: These neurons transmit signals to skeletal muscles, enabling voluntary movements and posture maintenance. They have their cell bodies located in the ventral horn of the spinal cord and send their axons through the ventral roots to innervate specific muscle fibers.
2. Autonomic efferent neurons: These neurons are responsible for controlling involuntary functions, such as heart rate, digestion, respiration, and pupil dilation. They have a two-neuron chain arrangement, with the preganglionic neuron having its cell body in the CNS (brainstem or spinal cord) and synapsing with the postganglionic neuron in an autonomic ganglion near the effector organ. Autonomic efferent neurons can be further divided into sympathetic, parasympathetic, and enteric subdivisions based on their functions and innervation patterns.

In summary, efferent neurons are a critical component of the nervous system, responsible for transmitting signals from the CNS to various effector organs, ultimately controlling and coordinating numerous bodily functions and responses.

Calcimycin is a ionophore compound that is produced by the bacterium Streptomyces chartreusensis. It is also known as Calcineurin A inhibitor because it can bind to and inhibit the activity of calcineurin, a protein phosphatase. In medical research, calcimycin is often used to study calcium signaling in cells.
It has been also used in laboratory studies for its antiproliferative and pro-apoptotic effects on certain types of cancer cells. However, it is not approved for use as a drug in humans.

Organ specificity, in the context of immunology and toxicology, refers to the phenomenon where a substance (such as a drug or toxin) or an immune response primarily affects certain organs or tissues in the body. This can occur due to various reasons such as:

1. The presence of specific targets (like antigens in the case of an immune response or receptors in the case of drugs) that are more abundant in these organs.
2. The unique properties of certain cells or tissues that make them more susceptible to damage.
3. The way a substance is metabolized or cleared from the body, which can concentrate it in specific organs.

For example, in autoimmune diseases, organ specificity describes immune responses that are directed against antigens found only in certain organs, such as the thyroid gland in Hashimoto's disease. Similarly, some toxins or drugs may have a particular affinity for liver cells, leading to liver damage or specific drug interactions.

Phosphorylcholine is not a medical condition or disease, but rather a chemical compound. It is the choline ester of phosphoric acid, and it plays an important role in the structure and function of cell membranes. Phosphorylcholine is also found in certain types of lipoproteins, including low-density lipoprotein (LDL) or "bad" cholesterol.

In the context of medical research and therapy, phosphorylcholine has been studied for its potential role in various diseases, such as atherosclerosis, Alzheimer's disease, and other inflammatory conditions. Some studies have suggested that phosphorylcholine may contribute to the development of these diseases by promoting inflammation and immune responses. However, more research is needed to fully understand the role of phosphorylcholine in human health and disease.

Guanosine triphosphate (GTP) is a nucleotide that plays a crucial role in various cellular processes, such as protein synthesis, signal transduction, and regulation of enzymatic activities. It serves as an energy currency, similar to adenosine triphosphate (ATP), and undergoes hydrolysis to guanosine diphosphate (GDP) or guanosine monophosphate (GMP) to release energy required for these processes. GTP is also a precursor for the synthesis of other essential molecules, including RNA and certain signaling proteins. Additionally, it acts as a molecular switch in many intracellular signaling pathways by binding and activating specific GTPase proteins.

The Islets of Langerhans are clusters of specialized cells within the pancreas, an organ located behind the stomach. These islets are named after Paul Langerhans, who first identified them in 1869. They constitute around 1-2% of the total mass of the pancreas and are distributed throughout its substance.

The Islets of Langerhans contain several types of cells, including:

1. Alpha (α) cells: These produce and release glucagon, a hormone that helps to regulate blood sugar levels by promoting the conversion of glycogen to glucose in the liver when blood sugar levels are low.
2. Beta (β) cells: These produce and release insulin, a hormone that promotes the uptake and utilization of glucose by cells throughout the body, thereby lowering blood sugar levels.
3. Delta (δ) cells: These produce and release somatostatin, a hormone that inhibits the release of both insulin and glucagon and helps regulate their secretion in response to changing blood sugar levels.
4. PP cells (gamma or γ cells): These produce and release pancreatic polypeptide, which plays a role in regulating digestive enzyme secretion and gastrointestinal motility.

Dysfunction of the Islets of Langerhans can lead to various endocrine disorders, such as diabetes mellitus, where insulin-producing beta cells are damaged or destroyed, leading to impaired blood sugar regulation.

Glycerides are esters formed from glycerol and one, two, or three fatty acids. They include monoglycerides (one fatty acid), diglycerides (two fatty acids), and triglycerides (three fatty acids). Triglycerides are the main constituents of natural fats and oils, and they are a major form of energy storage in animals and plants. High levels of triglycerides in the blood, also known as hypertriglyceridemia, can increase the risk of heart disease and stroke.

Ileal diseases refer to conditions that primarily affect the ileum, which is the final portion of the small intestine. The ileum plays a crucial role in nutrient absorption, particularly vitamin B12 and bile salts. Ileal diseases can cause various symptoms, including diarrhea, abdominal pain, weight loss, and malnutrition, depending on their nature and extent. Some common ileal diseases include:

1. Crohn's disease: A type of inflammatory bowel disease (IBD) that can affect any part of the gastrointestinal tract, including the ileum. Crohn's disease causes chronic inflammation, which can lead to symptoms such as diarrhea, abdominal pain, and fatigue.
2. Celiac disease: An autoimmune disorder triggered by gluten ingestion in genetically susceptible individuals. In celiac disease, the immune system attacks the lining of the small intestine, including the ileum, causing inflammation and impaired nutrient absorption.
3. Intestinal tuberculosis: A bacterial infection caused by Mycobacterium tuberculosis that can affect any part of the gastrointestinal tract, including the ileum. Intestinal tuberculosis can cause symptoms such as abdominal pain, diarrhea, and weight loss.
4. Typhlitis: Also known as neutropenic enterocolitis, typhlitis is an inflammatory condition that affects the cecum and terminal ileum, typically in immunocompromised individuals. It can cause symptoms such as abdominal pain, fever, and diarrhea.
5. Meckel's diverticulum: A congenital condition characterized by a small pouch protruding from the wall of the ileum. While many people with Meckel's diverticulum do not experience symptoms, it can sometimes become inflamed or bleed, causing abdominal pain and rectal bleeding.
6. Lymphoma: A type of cancer that originates in the lymphatic system and can affect any part of the body, including the ileum. Ileal lymphoma can cause symptoms such as abdominal pain, diarrhea, and weight loss.

A carcinoid tumor is a type of slow-growing neuroendocrine tumor that usually originates in the digestive tract, particularly in the small intestine. These tumors can also arise in other areas such as the lungs, appendix, and rarely in other organs. Carcinoid tumors develop from cells of the diffuse endocrine system (also known as the neuroendocrine system) that are capable of producing hormones or biologically active amines.

Carcinoid tumors can produce and release various hormones and bioactive substances, such as serotonin, histamine, bradykinins, prostaglandins, and tachykinins, which can lead to a variety of symptoms. The most common syndrome associated with carcinoid tumors is the carcinoid syndrome, characterized by flushing, diarrhea, abdominal cramping, and wheezing or difficulty breathing.

Carcinoid tumors are typically classified as functional or nonfunctional based on whether they produce and secrete hormones that cause symptoms. Functional carcinoid tumors account for approximately 30% of cases and can lead to the development of carcinoid syndrome, while nonfunctional tumors do not produce significant amounts of hormones and are often asymptomatic until they grow large enough to cause local or distant complications.

Treatment options for carcinoid tumors depend on the location, size, and extent of the tumor, as well as whether it is functional or nonfunctional. Treatment may include surgery, medications (such as somatostatin analogs, chemotherapy, or targeted therapies), and radiation therapy. Regular follow-up with imaging studies and biochemical tests is essential to monitor for recurrence and assess treatment response.

The Epidermal Growth Factor Receptor (EGFR) is a type of receptor found on the surface of many cells in the body, including those of the epidermis or outer layer of the skin. It is a transmembrane protein that has an extracellular ligand-binding domain and an intracellular tyrosine kinase domain.

EGFR plays a crucial role in various cellular processes such as proliferation, differentiation, migration, and survival. When EGF (Epidermal Growth Factor) or other ligands bind to the extracellular domain of EGFR, it causes the receptor to dimerize and activate its intrinsic tyrosine kinase activity. This leads to the autophosphorylation of specific tyrosine residues on the receptor, which in turn recruits and activates various downstream signaling molecules, resulting in a cascade of intracellular signaling events that ultimately regulate gene expression and cell behavior.

Abnormal activation of EGFR has been implicated in several human diseases, including cancer. Overexpression or mutation of EGFR can lead to uncontrolled cell growth and division, angiogenesis, and metastasis, making it an important target for cancer therapy.

In the field of medicine, "time factors" refer to the duration of symptoms or time elapsed since the onset of a medical condition, which can have significant implications for diagnosis and treatment. Understanding time factors is crucial in determining the progression of a disease, evaluating the effectiveness of treatments, and making critical decisions regarding patient care.

For example, in stroke management, "time is brain," meaning that rapid intervention within a specific time frame (usually within 4.5 hours) is essential to administering tissue plasminogen activator (tPA), a clot-busting drug that can minimize brain damage and improve patient outcomes. Similarly, in trauma care, the "golden hour" concept emphasizes the importance of providing definitive care within the first 60 minutes after injury to increase survival rates and reduce morbidity.

Time factors also play a role in monitoring the progression of chronic conditions like diabetes or heart disease, where regular follow-ups and assessments help determine appropriate treatment adjustments and prevent complications. In infectious diseases, time factors are crucial for initiating antibiotic therapy and identifying potential outbreaks to control their spread.

Overall, "time factors" encompass the significance of recognizing and acting promptly in various medical scenarios to optimize patient outcomes and provide effective care.

A base sequence in the context of molecular biology refers to the specific order of nucleotides in a DNA or RNA molecule. In DNA, these nucleotides are adenine (A), guanine (G), cytosine (C), and thymine (T). In RNA, uracil (U) takes the place of thymine. The base sequence contains genetic information that is transcribed into RNA and ultimately translated into proteins. It is the exact order of these bases that determines the genetic code and thus the function of the DNA or RNA molecule.

"Mesocricetus" is a genus of rodents, more commonly known as hamsters. It includes several species of hamsters that are native to various parts of Europe and Asia. The best-known member of this genus is the Syrian hamster, also known as the golden hamster or Mesocricetus auratus, which is a popular pet due to its small size and relatively easy care. These hamsters are burrowing animals and are typically solitary in the wild.

"Xenopus" is not a medical term, but it is a genus of highly invasive aquatic frogs native to sub-Saharan Africa. They are often used in scientific research, particularly in developmental biology and genetics. The most commonly studied species is Xenopus laevis, also known as the African clawed frog.

In a medical context, Xenopus might be mentioned when discussing their use in research or as a model organism to study various biological processes or diseases.

A cell line that is derived from tumor cells and has been adapted to grow in culture. These cell lines are often used in research to study the characteristics of cancer cells, including their growth patterns, genetic changes, and responses to various treatments. They can be established from many different types of tumors, such as carcinomas, sarcomas, and leukemias. Once established, these cell lines can be grown and maintained indefinitely in the laboratory, allowing researchers to conduct experiments and studies that would not be feasible using primary tumor cells. It is important to note that tumor cell lines may not always accurately represent the behavior of the original tumor, as they can undergo genetic changes during their time in culture.

Carbachol is a cholinergic agonist, which means it stimulates the parasympathetic nervous system by mimicking the action of acetylcholine, a neurotransmitter that is involved in transmitting signals between nerves and muscles. Carbachol binds to both muscarinic and nicotinic receptors, but its effects are more pronounced on muscarinic receptors.

Carbachol is used in medical treatments to produce miosis (pupil constriction), lower intraocular pressure, and stimulate gastrointestinal motility. It can also be used as a diagnostic tool to test for certain conditions such as Hirschsprung's disease.

Like any medication, carbachol can have side effects, including sweating, salivation, nausea, vomiting, diarrhea, bradycardia (slow heart rate), and bronchoconstriction (narrowing of the airways in the lungs). It should be used with caution and under the supervision of a healthcare professional.

A cell membrane, also known as the plasma membrane, is a thin semi-permeable phospholipid bilayer that surrounds all cells in animals, plants, and microorganisms. It functions as a barrier to control the movement of substances in and out of the cell, allowing necessary molecules such as nutrients, oxygen, and signaling molecules to enter while keeping out harmful substances and waste products. The cell membrane is composed mainly of phospholipids, which have hydrophilic (water-loving) heads and hydrophobic (water-fearing) tails. This unique structure allows the membrane to be flexible and fluid, yet selectively permeable. Additionally, various proteins are embedded in the membrane that serve as channels, pumps, receptors, and enzymes, contributing to the cell's overall functionality and communication with its environment.

Cell adhesion molecules (CAMs) are a type of protein found on the surface of cells that mediate the attachment or adhesion of cells to either other cells or to the extracellular matrix (ECM), which is the network of proteins and carbohydrates that provides structural and biochemical support to surrounding cells.

CAMs play crucial roles in various biological processes, including tissue development, differentiation, repair, and maintenance of tissue architecture and function. They are also involved in cell signaling, migration, and regulation of the immune response.

There are several types of CAMs, classified based on their structure and function, such as immunoglobulin-like CAMs (IgCAMs), cadherins, integrins, and selectins. Dysregulation of CAMs has been implicated in various diseases, including cancer, inflammation, and neurological disorders.

Maleimides are a class of chemical compounds that contain a maleimide functional group, which is characterized by a five-membered ring containing two carbon atoms and three nitrogen atoms. The double bond in the maleimide ring makes it highly reactive towards nucleophiles, particularly thiol groups found in cysteine residues of proteins.

In medical and biological contexts, maleimides are often used as cross-linking agents to modify or label proteins, peptides, and other biomolecules. For example, maleimide-functionalized probes such as fluorescent dyes, biotin, or radioisotopes can be covalently attached to thiol groups in proteins for various applications, including protein detection, purification, and imaging.

However, it is important to note that maleimides can also react with other nucleophiles such as amines, although at a slower rate. Therefore, careful control of reaction conditions is necessary to ensure specificity towards thiol groups.

Drug delivery systems (DDS) refer to techniques or technologies that are designed to improve the administration of a pharmaceutical compound in terms of its efficiency, safety, and efficacy. A DDS can modify the drug release profile, target the drug to specific cells or tissues, protect the drug from degradation, and reduce side effects.

The goal of a DDS is to optimize the bioavailability of a drug, which is the amount of the drug that reaches the systemic circulation and is available at the site of action. This can be achieved through various approaches, such as encapsulating the drug in a nanoparticle or attaching it to a biomolecule that targets specific cells or tissues.

Some examples of DDS include:

1. Controlled release systems: These systems are designed to release the drug at a controlled rate over an extended period, reducing the frequency of dosing and improving patient compliance.
2. Targeted delivery systems: These systems use biomolecules such as antibodies or ligands to target the drug to specific cells or tissues, increasing its efficacy and reducing side effects.
3. Nanoparticle-based delivery systems: These systems use nanoparticles made of polymers, lipids, or inorganic materials to encapsulate the drug and protect it from degradation, improve its solubility, and target it to specific cells or tissues.
4. Biodegradable implants: These are small devices that can be implanted under the skin or into body cavities to deliver drugs over an extended period. They can be made of biodegradable materials that gradually break down and release the drug.
5. Inhalation delivery systems: These systems use inhalers or nebulizers to deliver drugs directly to the lungs, bypassing the digestive system and improving bioavailability.

Overall, DDS play a critical role in modern pharmaceutical research and development, enabling the creation of new drugs with improved efficacy, safety, and patient compliance.

Fluorine radioisotopes are radioactive isotopes or variants of the chemical element Fluorine (F, atomic number 9). These radioisotopes have an unstable nucleus that emits radiation in the form of alpha particles, beta particles, or gamma rays. Examples of Fluorine radioisotopes include Fluorine-18 and Fluorine-19.

Fluorine-18 is a positron-emitting radionuclide with a half-life of approximately 110 minutes, making it useful for medical imaging techniques such as Positron Emission Tomography (PET) scans. It is commonly used in the production of fluorodeoxyglucose (FDG), a radiopharmaceutical that can be used to detect cancer and other metabolic disorders.

Fluorine-19, on the other hand, is a stable isotope of Fluorine and does not emit radiation. However, it can be enriched and used as a non-radioactive tracer in medical research and diagnostic applications.

Tyrphostins are a class of synthetic compounds that act as tyrosine kinase inhibitors. They were initially developed as research tools to study the role of tyrosine kinases in cell signaling pathways, but some have also been investigated for their potential therapeutic use in cancer and other diseases.

Tyrphostins work by binding to and inhibiting the activity of tyrosine kinases, which are enzymes that add a phosphate group to tyrosine residues on proteins, thereby activating or deactivating various cellular processes. By blocking this activity, tyrphostins can disrupt abnormal signaling pathways that contribute to the development and progression of diseases such as cancer.

There are several different subclasses of tyrphostins, each with varying levels of specificity for different tyrosine kinases. Some examples include genistein, erbstatin, and lavendustin A. While tyrphostins have been useful in basic research, their clinical use is limited due to issues such as poor bioavailability, lack of specificity, and toxicity. However, they continue to be important tools for studying the functions of tyrosine kinases and developing new therapeutic strategies.

Polyenes are a group of antibiotics that contain a long, unsaturated hydrocarbon chain with alternating double and single bonds. They are characterized by their ability to bind to ergosterol, a steroid found in fungal cell membranes, forming pores that increase the permeability of the membrane and lead to fungal cell death.

The most well-known polyene antibiotic is amphotericin B, which is used to treat serious systemic fungal infections such as candidiasis, aspergillosis, and cryptococcosis. Other polyenes include nystatin and natamycin, which are primarily used to treat topical fungal infections of the skin or mucous membranes.

While polyenes are effective antifungal agents, they can also cause significant side effects, particularly when used systemically. These may include kidney damage, infusion reactions, and electrolyte imbalances. Therefore, their use is typically reserved for severe fungal infections that are unresponsive to other treatments.

Glucagon is a hormone produced by the alpha cells of the pancreas. Its main function is to regulate glucose levels in the blood by stimulating the liver to convert stored glycogen into glucose, which can then be released into the bloodstream. This process helps to raise blood sugar levels when they are too low, such as during hypoglycemia.

Glucagon is a 29-amino acid polypeptide that is derived from the preproglucagon protein. It works by binding to glucagon receptors on liver cells, which triggers a series of intracellular signaling events that lead to the activation of enzymes involved in glycogen breakdown.

In addition to its role in glucose regulation, glucagon has also been shown to have other physiological effects, such as promoting lipolysis (the breakdown of fat) and inhibiting gastric acid secretion. Glucagon is often used clinically in the treatment of hypoglycemia, as well as in diagnostic tests to assess pancreatic function.

A Structure-Activity Relationship (SAR) in the context of medicinal chemistry and pharmacology refers to the relationship between the chemical structure of a drug or molecule and its biological activity or effect on a target protein, cell, or organism. SAR studies aim to identify patterns and correlations between structural features of a compound and its ability to interact with a specific biological target, leading to a desired therapeutic response or undesired side effects.

By analyzing the SAR, researchers can optimize the chemical structure of lead compounds to enhance their potency, selectivity, safety, and pharmacokinetic properties, ultimately guiding the design and development of novel drugs with improved efficacy and reduced toxicity.

Cell membrane permeability refers to the ability of various substances, such as molecules and ions, to pass through the cell membrane. The cell membrane, also known as the plasma membrane, is a thin, flexible barrier that surrounds all cells, controlling what enters and leaves the cell. Its primary function is to protect the cell's internal environment and maintain homeostasis.

The permeability of the cell membrane depends on its structure, which consists of a phospholipid bilayer interspersed with proteins. The hydrophilic (water-loving) heads of the phospholipids face outward, while the hydrophobic (water-fearing) tails face inward, creating a barrier that is generally impermeable to large, polar, or charged molecules.

However, specific proteins within the membrane, called channels and transporters, allow certain substances to cross the membrane. Channels are protein structures that span the membrane and provide a pore for ions or small uncharged molecules to pass through. Transporters, on the other hand, are proteins that bind to specific molecules and facilitate their movement across the membrane, often using energy in the form of ATP.

The permeability of the cell membrane can be influenced by various factors, such as temperature, pH, and the presence of certain chemicals or drugs. Changes in permeability can have significant consequences for the cell's function and survival, as they can disrupt ion balances, nutrient uptake, waste removal, and signal transduction.

Propranolol is a medication that belongs to a class of drugs called beta blockers. Medically, it is defined as a non-selective beta blocker, which means it blocks the effects of both epinephrine (adrenaline) and norepinephrine (noradrenaline) on the heart and other organs. These effects include reducing heart rate, contractility, and conduction velocity, leading to decreased oxygen demand by the myocardium. Propranolol is used in the management of various conditions such as hypertension, angina pectoris, arrhythmias, essential tremor, anxiety disorders, and infants with congenital heart defects. It may also be used to prevent migraines and reduce the risk of future heart attacks. As with any medication, it should be taken under the supervision of a healthcare provider due to potential side effects and contraindications.

Neurokinin-1 (NK-1) receptors are a type of G protein-coupled receptor that bind to the neuropeptide substance P, which is a member of the tachykinin family. These receptors are widely distributed in the central and peripheral nervous systems and play important roles in various physiological functions, including pain transmission, neuroinflammation, and emesis (vomiting).

NK-1 receptors are activated by substance P, which binds to the receptor's extracellular domain and triggers a signaling cascade that leads to the activation of various intracellular signaling pathways. This activation can ultimately result in the modulation of neuronal excitability, neurotransmitter release, and gene expression.

In addition to their role in normal physiological processes, NK-1 receptors have also been implicated in a number of pathological conditions, including pain, inflammation, and neurodegenerative disorders. As such, NK-1 receptor antagonists have been developed as potential therapeutic agents for the treatment of these conditions.

In anatomical terms, the stomach is a muscular, J-shaped organ located in the upper left portion of the abdomen. It is part of the gastrointestinal tract and plays a crucial role in digestion. The stomach's primary functions include storing food, mixing it with digestive enzymes and hydrochloric acid to break down proteins, and slowly emptying the partially digested food into the small intestine for further absorption of nutrients.

The stomach is divided into several regions, including the cardia (the area nearest the esophagus), the fundus (the upper portion on the left side), the body (the main central part), and the pylorus (the narrowed region leading to the small intestine). The inner lining of the stomach, called the mucosa, is protected by a layer of mucus that prevents the digestive juices from damaging the stomach tissue itself.

In medical contexts, various conditions can affect the stomach, such as gastritis (inflammation of the stomach lining), peptic ulcers (sores in the stomach or duodenum), gastroesophageal reflux disease (GERD), and stomach cancer. Symptoms related to the stomach may include abdominal pain, bloating, nausea, vomiting, heartburn, and difficulty swallowing.

Indole is not strictly a medical term, but it is a chemical compound that can be found in the human body and has relevance to medical and biological research. Indoles are organic compounds that contain a bicyclic structure consisting of a six-membered benzene ring fused to a five-membered pyrrole ring.

In the context of medicine, indoles are particularly relevant due to their presence in certain hormones and other biologically active molecules. For example, the neurotransmitter serotonin contains an indole ring, as does the hormone melatonin. Indoles can also be found in various plant-based foods, such as cruciferous vegetables (e.g., broccoli, kale), and have been studied for their potential health benefits.

Some indoles, like indole-3-carbinol and diindolylmethane, are found in these vegetables and can have anti-cancer properties by modulating estrogen metabolism, reducing inflammation, and promoting cell death (apoptosis) in cancer cells. However, it is essential to note that further research is needed to fully understand the potential health benefits and risks associated with indoles.

BALB/c is an inbred strain of laboratory mouse that is widely used in biomedical research. The strain was developed at the Institute of Cancer Research in London by Henry Baldwin and his colleagues in the 1920s, and it has since become one of the most commonly used inbred strains in the world.

BALB/c mice are characterized by their black coat color, which is determined by a recessive allele at the tyrosinase locus. They are also known for their docile and friendly temperament, making them easy to handle and work with in the laboratory.

One of the key features of BALB/c mice that makes them useful for research is their susceptibility to certain types of tumors and immune responses. For example, they are highly susceptible to developing mammary tumors, which can be induced by chemical carcinogens or viral infection. They also have a strong Th2-biased immune response, which makes them useful models for studying allergic diseases and asthma.

BALB/c mice are also commonly used in studies of genetics, neuroscience, behavior, and infectious diseases. Because they are an inbred strain, they have a uniform genetic background, which makes it easier to control for genetic factors in experiments. Additionally, because they have been bred in the laboratory for many generations, they are highly standardized and reproducible, making them ideal subjects for scientific research.

Pituitary neoplasms refer to abnormal growths or tumors in the pituitary gland, a small endocrine gland located at the base of the brain. These neoplasms can be benign (non-cancerous) or malignant (cancerous), with most being benign. They can vary in size and may cause various symptoms depending on their location, size, and hormonal activity.

Pituitary neoplasms can produce and secrete excess hormones, leading to a variety of endocrine disorders such as Cushing's disease (caused by excessive ACTH production), acromegaly (caused by excessive GH production), or prolactinoma (caused by excessive PRL production). They can also cause local compression symptoms due to their size, leading to headaches, vision problems, and cranial nerve palsies.

The exact causes of pituitary neoplasms are not fully understood, but genetic factors, radiation exposure, and certain inherited conditions may increase the risk of developing these tumors. Treatment options for pituitary neoplasms include surgical removal, radiation therapy, and medical management with drugs that can help control hormonal imbalances.

Cell surface receptors, also known as membrane receptors, are proteins located on the cell membrane that bind to specific molecules outside the cell, known as ligands. These receptors play a crucial role in signal transduction, which is the process of converting an extracellular signal into an intracellular response.

Cell surface receptors can be classified into several categories based on their structure and mechanism of action, including:

1. Ion channel receptors: These receptors contain a pore that opens to allow ions to flow across the cell membrane when they bind to their ligands. This ion flux can directly activate or inhibit various cellular processes.
2. G protein-coupled receptors (GPCRs): These receptors consist of seven transmembrane domains and are associated with heterotrimeric G proteins that modulate intracellular signaling pathways upon ligand binding.
3. Enzyme-linked receptors: These receptors possess an intrinsic enzymatic activity or are linked to an enzyme, which becomes activated when the receptor binds to its ligand. This activation can lead to the initiation of various signaling cascades within the cell.
4. Receptor tyrosine kinases (RTKs): These receptors contain intracellular tyrosine kinase domains that become activated upon ligand binding, leading to the phosphorylation and activation of downstream signaling molecules.
5. Integrins: These receptors are transmembrane proteins that mediate cell-cell or cell-matrix interactions by binding to extracellular matrix proteins or counter-receptors on adjacent cells. They play essential roles in cell adhesion, migration, and survival.

Cell surface receptors are involved in various physiological processes, including neurotransmission, hormone signaling, immune response, and cell growth and differentiation. Dysregulation of these receptors can contribute to the development of numerous diseases, such as cancer, diabetes, and neurological disorders.

Guanylyl Imidodiphosphate (GIP) is not a medical term itself, but it is a biochemical compound that plays a crucial role in the body's signaling pathways. It is a vital intracellular second messenger involved in various physiological processes, including vasodilation and smooth muscle relaxation.

To be more specific, GIP is a nucleotide that activates a family of enzymes called guanylyl cyclases (GCs). Once activated, these enzymes convert guanosine triphosphate (GTP) to cyclic guanosine monophosphate (cGMP), another essential second messenger. The increased levels of cGMP then mediate the relaxation of smooth muscle and vasodilation by activating protein kinases and ion channels, among other mechanisms.

In summary, Guanylyl Imidodiphosphate (GIP) is a biochemical compound that plays a critical role in intracellular signaling pathways, leading to vasodilation and smooth muscle relaxation.

Gastrointestinal agents are a class of pharmaceutical drugs that affect the gastrointestinal (GI) tract, which includes the organs involved in digestion such as the mouth, esophagus, stomach, small intestine, large intestine, and anus. These agents can have various effects on the GI tract, including:

1. Increasing gastric motility (promoting bowel movements) - laxatives, prokinetics
2. Decreasing gastric motility (reducing bowel movements) - antidiarrheal agents
3. Neutralizing gastric acid - antacids
4. Reducing gastric acid secretion - H2-blockers, proton pump inhibitors
5. Protecting the mucosal lining of the GI tract - sucralfate, misoprostol
6. Relieving symptoms associated with GI disorders such as bloating, abdominal pain, and nausea - antispasmodics, antiemetics

Examples of gastrointestinal agents include:

* Laxatives (e.g., psyllium, docusate)
* Prokinetics (e.g., metoclopramide)
* Antacids (e.g., calcium carbonate, aluminum hydroxide)
* H2-blockers (e.g., ranitidine, famotidine)
* Proton pump inhibitors (e.g., omeprazole, lansoprazole)
* Sucralfate
* Misoprostol
* Antispasmodics (e.g., hyoscyamine, dicyclomine)
* Antiemetics (e.g., ondansetron, promethazine)

It is important to note that gastrointestinal agents can have both therapeutic and adverse effects, and their use should be based on a careful evaluation of the patient's condition and medical history.

Metabolic clearance rate is a term used in pharmacology to describe the volume of blood or plasma from which a drug is completely removed per unit time by metabolic processes. It is a measure of the body's ability to eliminate a particular substance and is usually expressed in units of volume (e.g., milliliters or liters) per time (e.g., minutes, hours, or days).

The metabolic clearance rate can be calculated by dividing the total amount of drug eliminated by the plasma concentration of the drug and the time over which it was eliminated. It provides important information about the pharmacokinetics of a drug, including its rate of elimination and the potential for drug-drug interactions that may affect metabolism.

It is worth noting that there are different types of clearance rates, such as renal clearance rate (which refers to the removal of a drug by the kidneys) or hepatic clearance rate (which refers to the removal of a drug by the liver). Metabolic clearance rate specifically refers to the elimination of a drug through metabolic processes, which can occur in various organs throughout the body.

Drug synergism is a pharmacological concept that refers to the interaction between two or more drugs, where the combined effect of the drugs is greater than the sum of their individual effects. This means that when these drugs are administered together, they produce an enhanced therapeutic response compared to when they are given separately.

Drug synergism can occur through various mechanisms, such as:

1. Pharmacodynamic synergism - When two or more drugs interact with the same target site in the body and enhance each other's effects.
2. Pharmacokinetic synergism - When one drug affects the metabolism, absorption, distribution, or excretion of another drug, leading to an increased concentration of the second drug in the body and enhanced therapeutic effect.
3. Physiochemical synergism - When two drugs interact physically, such as when one drug enhances the solubility or permeability of another drug, leading to improved absorption and bioavailability.

It is important to note that while drug synergism can result in enhanced therapeutic effects, it can also increase the risk of adverse reactions and toxicity. Therefore, healthcare providers must carefully consider the potential benefits and risks when prescribing combinations of drugs with known or potential synergistic effects.

Electrophoresis, polyacrylamide gel (EPG) is a laboratory technique used to separate and analyze complex mixtures of proteins or nucleic acids (DNA or RNA) based on their size and electrical charge. This technique utilizes a matrix made of cross-linked polyacrylamide, a type of gel, which provides a stable and uniform environment for the separation of molecules.

In this process:

1. The polyacrylamide gel is prepared by mixing acrylamide monomers with a cross-linking agent (bis-acrylamide) and a catalyst (ammonium persulfate) in the presence of a buffer solution.
2. The gel is then poured into a mold and allowed to polymerize, forming a solid matrix with uniform pore sizes that depend on the concentration of acrylamide used. Higher concentrations result in smaller pores, providing better resolution for separating smaller molecules.
3. Once the gel has set, it is placed in an electrophoresis apparatus containing a buffer solution. Samples containing the mixture of proteins or nucleic acids are loaded into wells on the top of the gel.
4. An electric field is applied across the gel, causing the negatively charged molecules to migrate towards the positive electrode (anode) while positively charged molecules move toward the negative electrode (cathode). The rate of migration depends on the size, charge, and shape of the molecules.
5. Smaller molecules move faster through the gel matrix and will migrate farther from the origin compared to larger molecules, resulting in separation based on size. Proteins and nucleic acids can be selectively stained after electrophoresis to visualize the separated bands.

EPG is widely used in various research fields, including molecular biology, genetics, proteomics, and forensic science, for applications such as protein characterization, DNA fragment analysis, cloning, mutation detection, and quality control of nucleic acid or protein samples.

The endocrine system is a complex network of glands and organs that produce, store, and secrete hormones. It plays a crucial role in regulating various functions and processes in the body, including metabolism, growth and development, tissue function, sexual function, reproduction, sleep, and mood.

The major endocrine glands include:

1. Pituitary gland: located at the base of the brain, it is often referred to as the "master gland" because it controls other glands' functions. It produces and releases several hormones that regulate growth, development, and reproduction.
2. Thyroid gland: located in the neck, it produces hormones that regulate metabolism, growth, and development.
3. Parathyroid glands: located near the thyroid gland, they produce parathyroid hormone, which regulates calcium levels in the blood.
4. Adrenal glands: located on top of the kidneys, they produce hormones that regulate stress response, metabolism, and blood pressure.
5. Pancreas: located in the abdomen, it produces hormones such as insulin and glucagon that regulate blood sugar levels.
6. Sex glands (ovaries and testes): they produce sex hormones such as estrogen, progesterone, and testosterone that regulate sexual development and reproduction.
7. Pineal gland: located in the brain, it produces melatonin, a hormone that regulates sleep-wake cycles.

The endocrine system works closely with the nervous system to maintain homeostasis or balance in the body's internal environment. Hormones are chemical messengers that travel through the bloodstream to target cells or organs, where they bind to specific receptors and elicit a response. Disorders of the endocrine system can result from overproduction or underproduction of hormones, leading to various health problems such as diabetes, thyroid disorders, growth disorders, and sexual dysfunction.

Transfection is a term used in molecular biology that refers to the process of deliberately introducing foreign genetic material (DNA, RNA or artificial gene constructs) into cells. This is typically done using chemical or physical methods, such as lipofection or electroporation. Transfection is widely used in research and medical settings for various purposes, including studying gene function, producing proteins, developing gene therapies, and creating genetically modified organisms. It's important to note that transfection is different from transduction, which is the process of introducing genetic material into cells using viruses as vectors.

Hexamethonium is defined as a ganglionic blocker, which is a type of medication that blocks the activity at the junction between two nerve cells (neurons) called the neurotransmitter receptor site. It is a non-depolarizing neuromuscular blocking agent, which means it works by binding to and inhibiting the action of the nicotinic acetylcholine receptors at the motor endplate, where the nerve meets the muscle.

Hexamethonium was historically used in anesthesia practice as a adjunct to provide muscle relaxation during surgical procedures. However, its use has largely been replaced by other neuromuscular blocking agents that have a faster onset and shorter duration of action. It is still used in research settings to study the autonomic nervous system and for the treatment of hypertensive emergencies in some cases.

It's important to note that the use of Hexamethonium requires careful monitoring and management, as it can have significant effects on cardiovascular function and other body systems.

Interphase is a phase in the cell cycle during which the cell primarily performs its functions of growth and DNA replication. It is the longest phase of the cell cycle, consisting of G1 phase (during which the cell grows and prepares for DNA replication), S phase (during which DNA replication occurs), and G2 phase (during which the cell grows further and prepares for mitosis). During interphase, the chromosomes are in their relaxed, extended form and are not visible under the microscope. Interphase is followed by mitosis, during which the chromosomes condense and separate to form two genetically identical daughter cells.

High-performance liquid chromatography (HPLC) is a type of chromatography that separates and analyzes compounds based on their interactions with a stationary phase and a mobile phase under high pressure. The mobile phase, which can be a gas or liquid, carries the sample mixture through a column containing the stationary phase.

In HPLC, the mobile phase is a liquid, and it is pumped through the column at high pressures (up to several hundred atmospheres) to achieve faster separation times and better resolution than other types of liquid chromatography. The stationary phase can be a solid or a liquid supported on a solid, and it interacts differently with each component in the sample mixture, causing them to separate as they travel through the column.

HPLC is widely used in analytical chemistry, pharmaceuticals, biotechnology, and other fields to separate, identify, and quantify compounds present in complex mixtures. It can be used to analyze a wide range of substances, including drugs, hormones, vitamins, pigments, flavors, and pollutants. HPLC is also used in the preparation of pure samples for further study or use.

Bile is a digestive fluid that is produced by the liver and stored in the gallbladder. It plays an essential role in the digestion and absorption of fats and fat-soluble vitamins in the small intestine. Bile consists of bile salts, bilirubin, cholesterol, phospholipids, electrolytes, and water.

Bile salts are amphipathic molecules that help to emulsify fats into smaller droplets, increasing their surface area and allowing for more efficient digestion by enzymes such as lipase. Bilirubin is a breakdown product of hemoglobin from red blood cells and gives bile its characteristic greenish-brown color.

Bile is released into the small intestine in response to food, particularly fats, entering the digestive tract. It helps to break down large fat molecules into smaller ones that can be absorbed through the walls of the intestines and transported to other parts of the body for energy or storage.

Calcium-calmodulin-dependent protein kinases (CAMKs) are a family of enzymes that play a crucial role in intracellular signaling pathways. They are activated by the binding of calcium ions and calmodulin, a ubiquitous calcium-binding protein, to their regulatory domain.

Once activated, CAMKs phosphorylate specific serine or threonine residues on target proteins, thereby modulating their activity, localization, or stability. This post-translational modification is essential for various cellular processes, including synaptic plasticity, gene expression, metabolism, and cell cycle regulation.

There are several subfamilies of CAMKs, including CaMKI, CaMKII, CaMKIII (also known as CaMKIV), and CaMK kinase (CaMKK). Each subfamily has distinct structural features, substrate specificity, and regulatory mechanisms. Dysregulation of CAMK signaling has been implicated in various pathological conditions, such as neurodegenerative diseases, cancer, and cardiovascular disorders.

Recombinant proteins are artificially created proteins produced through the use of recombinant DNA technology. This process involves combining DNA molecules from different sources to create a new set of genes that encode for a specific protein. The resulting recombinant protein can then be expressed, purified, and used for various applications in research, medicine, and industry.

Recombinant proteins are widely used in biomedical research to study protein function, structure, and interactions. They are also used in the development of diagnostic tests, vaccines, and therapeutic drugs. For example, recombinant insulin is a common treatment for diabetes, while recombinant human growth hormone is used to treat growth disorders.

The production of recombinant proteins typically involves the use of host cells, such as bacteria, yeast, or mammalian cells, which are engineered to express the desired protein. The host cells are transformed with a plasmid vector containing the gene of interest, along with regulatory elements that control its expression. Once the host cells are cultured and the protein is expressed, it can be purified using various chromatography techniques.

Overall, recombinant proteins have revolutionized many areas of biology and medicine, enabling researchers to study and manipulate proteins in ways that were previously impossible.

The inner ear is the innermost part of the ear that contains the sensory organs for hearing and balance. It consists of a complex system of fluid-filled tubes and sacs called the vestibular system, which is responsible for maintaining balance and spatial orientation, and the cochlea, a spiral-shaped organ that converts sound vibrations into electrical signals that are sent to the brain.

The inner ear is located deep within the temporal bone of the skull and is protected by a bony labyrinth. The vestibular system includes the semicircular canals, which detect rotational movements of the head, and the otolith organs (the saccule and utricle), which detect linear acceleration and gravity.

Damage to the inner ear can result in hearing loss, tinnitus (ringing in the ears), vertigo (a spinning sensation), and balance problems.

Experimental neoplasms refer to abnormal growths or tumors that are induced and studied in a controlled laboratory setting, typically in animals or cell cultures. These studies are conducted to understand the fundamental mechanisms of cancer development, progression, and potential treatment strategies. By manipulating various factors such as genetic mutations, environmental exposures, and pharmacological interventions, researchers can gain valuable insights into the complex processes underlying neoplasm formation and identify novel targets for cancer therapy. It is important to note that experimental neoplasms may not always accurately represent human cancers, and further research is needed to translate these findings into clinically relevant applications.

Methylglucosides are not a medical term, but rather a chemical term referring to a type of compound known as glycosides, where a methanol molecule is linked to a glucose molecule. They do not have a specific medical relevance, but they can be used in various industrial and laboratory applications, including as sweetening agents or intermediates in chemical reactions.

However, if you meant "Methylglucamine," it is a related term that has medical significance. Methylglucamine is an organic compound used as an excipient (an inactive substance that serves as a vehicle or medium for a drug) in some pharmaceutical formulations. It is often used as a solubilizing agent to improve the solubility and absorption of certain drugs, particularly those that are poorly soluble in water. Methylglucamine is generally considered safe and non-toxic, although it can cause gastrointestinal symptoms such as diarrhea or nausea in some individuals if taken in large amounts.

The ileum is the third and final segment of the small intestine, located between the jejunum and the cecum (the beginning of the large intestine). It plays a crucial role in nutrient absorption, particularly for vitamin B12 and bile salts. The ileum is characterized by its thin, lined walls and the presence of Peyer's patches, which are part of the immune system and help surveil for pathogens.

Colforsin is a drug that belongs to a class of medications called phosphodiesterase inhibitors. It works by increasing the levels of a chemical called cyclic AMP (cyclic adenosine monophosphate) in the body, which helps to relax and widen blood vessels.

Colforsin is not approved for use in humans in many countries, including the United States. However, it has been used in research settings to study its potential effects on heart function and other physiological processes. In animals, colforsin has been shown to have positive inotropic (contractility-enhancing) and lusitropic (relaxation-enhancing) effects on the heart, making it a potential therapeutic option for heart failure and other cardiovascular conditions.

It is important to note that while colforsin has shown promise in preclinical studies, more research is needed to establish its safety and efficacy in humans. Therefore, it should only be used under the supervision of a qualified healthcare professional and in the context of a clinical trial or research study.

The urinary bladder is a muscular, hollow organ in the pelvis that stores urine before it is released from the body. It expands as it fills with urine and contracts when emptying. The typical adult bladder can hold between 400 to 600 milliliters of urine for about 2-5 hours before the urge to urinate occurs. The wall of the bladder contains several layers, including a mucous membrane, a layer of smooth muscle (detrusor muscle), and an outer fibrous adventitia. The muscles of the bladder neck and urethra remain contracted to prevent leakage of urine during filling, and they relax during voiding to allow the urine to flow out through the urethra.

Enzyme inhibitors are substances that bind to an enzyme and decrease its activity, preventing it from catalyzing a chemical reaction in the body. They can work by several mechanisms, including blocking the active site where the substrate binds, or binding to another site on the enzyme to change its shape and prevent substrate binding. Enzyme inhibitors are often used as drugs to treat various medical conditions, such as high blood pressure, abnormal heart rhythms, and bacterial infections. They can also be found naturally in some foods and plants, and can be used in research to understand enzyme function and regulation.

An oocyte, also known as an egg cell or female gamete, is a large specialized cell found in the ovary of female organisms. It contains half the number of chromosomes as a normal diploid cell, as it is the product of meiotic division. Oocytes are surrounded by follicle cells and are responsible for the production of female offspring upon fertilization with sperm. The term "oocyte" specifically refers to the immature egg cell before it reaches full maturity and is ready for fertilization, at which point it is referred to as an ovum or egg.

Fluorides are ionic compounds that contain the fluoride anion (F-). In the context of dental and public health, fluorides are commonly used in preventive measures to help reduce tooth decay. They can be found in various forms such as sodium fluoride, stannous fluoride, and calcium fluoride. When these compounds come into contact with saliva, they release fluoride ions that can be absorbed by tooth enamel. This process helps to strengthen the enamel and make it more resistant to acid attacks caused by bacteria in the mouth, which can lead to dental caries or cavities. Fluorides can be topically applied through products like toothpaste, mouth rinses, and fluoride varnishes, or systemically ingested through fluoridated water, salt, or supplements.

In medical or clinical terms, "ethers" do not have a specific relevance as a single medical condition or diagnosis. However, in a broader chemical context, ethers are a class of organic compounds characterized by an oxygen atom connected to two alkyl or aryl groups. Ethers are not typically used as therapeutic agents but can be found in certain medications as solvents or as part of the drug's chemical structure.

An example of a medication with an ether group is the antihistamine diphenhydramine (Benadryl), which has a phenyl ether moiety in its chemical structure. Another example is the anesthetic sevoflurane, which is a fluorinated methyl isopropyl ether used for inducing and maintaining general anesthesia during surgeries.

It's important to note that 'ethers' as a term primarily belongs to the field of chemistry rather than medicine.

I'm sorry for any confusion, but "Rubidium" is not a medical term. It is a chemical element with the symbol Rb and atomic number 37. Rubidium is a soft, silvery-white metal that is highly reactive and flammable. It is found in trace amounts in minerals such as leucite and pollucite.

While rubidium itself does not have a direct medical application, its radioisotopes (such as rubidium-82) are used in medical imaging, particularly in positron emission tomography (PET) scans, to study heart function and blood flow. However, the term "Rubidium" itself is not used in a medical context to define a condition or disease.

GTP-binding protein alpha subunits, Gq-G11, are a family of heterotrimeric G proteins that play a crucial role in intracellular signaling transduction pathways. They are composed of three subunits: alpha, beta, and gamma. The alpha subunit of this family is referred to as Gαq, Gα11, Gα14, or Gα15/16, depending on the specific type.

These G proteins are activated by G protein-coupled receptors (GPCRs) upon binding of an agonist to the receptor. The activation leads to the exchange of GDP for GTP on the alpha subunit, causing it to dissociate from the beta and gamma subunits and further interact with downstream effector proteins. This interaction ultimately results in the activation of various signaling cascades, including the phospholipase C beta (PLCβ) pathway, which leads to the production of second messengers such as inositol trisphosphate (IP3) and diacylglycerol (DAG), and subsequently calcium mobilization.

Defects or mutations in GTP-binding protein alpha subunits, Gq-G11, have been implicated in several diseases, such as cancer, cardiovascular disorders, and neurological conditions.

Fura-2 is not a medical term per se, but a chemical compound used in scientific research, particularly in the field of physiology and cell biology. Fura-2 is a calcium indicator dye that is commonly used to measure intracellular calcium concentrations in living cells. It works by binding to calcium ions (Ca²+) in the cytoplasm of cells, which causes a change in its fluorescence emission spectrum.

When excited with ultraviolet light at specific wavelengths, Fura-2 exhibits different fluorescence intensities depending on the concentration of calcium ions it has bound to. By measuring these changes in fluorescence intensity, researchers can quantify intracellular calcium levels and study how they change in response to various stimuli or experimental conditions.

While Fura-2 is not a medical term itself, understanding its function and use is essential for researchers working in the fields of physiology, pharmacology, neuroscience, and other biomedical disciplines.

Sequence homology, amino acid, refers to the similarity in the order of amino acids in a protein or a portion of a protein between two or more species. This similarity can be used to infer evolutionary relationships and functional similarities between proteins. The higher the degree of sequence homology, the more likely it is that the proteins are related and have similar functions. Sequence homology can be determined through various methods such as pairwise alignment or multiple sequence alignment, which compare the sequences and calculate a score based on the number and type of matching amino acids.

Mammals are a group of warm-blooded vertebrates constituting the class Mammalia, characterized by the presence of mammary glands (which produce milk to feed their young), hair or fur, three middle ear bones, and a neocortex region in their brain. They are found in a diverse range of habitats and come in various sizes, from tiny shrews to large whales. Examples of mammals include humans, apes, monkeys, dogs, cats, bats, mice, raccoons, seals, dolphins, horses, and elephants.

Arginine vasopressin (AVP), also known as antidiuretic hormone (ADH), is a hormone produced in the hypothalamus and stored in the posterior pituitary gland. It plays a crucial role in regulating water balance and blood pressure in the body.

AVP acts on the kidneys to promote water reabsorption, which helps maintain adequate fluid volume and osmotic balance in the body. It also constricts blood vessels, increasing peripheral vascular resistance and thereby helping to maintain blood pressure. Additionally, AVP has been shown to have effects on cognitive function, mood regulation, and pain perception.

Deficiencies or excesses of AVP can lead to a range of medical conditions, including diabetes insipidus (characterized by excessive thirst and urination), hyponatremia (low sodium levels in the blood), and syndrome of inappropriate antidiuretic hormone secretion (SIADH).

The vagus nerve, also known as the 10th cranial nerve (CN X), is the longest of the cranial nerves and extends from the brainstem to the abdomen. It has both sensory and motor functions and plays a crucial role in regulating various bodily functions such as heart rate, digestion, respiratory rate, speech, and sweating, among others.

The vagus nerve is responsible for carrying sensory information from the internal organs to the brain, and it also sends motor signals from the brain to the muscles of the throat and voice box, as well as to the heart, lungs, and digestive tract. The vagus nerve helps regulate the body's involuntary responses, such as controlling heart rate and blood pressure, promoting relaxation, and reducing inflammation.

Dysfunction in the vagus nerve can lead to various medical conditions, including gastroparesis, chronic pain, and autonomic nervous system disorders. Vagus nerve stimulation (VNS) is a therapeutic intervention that involves delivering electrical impulses to the vagus nerve to treat conditions such as epilepsy, depression, and migraine headaches.

Cytosol refers to the liquid portion of the cytoplasm found within a eukaryotic cell, excluding the organelles and structures suspended in it. It is the site of various metabolic activities and contains a variety of ions, small molecules, and enzymes. The cytosol is where many biochemical reactions take place, including glycolysis, protein synthesis, and the regulation of cellular pH. It is also where some organelles, such as ribosomes and vesicles, are located. In contrast to the cytosol, the term "cytoplasm" refers to the entire contents of a cell, including both the cytosol and the organelles suspended within it.

Protein binding, in the context of medical and biological sciences, refers to the interaction between a protein and another molecule (known as the ligand) that results in a stable complex. This process is often reversible and can be influenced by various factors such as pH, temperature, and concentration of the involved molecules.

In clinical chemistry, protein binding is particularly important when it comes to drugs, as many of them bind to proteins (especially albumin) in the bloodstream. The degree of protein binding can affect a drug's distribution, metabolism, and excretion, which in turn influence its therapeutic effectiveness and potential side effects.

Protein-bound drugs may be less available for interaction with their target tissues, as only the unbound or "free" fraction of the drug is active. Therefore, understanding protein binding can help optimize dosing regimens and minimize adverse reactions.

Phosphatidylinositol 4,5-Diphosphate (PIP2) is a phospholipid molecule that plays a crucial role as a secondary messenger in various cell signaling pathways. It is a constituent of the inner leaflet of the plasma membrane and is formed by the phosphorylation of Phosphatidylinositol 4-Phosphate (PIP) at the 5th position of the inositol ring by enzyme Phosphoinositide kinase.

PIP2 is involved in several cellular processes, including regulation of ion channels, cytoskeleton dynamics, and membrane trafficking. It also acts as a substrate for the generation of two important secondary messengers, Inositol 1,4,5-Trisphosphate (IP3) and Diacylglycerol (DAG), which are produced by the action of Phospholipase C enzyme in response to various extracellular signals. These second messengers then mediate a variety of cellular responses such as calcium mobilization, gene expression, and cell proliferation.

Smooth muscle, also known as involuntary muscle, is a type of muscle that is controlled by the autonomic nervous system and functions without conscious effort. These muscles are found in the walls of hollow organs such as the stomach, intestines, bladder, and blood vessels, as well as in the eyes, skin, and other areas of the body.

Smooth muscle fibers are shorter and narrower than skeletal muscle fibers and do not have striations or sarcomeres, which give skeletal muscle its striped appearance. Smooth muscle is controlled by the autonomic nervous system through the release of neurotransmitters such as acetylcholine and norepinephrine, which bind to receptors on the smooth muscle cells and cause them to contract or relax.

Smooth muscle plays an important role in many physiological processes, including digestion, circulation, respiration, and elimination. It can also contribute to various medical conditions, such as hypertension, gastrointestinal disorders, and genitourinary dysfunction, when it becomes overactive or underactive.

Cyclic adenosine monophosphate (cAMP) is a key secondary messenger in many biological processes, including the regulation of metabolism, gene expression, and cellular excitability. It is synthesized from adenosine triphosphate (ATP) by the enzyme adenylyl cyclase and is degraded by the enzyme phosphodiesterase.

In the body, cAMP plays a crucial role in mediating the effects of hormones and neurotransmitters on target cells. For example, when a hormone binds to its receptor on the surface of a cell, it can activate a G protein, which in turn activates adenylyl cyclase to produce cAMP. The increased levels of cAMP then activate various effector proteins, such as protein kinases, which go on to regulate various cellular processes.

Overall, the regulation of cAMP levels is critical for maintaining proper cellular function and homeostasis, and abnormalities in cAMP signaling have been implicated in a variety of diseases, including cancer, diabetes, and neurological disorders.

The chemical element aluminum (or aluminium in British English) is a silvery-white, soft, non-magnetic, ductile metal. The atomic number of aluminum is 13 and its symbol on the periodic table is Al. It is the most abundant metallic element in the Earth's crust and is found in a variety of minerals such as bauxite.

Aluminum is resistant to corrosion due to the formation of a thin layer of aluminum oxide on its surface that protects it from further oxidation. It is lightweight, has good thermal and electrical conductivity, and can be easily formed and machined. These properties make aluminum a widely used metal in various industries such as construction, packaging, transportation, and electronics.

In the medical field, aluminum is used in some medications and medical devices. For example, aluminum hydroxide is commonly used as an antacid to neutralize stomach acid and treat heartburn, while aluminum salts are used as adjuvants in vaccines to enhance the immune response. However, excessive exposure to aluminum can be harmful and has been linked to neurological disorders such as Alzheimer's disease, although the exact relationship between aluminum and these conditions is not fully understood.

Intracellular signaling peptides and proteins are molecules that play a crucial role in transmitting signals within cells, which ultimately lead to changes in cell behavior or function. These signals can originate from outside the cell (extracellular) or within the cell itself. Intracellular signaling molecules include various types of peptides and proteins, such as:

1. G-protein coupled receptors (GPCRs): These are seven-transmembrane domain receptors that bind to extracellular signaling molecules like hormones, neurotransmitters, or chemokines. Upon activation, they initiate a cascade of intracellular signals through G proteins and secondary messengers.
2. Receptor tyrosine kinases (RTKs): These are transmembrane receptors that bind to growth factors, cytokines, or hormones. Activation of RTKs leads to autophosphorylation of specific tyrosine residues, creating binding sites for intracellular signaling proteins such as adapter proteins, phosphatases, and enzymes like Ras, PI3K, and Src family kinases.
3. Second messenger systems: Intracellular second messengers are small molecules that amplify and propagate signals within the cell. Examples include cyclic adenosine monophosphate (cAMP), cyclic guanosine monophosphate (cGMP), diacylglycerol (DAG), inositol triphosphate (IP3), calcium ions (Ca2+), and nitric oxide (NO). These second messengers activate or inhibit various downstream effectors, leading to changes in cellular responses.
4. Signal transduction cascades: Intracellular signaling proteins often form complex networks of interacting molecules that relay signals from the plasma membrane to the nucleus. These cascades involve kinases (protein kinases A, B, C, etc.), phosphatases, and adapter proteins, which ultimately regulate gene expression, cell cycle progression, metabolism, and other cellular processes.
5. Ubiquitination and proteasome degradation: Intracellular signaling pathways can also control protein stability by modulating ubiquitin-proteasome degradation. E3 ubiquitin ligases recognize specific substrates and conjugate them with ubiquitin molecules, targeting them for proteasomal degradation. This process regulates the abundance of key signaling proteins and contributes to signal termination or amplification.

In summary, intracellular signaling pathways involve a complex network of interacting proteins that relay signals from the plasma membrane to various cellular compartments, ultimately regulating gene expression, metabolism, and other cellular processes. Dysregulation of these pathways can contribute to disease development and progression, making them attractive targets for therapeutic intervention.

Ionomycin is not a medical term per se, but it is a chemical compound used in medical and biological research. Ionomycin is a type of ionophore, which is a molecule that can transport ions across cell membranes. Specifically, ionomycin is known to transport calcium ions (Ca²+).

In medical research, ionomycin is often used to study the role of calcium in various cellular processes, such as signal transduction, gene expression, and muscle contraction. It can be used to selectively increase intracellular calcium concentrations in experiments, allowing researchers to observe the effects on cell function. Ionomycin is also used in the study of calcium-dependent enzymes and channels.

It's important to note that ionomycin is not used as a therapeutic agent in clinical medicine due to its potential toxicity and narrow range of applications.

Lysophospholipids are a type of glycerophospholipid, which is a major component of cell membranes. They are characterized by having only one fatty acid chain attached to the glycerol backbone, as opposed to two in regular phospholipids. This results in a more polar and charged molecule, which can play important roles in cell signaling and regulation.

Lysophospholipids can be derived from the breakdown of regular phospholipids through the action of enzymes such as phospholipase A1 or A2. They can also be synthesized de novo in the cell. Some lysophospholipids, such as lysophosphatidic acid (LPA) and sphingosine-1-phosphate (S1P), have been found to act as signaling molecules that bind to specific G protein-coupled receptors and regulate various cellular processes, including proliferation, survival, and migration.

Abnormal levels of lysophospholipids have been implicated in several diseases, such as cancer, inflammation, and neurological disorders. Therefore, understanding the biology of lysophospholipids has important implications for developing new therapeutic strategies.

Vanadates are salts or esters of vanadic acid (HVO3), which contains the vanadium(V) ion. They contain the vanadate ion (VO3-), which consists of one vanadium atom and three oxygen atoms. Vanadates have been studied for their potential insulin-mimetic and antidiabetic effects, as well as their possible cardiovascular benefits. However, more research is needed to fully understand their mechanisms of action and potential therapeutic uses in medicine.

The intestines, also known as the bowel, are a part of the digestive system that extends from the stomach to the anus. They are responsible for the further breakdown and absorption of nutrients from food, as well as the elimination of waste products. The intestines can be divided into two main sections: the small intestine and the large intestine.

The small intestine is a long, coiled tube that measures about 20 feet in length and is lined with tiny finger-like projections called villi, which increase its surface area and enhance nutrient absorption. The small intestine is where most of the digestion and absorption of nutrients takes place.

The large intestine, also known as the colon, is a wider tube that measures about 5 feet in length and is responsible for absorbing water and electrolytes from digested food, forming stool, and eliminating waste products from the body. The large intestine includes several regions, including the cecum, colon, rectum, and anus.

Together, the intestines play a critical role in maintaining overall health and well-being by ensuring that the body receives the nutrients it needs to function properly.

Guanosine diphosphate (GDP) is a nucleotide that consists of a guanine base, a sugar molecule called ribose, and two phosphate groups. It is an ester of pyrophosphoric acid with the hydroxy group of the ribose sugar at the 5' position. GDP plays a crucial role as a secondary messenger in intracellular signaling pathways and also serves as an important intermediate in the synthesis of various biomolecules, such as proteins and polysaccharides.

In cells, GDP is formed from the hydrolysis of guanosine triphosphate (GTP) by enzymes called GTPases, which convert GTP to GDP and release energy that can be used to power various cellular processes. The conversion of GDP back to GTP can be facilitated by nucleotide diphosphate kinases, allowing for the recycling of these nucleotides within the cell.

It is important to note that while guanosine diphosphate has a significant role in biochemical processes, it is not typically associated with medical conditions or diseases directly. However, understanding its function and regulation can provide valuable insights into various physiological and pathophysiological mechanisms.

A ureter is a thin, muscular tube that transports urine from the kidney to the bladder. In humans, there are two ureters, one for each kidney, and they are typically about 10-12 inches long. The ureters are lined with a special type of cells called transitional epithelium that can stretch and expand as urine passes through them. They are located in the retroperitoneal space, which is the area behind the peritoneum, the membrane that lines the abdominal cavity. The ureters play a critical role in the urinary system by ensuring that urine flows from the kidneys to the bladder for storage and eventual elimination from the body.

Antineoplastic agents are a class of drugs used to treat malignant neoplasms or cancer. These agents work by inhibiting the growth and proliferation of cancer cells, either by killing them or preventing their division and replication. Antineoplastic agents can be classified based on their mechanism of action, such as alkylating agents, antimetabolites, topoisomerase inhibitors, mitotic inhibitors, and targeted therapy agents.

Alkylating agents work by adding alkyl groups to DNA, which can cause cross-linking of DNA strands and ultimately lead to cell death. Antimetabolites interfere with the metabolic processes necessary for DNA synthesis and replication, while topoisomerase inhibitors prevent the relaxation of supercoiled DNA during replication. Mitotic inhibitors disrupt the normal functioning of the mitotic spindle, which is essential for cell division. Targeted therapy agents are designed to target specific molecular abnormalities in cancer cells, such as mutated oncogenes or dysregulated signaling pathways.

It's important to note that antineoplastic agents can also affect normal cells and tissues, leading to various side effects such as nausea, vomiting, hair loss, and myelosuppression (suppression of bone marrow function). Therefore, the use of these drugs requires careful monitoring and management of their potential adverse effects.

Microinjection is a medical technique that involves the use of a fine, precise needle to inject small amounts of liquid or chemicals into microscopic structures, cells, or tissues. This procedure is often used in research settings to introduce specific substances into individual cells for study purposes, such as introducing DNA or RNA into cell nuclei to manipulate gene expression.

In clinical settings, microinjections may be used in various medical and cosmetic procedures, including:

1. Intracytoplasmic Sperm Injection (ICSI): A type of assisted reproductive technology where a single sperm is injected directly into an egg to increase the chances of fertilization during in vitro fertilization (IVF) treatments.
2. Botulinum Toxin Injections: Microinjections of botulinum toxin (Botox, Dysport, or Xeomin) are used for cosmetic purposes to reduce wrinkles and fine lines by temporarily paralyzing the muscles responsible for their formation. They can also be used medically to treat various neuromuscular disorders, such as migraines, muscle spasticity, and excessive sweating (hyperhidrosis).
3. Drug Delivery: Microinjections may be used to deliver drugs directly into specific tissues or organs, bypassing the systemic circulation and potentially reducing side effects. This technique can be particularly useful in treating localized pain, delivering growth factors for tissue regeneration, or administering chemotherapy agents directly into tumors.
4. Gene Therapy: Microinjections of genetic material (DNA or RNA) can be used to introduce therapeutic genes into cells to treat various genetic disorders or diseases, such as cystic fibrosis, hemophilia, or cancer.

Overall, microinjection is a highly specialized and precise technique that allows for the targeted delivery of substances into small structures, cells, or tissues, with potential applications in research, medical diagnostics, and therapeutic interventions.

Affinity labels are chemical probes or reagents that can selectively and covalently bind to a specific protein or biomolecule based on its biological function or activity. These labels contain a functional group that interacts with the target molecule, often through non-covalent interactions such as hydrogen bonding, van der Waals forces, or ionic bonds. Once bound, the label then forms a covalent bond with the target molecule, allowing for its isolation and further study.

Affinity labels are commonly used in biochemistry and molecular biology research to identify and characterize specific proteins, enzymes, or receptors. They can be designed to bind to specific active sites, binding pockets, or other functional regions of a protein, allowing researchers to study the structure-function relationships of these molecules.

One example of an affinity label is a substrate analogue that contains a chemically reactive group. This type of affinity label can be used to identify and characterize enzymes by binding to their active sites and forming a covalent bond with the enzyme. The labeled enzyme can then be purified and analyzed to determine its structure, function, and mechanism of action.

Overall, affinity labels are valuable tools for studying the properties and functions of biological molecules in vitro and in vivo.

I apologize for the confusion, but "Bucladesine" is not a recognized medical term or a medication in current use in medicine. It's possible that there may be some mistake or typo in the spelling. If you have any more context about where you encountered this term, I might be able to provide a more accurate and helpful response.

"Wistar rats" are a strain of albino rats that are widely used in laboratory research. They were developed at the Wistar Institute in Philadelphia, USA, and were first introduced in 1906. Wistar rats are outbred, which means that they are genetically diverse and do not have a fixed set of genetic characteristics like inbred strains.

Wistar rats are commonly used as animal models in biomedical research because of their size, ease of handling, and relatively low cost. They are used in a wide range of research areas, including toxicology, pharmacology, nutrition, cancer, cardiovascular disease, and behavioral studies. Wistar rats are also used in safety testing of drugs, medical devices, and other products.

Wistar rats are typically larger than many other rat strains, with males weighing between 500-700 grams and females weighing between 250-350 grams. They have a lifespan of approximately 2-3 years. Wistar rats are also known for their docile and friendly nature, making them easy to handle and work with in the laboratory setting.

Down-regulation is a process that occurs in response to various stimuli, where the number or sensitivity of cell surface receptors or the expression of specific genes is decreased. This process helps maintain homeostasis within cells and tissues by reducing the ability of cells to respond to certain signals or molecules.

In the context of cell surface receptors, down-regulation can occur through several mechanisms:

1. Receptor internalization: After binding to their ligands, receptors can be internalized into the cell through endocytosis. Once inside the cell, these receptors may be degraded or recycled back to the cell surface in smaller numbers.
2. Reduced receptor synthesis: Down-regulation can also occur at the transcriptional level, where the expression of genes encoding for specific receptors is decreased, leading to fewer receptors being produced.
3. Receptor desensitization: Prolonged exposure to a ligand can lead to a decrease in receptor sensitivity or affinity, making it more difficult for the cell to respond to the signal.

In the context of gene expression, down-regulation refers to the decreased transcription and/or stability of specific mRNAs, leading to reduced protein levels. This process can be induced by various factors, including microRNA (miRNA)-mediated regulation, histone modification, or DNA methylation.

Down-regulation is an essential mechanism in many physiological processes and can also contribute to the development of several diseases, such as cancer and neurodegenerative disorders.

Drug stability refers to the ability of a pharmaceutical drug product to maintain its physical, chemical, and biological properties during storage and use, under specified conditions. A stable drug product retains its desired quality, purity, strength, and performance throughout its shelf life. Factors that can affect drug stability include temperature, humidity, light exposure, and container compatibility. Maintaining drug stability is crucial to ensure the safety and efficacy of medications for patients.

Proto-oncogene proteins, such as c-Fos, are normal cellular proteins that play crucial roles in various biological processes including cell growth, differentiation, and survival. They can be activated or overexpressed due to genetic alterations, leading to the formation of cancerous cells. The c-Fos protein is a nuclear phosphoprotein involved in signal transduction pathways and forms a heterodimer with c-Jun to create the activator protein-1 (AP-1) transcription factor complex. This complex binds to specific DNA sequences, thereby regulating the expression of target genes that contribute to various cellular responses, including proliferation, differentiation, and apoptosis. Dysregulation of c-Fos can result in uncontrolled cell growth and malignant transformation, contributing to tumor development and progression.

Gene expression is the process by which the information encoded in a gene is used to synthesize a functional gene product, such as a protein or RNA molecule. This process involves several steps: transcription, RNA processing, and translation. During transcription, the genetic information in DNA is copied into a complementary RNA molecule, known as messenger RNA (mRNA). The mRNA then undergoes RNA processing, which includes adding a cap and tail to the mRNA and splicing out non-coding regions called introns. The resulting mature mRNA is then translated into a protein on ribosomes in the cytoplasm through the process of translation.

The regulation of gene expression is a complex and highly controlled process that allows cells to respond to changes in their environment, such as growth factors, hormones, and stress signals. This regulation can occur at various stages of gene expression, including transcriptional activation or repression, RNA processing, mRNA stability, and translation. Dysregulation of gene expression has been implicated in many diseases, including cancer, genetic disorders, and neurological conditions.

Sodium fluoride is an inorganic compound with the chemical formula NaF. Medically, it is commonly used as a dental treatment to prevent tooth decay, as it is absorbed into the structure of teeth and helps to harden the enamel, making it more resistant to acid attacks from bacteria. It can also reduce the ability of bacteria to produce acid. Sodium fluoride is often found in toothpastes, mouth rinses, and various dental treatments. However, excessive consumption can lead to dental fluorosis and skeletal fluorosis, which cause changes in bone structure and might negatively affect health.

"Intralesional injection" is a medical term that refers to the administration of a medication directly into a lesion or skin abnormality, such as a tumor, cyst, or blister. This technique is used to deliver the medication directly to the site of action, allowing for higher local concentrations and potentially reducing systemic side effects. Common examples include the injection of corticosteroids into inflamed tissues to reduce swelling and pain, or the injection of chemotherapeutic agents directly into tumors to shrink them.

Thymus neoplasms are abnormal growths in the thymus gland that result from uncontrolled cell division. The term "neoplasm" refers to any new and abnormal growth of tissue, also known as a tumor. Thymus neoplasms can be benign or malignant (cancerous).

Malignant thymus neoplasms are called thymomas or thymic carcinomas. Thymomas are the most common type and tend to grow slowly, invading nearby tissues and organs. They can also spread (metastasize) to other parts of the body. Thymic carcinomas are rarer and more aggressive, growing and spreading more quickly than thymomas.

Symptoms of thymus neoplasms may include coughing, chest pain, difficulty breathing, or swelling in the neck or upper chest. Treatment options for thymus neoplasms depend on the type, size, location, and stage of the tumor, as well as the patient's overall health. Treatment may include surgery, radiation therapy, chemotherapy, or a combination of these approaches.

Body fluids refer to the various liquids that can be found within and circulating throughout the human body. These fluids include, but are not limited to:

1. Blood: A fluid that carries oxygen, nutrients, hormones, and waste products throughout the body via the cardiovascular system. It is composed of red and white blood cells suspended in plasma.
2. Lymph: A clear-to-white fluid that circulates through the lymphatic system, helping to remove waste products, bacteria, and damaged cells from tissues while also playing a crucial role in the immune system.
3. Interstitial fluid: Also known as tissue fluid or extracellular fluid, it is the fluid that surrounds the cells in the body's tissues, allowing for nutrient exchange and waste removal between cells and blood vessels.
4. Cerebrospinal fluid (CSF): A clear, colorless fluid that circulates around the brain and spinal cord, providing protection, cushioning, and nutrients to these delicate structures while also removing waste products.
5. Pleural fluid: A small amount of lubricating fluid found in the pleural space between the lungs and the chest wall, allowing for smooth movement during respiration.
6. Pericardial fluid: A small amount of lubricating fluid found within the pericardial sac surrounding the heart, reducing friction during heart contractions.
7. Synovial fluid: A viscous, lubricating fluid found in joint spaces, allowing for smooth movement and protecting the articular cartilage from wear and tear.
8. Urine: A waste product produced by the kidneys, consisting of water, urea, creatinine, and various ions, which is excreted through the urinary system.
9. Gastrointestinal secretions: Fluids produced by the digestive system, including saliva, gastric juice, bile, pancreatic juice, and intestinal secretions, which aid in digestion, absorption, and elimination of food particles.
10. Reproductive fluids: Secretions from the male (semen) and female (cervical mucus, vaginal lubrication) reproductive systems that facilitate fertilization and reproduction.

Positron-Emission Tomography (PET) is a type of nuclear medicine imaging that uses small amounts of radioactive material, called a radiotracer, to produce detailed, three-dimensional images. This technique measures metabolic activity within the body, such as sugar metabolism, to help distinguish between healthy and diseased tissue, identify cancerous cells, or examine the function of organs.

During a PET scan, the patient is injected with a radiotracer, typically a sugar-based compound labeled with a positron-emitting radioisotope, such as fluorine-18 (^18^F). The radiotracer accumulates in cells that are metabolically active, like cancer cells. As the radiotracer decays, it emits positrons, which then collide with electrons in nearby tissue, producing gamma rays. A special camera, called a PET scanner, detects these gamma rays and uses this information to create detailed images of the body's internal structures and processes.

PET is often used in conjunction with computed tomography (CT) or magnetic resonance imaging (MRI) to provide both functional and anatomical information, allowing for more accurate diagnosis and treatment planning. Common applications include detecting cancer recurrence, staging and monitoring cancer, evaluating heart function, and assessing brain function in conditions like dementia and epilepsy.

I'm happy to help! However, I believe there might be a slight error in your question. The correct term is "FOS" (for immediate-early gene Fos), not "fos genes." Here's the definition of the FOS protein and its associated gene:

FOS is a transcription factor that forms a complex with proteins JUN and JUND, forming the AP-1 (Activator Protein 1) transcription factor complex. The FOS protein plays a crucial role in regulating cell growth, differentiation, and transformation. It binds to specific DNA sequences in the promoter regions of target genes and modulates their expression.

The FOS gene is located on human chromosome 14 (14q21-31) and encodes the FOS protein. The FOS gene belongs to a family of immediate-early genes, which are rapidly activated in response to various extracellular signals such as growth factors, cytokines, and stress. Once activated, these genes regulate the expression of downstream target genes involved in various cellular processes, including proliferation, differentiation, and survival.

I hope this clarifies your question! If you have any more questions or need further information, please don't hesitate to ask.

Hydrolysis is a chemical process, not a medical one. However, it is relevant to medicine and biology.

Hydrolysis is the breakdown of a chemical compound due to its reaction with water, often resulting in the formation of two or more simpler compounds. In the context of physiology and medicine, hydrolysis is a crucial process in various biological reactions, such as the digestion of food molecules like proteins, carbohydrates, and fats. Enzymes called hydrolases catalyze these hydrolysis reactions to speed up the breakdown process in the body.

Phospholipase D is an enzyme that catalyzes the hydrolysis of phosphatidylcholine and other glycerophospholipids to produce phosphatidic acid and a corresponding alcohol. This reaction plays a crucial role in various cellular processes, including signal transduction, membrane trafficking, and lipid metabolism. There are several isoforms of Phospholipase D identified in different tissues and organisms, each with distinct regulatory mechanisms and functions. The enzyme's activity can be modulated by various factors such as calcium ions, protein kinases, and G proteins, making it a critical component in the regulation of cellular homeostasis.

Ionophores are compounds that have the ability to form complexes with ions and facilitate their transportation across biological membranes. They can be either organic or inorganic molecules, and they play important roles in various physiological processes, including ion homeostasis, signal transduction, and antibiotic activity. In medicine and research, ionophores are used as tools to study ion transport, modulate cellular functions, and as therapeutic agents, especially in the treatment of bacterial and fungal infections.

Capsaicin is defined in medical terms as the active component of chili peppers (genus Capsicum) that produces a burning sensation when it comes into contact with mucous membranes or skin. It is a potent irritant and is used topically as a counterirritant in some creams and patches to relieve pain. Capsaicin works by depleting substance P, a neurotransmitter that relays pain signals to the brain, from nerve endings.

Here is the medical definition of capsaicin from the Merriam-Webster's Medical Dictionary:

caпсаісіn : an alkaloid (C18H27NO3) that is the active principle of red peppers and is used in topical preparations as a counterirritant and analgesic.

Organometallic compounds are a type of chemical compound that contain at least one metal-carbon bond. This means that the metal is directly attached to carbon atom(s) from an organic molecule. These compounds can be synthesized through various methods, and they have found widespread use in industrial and medicinal applications, including catalysis, polymerization, and pharmaceuticals.

It's worth noting that while organometallic compounds contain metal-carbon bonds, not all compounds with metal-carbon bonds are considered organometallic. For example, in classical inorganic chemistry, simple salts of metal carbonyls (M(CO)n) are not typically classified as organometallic, but rather as metal carbonyl complexes. The distinction between these classes of compounds can sometimes be subtle and is a matter of ongoing debate among chemists.

Phosphatidylinositol phosphates (PIPs) are a family of lipid molecules that play crucial roles as secondary messengers in intracellular signaling pathways. They are formed by the phosphorylation of the hydroxyl group on the inositol ring of phosphatidylinositol (PI), a fundamental component of cell membranes.

There are seven main types of PIPs, classified based on the number and position of phosphate groups attached to the inositol ring:

1. Phosphatidylinositol 4-monophosphate (PI4P) - one phosphate group at the 4th position
2. Phosphatidylinositol 5-monophosphate (PI5P) - one phosphate group at the 5th position
3. Phosphatidylinositol 3,4-bisphosphate (PI(3,4)P2) - two phosphate groups at the 3rd and 4th positions
4. Phosphatidylinositol 3,5-bisphosphate (PI(3,5)P2) - two phosphate groups at the 3rd and 5th positions
5. Phosphatidylinositol 4,5-bisphosphate [PI(4,5)P2] - two phosphate groups at the 4th and 5th positions
6. Phosphatidylinositol 3,4,5-trisphosphate [PI(3,4,5)P3] - three phosphate groups at the 3rd, 4th, and 5th positions
7. Phosphatidylinositol 3-phosphate (PI3P) - one phosphate group at the 3rd position

These PIPs are involved in various cellular processes such as membrane trafficking, cytoskeleton organization, cell survival, and metabolism. Dysregulation of PIP metabolism has been implicated in several diseases, including cancer, diabetes, and neurological disorders.

CHO cells, or Chinese Hamster Ovary cells, are a type of immortalized cell line that are commonly used in scientific research and biotechnology. They were originally derived from the ovaries of a female Chinese hamster (Cricetulus griseus) in the 1950s.

CHO cells have several characteristics that make them useful for laboratory experiments. They can grow and divide indefinitely under appropriate conditions, which allows researchers to culture large quantities of them for study. Additionally, CHO cells are capable of expressing high levels of recombinant proteins, making them a popular choice for the production of therapeutic drugs, vaccines, and other biologics.

In particular, CHO cells have become a workhorse in the field of biotherapeutics, with many approved monoclonal antibody-based therapies being produced using these cells. The ability to genetically modify CHO cells through various methods has further expanded their utility in research and industrial applications.

It is important to note that while CHO cells are widely used in scientific research, they may not always accurately represent human cell behavior or respond to drugs and other compounds in the same way as human cells do. Therefore, results obtained using CHO cells should be validated in more relevant systems when possible.

"Cat" is a common name that refers to various species of small carnivorous mammals that belong to the family Felidae. The domestic cat, also known as Felis catus or Felis silvestris catus, is a popular pet and companion animal. It is a subspecies of the wildcat, which is found in Europe, Africa, and Asia.

Domestic cats are often kept as pets because of their companionship, playful behavior, and ability to hunt vermin. They are also valued for their ability to provide emotional support and therapy to people. Cats are obligate carnivores, which means that they require a diet that consists mainly of meat to meet their nutritional needs.

Cats are known for their agility, sharp senses, and predatory instincts. They have retractable claws, which they use for hunting and self-defense. Cats also have a keen sense of smell, hearing, and vision, which allow them to detect prey and navigate their environment.

In medical terms, cats can be hosts to various parasites and diseases that can affect humans and other animals. Some common feline diseases include rabies, feline leukemia virus (FeLV), feline immunodeficiency virus (FIV), and toxoplasmosis. It is important for cat owners to keep their pets healthy and up-to-date on vaccinations and preventative treatments to protect both the cats and their human companions.

The esophagogastric junction (EGJ) is the region of the gastrointestinal tract where the esophagus (the tube that carries food from the mouth to the stomach) meets the stomach. It serves as a physiological sphincter, which helps control the direction of flow and prevent reflux of gastric contents back into the esophagus. The EGJ is also known as the gastroesophageal junction or cardia.

Actin is a type of protein that forms part of the contractile apparatus in muscle cells, and is also found in various other cell types. It is a globular protein that polymerizes to form long filaments, which are important for many cellular processes such as cell division, cell motility, and the maintenance of cell shape. In muscle cells, actin filaments interact with another type of protein called myosin to enable muscle contraction. Actins can be further divided into different subtypes, including alpha-actin, beta-actin, and gamma-actin, which have distinct functions and expression patterns in the body.

In the context of medical and biological sciences, a "binding site" refers to a specific location on a protein, molecule, or cell where another molecule can attach or bind. This binding interaction can lead to various functional changes in the original protein or molecule. The other molecule that binds to the binding site is often referred to as a ligand, which can be a small molecule, ion, or even another protein.

The binding between a ligand and its target binding site can be specific and selective, meaning that only certain ligands can bind to particular binding sites with high affinity. This specificity plays a crucial role in various biological processes, such as signal transduction, enzyme catalysis, or drug action.

In the case of drug development, understanding the location and properties of binding sites on target proteins is essential for designing drugs that can selectively bind to these sites and modulate protein function. This knowledge can help create more effective and safer therapeutic options for various diseases.

Molecular cloning is a laboratory technique used to create multiple copies of a specific DNA sequence. This process involves several steps:

1. Isolation: The first step in molecular cloning is to isolate the DNA sequence of interest from the rest of the genomic DNA. This can be done using various methods such as PCR (polymerase chain reaction), restriction enzymes, or hybridization.
2. Vector construction: Once the DNA sequence of interest has been isolated, it must be inserted into a vector, which is a small circular DNA molecule that can replicate independently in a host cell. Common vectors used in molecular cloning include plasmids and phages.
3. Transformation: The constructed vector is then introduced into a host cell, usually a bacterial or yeast cell, through a process called transformation. This can be done using various methods such as electroporation or chemical transformation.
4. Selection: After transformation, the host cells are grown in selective media that allow only those cells containing the vector to grow. This ensures that the DNA sequence of interest has been successfully cloned into the vector.
5. Amplification: Once the host cells have been selected, they can be grown in large quantities to amplify the number of copies of the cloned DNA sequence.

Molecular cloning is a powerful tool in molecular biology and has numerous applications, including the production of recombinant proteins, gene therapy, functional analysis of genes, and genetic engineering.

Colonic neoplasms refer to abnormal growths in the large intestine, also known as the colon. These growths can be benign (non-cancerous) or malignant (cancerous). The two most common types of colonic neoplasms are adenomas and carcinomas.

Adenomas are benign tumors that can develop into cancer over time if left untreated. They are often found during routine colonoscopies and can be removed during the procedure.

Carcinomas, on the other hand, are malignant tumors that invade surrounding tissues and can spread to other parts of the body. Colorectal cancer is the third leading cause of cancer-related deaths in the United States, and colonic neoplasms are a significant risk factor for developing this type of cancer.

Regular screenings for colonic neoplasms are recommended for individuals over the age of 50 or those with a family history of colorectal cancer or other risk factors. Early detection and removal of colonic neoplasms can significantly reduce the risk of developing colorectal cancer.

Arachidonic acids are a type of polyunsaturated fatty acid that is primarily found in the phospholipids of cell membranes. They contain 20 carbon atoms and four double bonds (20:4n-6), with the first double bond located at the sixth carbon atom from the methyl end.

Arachidonic acids are derived from linoleic acid, an essential fatty acid that cannot be synthesized by the human body and must be obtained through dietary sources such as meat, fish, and eggs. Once ingested, linoleic acid is converted to arachidonic acid in a series of enzymatic reactions.

Arachidonic acids play an important role in various physiological processes, including inflammation, immune response, and cell signaling. They serve as precursors for the synthesis of eicosanoids, which are signaling molecules that include prostaglandins, thromboxanes, and leukotrienes. These eicosanoids have diverse biological activities, such as modulating blood flow, platelet aggregation, and pain perception, among others.

However, excessive production of arachidonic acid-derived eicosanoids has been implicated in various pathological conditions, including inflammation, atherosclerosis, and cancer. Therefore, the regulation of arachidonic acid metabolism is an important area of research for the development of new therapeutic strategies.

Reverse Transcriptase Polymerase Chain Reaction (RT-PCR) is a laboratory technique used in molecular biology to amplify and detect specific DNA sequences. This technique is particularly useful for the detection and quantification of RNA viruses, as well as for the analysis of gene expression.

The process involves two main steps: reverse transcription and polymerase chain reaction (PCR). In the first step, reverse transcriptase enzyme is used to convert RNA into complementary DNA (cDNA) by reading the template provided by the RNA molecule. This cDNA then serves as a template for the PCR amplification step.

In the second step, the PCR reaction uses two primers that flank the target DNA sequence and a thermostable polymerase enzyme to repeatedly copy the targeted cDNA sequence. The reaction mixture is heated and cooled in cycles, allowing the primers to anneal to the template, and the polymerase to extend the new strand. This results in exponential amplification of the target DNA sequence, making it possible to detect even small amounts of RNA or cDNA.

RT-PCR is a sensitive and specific technique that has many applications in medical research and diagnostics, including the detection of viruses such as HIV, hepatitis C virus, and SARS-CoV-2 (the virus that causes COVID-19). It can also be used to study gene expression, identify genetic mutations, and diagnose genetic disorders.

The brain is the central organ of the nervous system, responsible for receiving and processing sensory information, regulating vital functions, and controlling behavior, movement, and cognition. It is divided into several distinct regions, each with specific functions:

1. Cerebrum: The largest part of the brain, responsible for higher cognitive functions such as thinking, learning, memory, language, and perception. It is divided into two hemispheres, each controlling the opposite side of the body.
2. Cerebellum: Located at the back of the brain, it is responsible for coordinating muscle movements, maintaining balance, and fine-tuning motor skills.
3. Brainstem: Connects the cerebrum and cerebellum to the spinal cord, controlling vital functions such as breathing, heart rate, and blood pressure. It also serves as a relay center for sensory information and motor commands between the brain and the rest of the body.
4. Diencephalon: A region that includes the thalamus (a major sensory relay station) and hypothalamus (regulates hormones, temperature, hunger, thirst, and sleep).
5. Limbic system: A group of structures involved in emotional processing, memory formation, and motivation, including the hippocampus, amygdala, and cingulate gyrus.

The brain is composed of billions of interconnected neurons that communicate through electrical and chemical signals. It is protected by the skull and surrounded by three layers of membranes called meninges, as well as cerebrospinal fluid that provides cushioning and nutrients.

F344 is a strain code used to designate an outbred stock of rats that has been inbreeded for over 100 generations. The F344 rats, also known as Fischer 344 rats, were originally developed at the National Institutes of Health (NIH) and are now widely used in biomedical research due to their consistent and reliable genetic background.

Inbred strains, like the F344, are created by mating genetically identical individuals (siblings or parents and offspring) for many generations until a state of complete homozygosity is reached, meaning that all members of the strain have identical genomes. This genetic uniformity makes inbred strains ideal for use in studies where consistent and reproducible results are important.

F344 rats are known for their longevity, with a median lifespan of around 27-31 months, making them useful for aging research. They also have a relatively low incidence of spontaneous tumors compared to other rat strains. However, they may be more susceptible to certain types of cancer and other diseases due to their inbred status.

It's important to note that while F344 rats are often used as a standard laboratory rat strain, there can still be some genetic variation between individual animals within the same strain, particularly if they come from different suppliers or breeding colonies. Therefore, it's always important to consider the source and history of any animal model when designing experiments and interpreting results.

Pancreatic neoplasms refer to abnormal growths in the pancreas that can be benign or malignant. The pancreas is a gland located behind the stomach that produces hormones and digestive enzymes. Pancreatic neoplasms can interfere with the normal functioning of the pancreas, leading to various health complications.

Benign pancreatic neoplasms are non-cancerous growths that do not spread to other parts of the body. They are usually removed through surgery to prevent any potential complications, such as blocking the bile duct or causing pain.

Malignant pancreatic neoplasms, also known as pancreatic cancer, are cancerous growths that can invade and destroy surrounding tissues and organs. They can also spread (metastasize) to other parts of the body, such as the liver, lungs, or bones. Pancreatic cancer is often aggressive and difficult to treat, with a poor prognosis.

There are several types of pancreatic neoplasms, including adenocarcinomas, neuroendocrine tumors, solid pseudopapillary neoplasms, and cystic neoplasms. The specific type of neoplasm is determined through various diagnostic tests, such as imaging studies, biopsies, and blood tests. Treatment options depend on the type, stage, and location of the neoplasm, as well as the patient's overall health and preferences.

Choline is an essential nutrient that is vital for the normal functioning of all cells, particularly those in the brain and liver. It is a water-soluble compound that is neither a vitamin nor a mineral, but is often grouped with vitamins because it has many similar functions. Choline is a precursor to the neurotransmitter acetylcholine, which plays an important role in memory, mood, and other cognitive processes. It also helps to maintain the structural integrity of cell membranes and is involved in the transport and metabolism of fats.

Choline can be synthesized by the body in small amounts, but it is also found in a variety of foods such as eggs, meat, fish, nuts, and cruciferous vegetables. Some people may require additional choline through supplementation, particularly if they follow a vegetarian or vegan diet, are pregnant or breastfeeding, or have certain medical conditions that affect choline metabolism.

Deficiency in choline can lead to a variety of health problems, including liver disease, muscle damage, and neurological disorders. On the other hand, excessive intake of choline can cause fishy body odor, sweating, and gastrointestinal symptoms such as diarrhea and vomiting. It is important to maintain adequate levels of choline through a balanced diet and, if necessary, supplementation under the guidance of a healthcare professional.

Oxytocin is a hormone that is produced in the hypothalamus and released by the posterior pituitary gland. It plays a crucial role in various physiological processes, including social bonding, childbirth, and breastfeeding. During childbirth, oxytocin stimulates uterine contractions to facilitate labor and delivery. After giving birth, oxytocin continues to be released in large amounts during breastfeeding, promoting milk letdown and contributing to the development of the maternal-infant bond.

In social contexts, oxytocin has been referred to as the "love hormone" or "cuddle hormone," as it is involved in social bonding, trust, and attachment. It can be released during physical touch, such as hugging or cuddling, and may contribute to feelings of warmth and closeness between individuals.

In addition to its roles in childbirth, breastfeeding, and social bonding, oxytocin has been implicated in other physiological functions, including regulating blood pressure, reducing anxiety, and modulating pain perception.

Guanine nucleotides are molecules that play a crucial role in intracellular signaling, cellular regulation, and various biological processes within cells. They consist of a guanine base, a sugar (ribose or deoxyribose), and one or more phosphate groups. The most common guanine nucleotides are GDP (guanosine diphosphate) and GTP (guanosine triphosphate).

GTP is hydrolyzed to GDP and inorganic phosphate by certain enzymes called GTPases, releasing energy that drives various cellular functions such as protein synthesis, signal transduction, vesicle transport, and cell division. On the other hand, GDP can be rephosphorylated back to GTP by nucleotide diphosphate kinases, allowing for the recycling of these molecules within the cell.

In addition to their role in signaling and regulation, guanine nucleotides also serve as building blocks for RNA (ribonucleic acid) synthesis during transcription, where they pair with cytosine nucleotides via hydrogen bonds to form base pairs in the resulting RNA molecule.

Ovarian neoplasms refer to abnormal growths or tumors in the ovary, which can be benign (non-cancerous) or malignant (cancerous). These growths can originate from various cell types within the ovary, including epithelial cells, germ cells, and stromal cells. Ovarian neoplasms are often classified based on their cell type of origin, histological features, and potential for invasive or metastatic behavior.

Epithelial ovarian neoplasms are the most common type and can be further categorized into several subtypes, such as serous, mucinous, endometrioid, clear cell, and Brenner tumors. Some of these epithelial tumors have a higher risk of becoming malignant and spreading to other parts of the body.

Germ cell ovarian neoplasms arise from the cells that give rise to eggs (oocytes) and can include teratomas, dysgerminomas, yolk sac tumors, and embryonal carcinomas. Stromal ovarian neoplasms develop from the connective tissue cells supporting the ovary and can include granulosa cell tumors, thecomas, and fibromas.

It is essential to diagnose and treat ovarian neoplasms promptly, as some malignant forms can be aggressive and potentially life-threatening if not managed appropriately. Regular gynecological exams, imaging studies, and tumor marker tests are often used for early detection and monitoring of ovarian neoplasms. Treatment options may include surgery, chemotherapy, or radiation therapy, depending on the type, stage, and patient's overall health condition.

Calcium-transporting ATPases, also known as calcium pumps, are a type of enzyme that use the energy from ATP (adenosine triphosphate) hydrolysis to transport calcium ions across membranes against their concentration gradient. This process helps maintain low intracellular calcium concentrations and is essential for various cellular functions, including muscle contraction, neurotransmitter release, and gene expression.

There are two main types of calcium-transporting ATPases: the sarcoplasmic/endoplasmic reticulum Ca^2+^-ATPase (SERCA) and the plasma membrane Ca^2+^-ATPase (PMCA). SERCA is found in the sarcoplasmic reticulum of muscle cells and endoplasmic reticulum of other cell types, where it pumps calcium ions into these organelles to initiate muscle relaxation or signal transduction. PMCA, on the other hand, is located in the plasma membrane and extrudes calcium ions from the cell to maintain low cytosolic calcium concentrations.

Calcium-transporting ATPases play a crucial role in maintaining calcium homeostasis in cells and are important targets for drug development in various diseases, including heart failure, hypertension, and neurological disorders.

Perfusion, in medical terms, refers to the process of circulating blood through the body's organs and tissues to deliver oxygen and nutrients and remove waste products. It is a measure of the delivery of adequate blood flow to specific areas or tissues in the body. Perfusion can be assessed using various methods, including imaging techniques like computed tomography (CT) scans, magnetic resonance imaging (MRI), and perfusion scintigraphy.

Perfusion is critical for maintaining proper organ function and overall health. When perfusion is impaired or inadequate, it can lead to tissue hypoxia, acidosis, and cell death, which can result in organ dysfunction or failure. Conditions that can affect perfusion include cardiovascular disease, shock, trauma, and certain surgical procedures.

Spinal injections, also known as epidural injections or intrathecal injections, are medical procedures involving the injection of medications directly into the spinal canal. The medication is usually delivered into the space surrounding the spinal cord (the epidural space) or into the cerebrospinal fluid that surrounds and protects the spinal cord (the subarachnoid space).

The medications used in spinal injections can include local anesthetics, steroids, opioids, or a combination of these. The purpose of spinal injections is to provide diagnostic information, therapeutic relief, or both. They are commonly used to treat various conditions affecting the spine, such as radicular pain (pain that radiates down the arms or legs), disc herniation, spinal stenosis, and degenerative disc disease.

Spinal injections can be administered using different techniques, including fluoroscopy-guided injections, computed tomography (CT) scan-guided injections, or with the help of a nerve stimulator. These techniques ensure accurate placement of the medication and minimize the risk of complications.

It is essential to consult a healthcare professional for specific information regarding spinal injections and their potential benefits and risks.

Saponins are a type of naturally occurring chemical compound found in various plants, including soapwords, ginseng, and many others. They are known for their foaming properties, similar to that of soap, which gives them their name "saponin" derived from the Latin word "sapo" meaning soap.

Medically, saponins have been studied for their potential health benefits, including their ability to lower cholesterol levels, reduce inflammation, and boost the immune system. However, they can also have toxic effects in high concentrations, causing gastrointestinal disturbances and potentially damaging red blood cells.

Saponins are typically found in the cell walls of plants and can be extracted through various methods for use in pharmaceuticals, food additives, and cosmetics.

Growth Hormone (GH), also known as somatotropin, is a peptide hormone secreted by the somatotroph cells in the anterior pituitary gland. It plays a crucial role in regulating growth, cell reproduction, and regeneration by stimulating the production of another hormone called insulin-like growth factor 1 (IGF-1) in the liver and other tissues. GH also has important metabolic functions, such as increasing glucose levels, enhancing protein synthesis, and reducing fat storage. Its secretion is regulated by two hypothalamic hormones: growth hormone-releasing hormone (GHRH), which stimulates its release, and somatostatin (SRIF), which inhibits its release. Abnormal levels of GH can lead to various medical conditions, such as dwarfism or gigantism if there are deficiencies or excesses, respectively.

MAPKKK1 or Mitogen-Activated Protein Kinase Kinase Kinase 1 is a serine/threonine protein kinase that belongs to the MAP3K family. It plays a crucial role in intracellular signal transduction pathways, particularly in the MAPK/ERK cascade, which is involved in various cellular processes such as proliferation, differentiation, and survival.

MAPKKK1 activates MAPKKs (Mitogen-Activated Protein Kinase Kinases) through phosphorylation of specific serine and threonine residues. In turn, activated MAPKKs phosphorylate and activate MAPKs (Mitogen-Activated Protein Kinases), which then regulate the activity of various transcription factors and other downstream targets to elicit appropriate cellular responses.

Mutations in MAPKKK1 have been implicated in several human diseases, including cancer and developmental disorders. Therefore, understanding its function and regulation is essential for developing novel therapeutic strategies to treat these conditions.

Adenylate cyclase toxin is a type of exotoxin produced by certain bacteria, including Bordetella pertussis (the causative agent of whooping cough) and Vibrio cholerae. This toxin functions by entering host cells and catalyzing the conversion of adenosine triphosphate (ATP) to cyclic adenosine monophosphate (cAMP), leading to increased intracellular cAMP levels.

The elevated cAMP levels can disrupt various cellular processes, such as signal transduction and ion transport, resulting in a range of physiological effects that contribute to the pathogenesis of the bacterial infection. For example, in the case of Bordetella pertussis, adenylate cyclase toxin impairs the function of immune cells, allowing the bacteria to evade host defenses and establish a successful infection.

In summary, adenylate cyclase toxin is a virulence factor produced by certain pathogenic bacteria that increases intracellular cAMP levels in host cells, leading to disrupted cellular processes and contributing to bacterial pathogenesis.

Hydrogen-ion concentration, also known as pH, is a measure of the acidity or basicity of a solution. It is defined as the negative logarithm (to the base 10) of the hydrogen ion activity in a solution. The standard unit of measurement is the pH unit. A pH of 7 is neutral, less than 7 is acidic, and greater than 7 is basic.

In medical terms, hydrogen-ion concentration is important for maintaining homeostasis within the body. For example, in the stomach, a high hydrogen-ion concentration (low pH) is necessary for the digestion of food. However, in other parts of the body such as blood, a high hydrogen-ion concentration can be harmful and lead to acidosis. Conversely, a low hydrogen-ion concentration (high pH) in the blood can lead to alkalosis. Both acidosis and alkalosis can have serious consequences on various organ systems if not corrected.

I apologize, but I am not able to provide a medical definition for "Egtazic Acid" because it is not a term that is recognized in the field of medicine or pharmacology. It is possible that you may have meant "Egтарic Acid," which also does not have a specific medical meaning, or "Ethylene Glycol Tetraacetic Acid (EGTA)," which is a chemical compound used in research and medicine for its ability to bind calcium ions. If you have any other questions, I would be happy to try to help answer them.

Histochemistry is the branch of pathology that deals with the microscopic localization of cellular or tissue components using specific chemical reactions. It involves the application of chemical techniques to identify and locate specific biomolecules within tissues, cells, and subcellular structures. This is achieved through the use of various staining methods that react with specific antigens or enzymes in the sample, allowing for their visualization under a microscope. Histochemistry is widely used in diagnostic pathology to identify different types of tissues, cells, and structures, as well as in research to study cellular and molecular processes in health and disease.

Immunologic techniques are a group of laboratory methods that utilize the immune system's ability to recognize and respond to specific molecules, known as antigens. These techniques are widely used in medicine, biology, and research to detect, measure, or identify various substances, including proteins, hormones, viruses, bacteria, and other antigens.

Some common immunologic techniques include:

1. Enzyme-linked Immunosorbent Assay (ELISA): A sensitive assay used to detect and quantify antigens or antibodies in a sample. This technique uses an enzyme linked to an antibody or antigen, which reacts with a substrate to produce a colored product that can be measured and quantified.
2. Immunofluorescence: A microscopic technique used to visualize the location of antigens or antibodies in tissues or cells. This technique uses fluorescent dyes conjugated to antibodies, which bind to specific antigens and emit light when excited by a specific wavelength of light.
3. Western Blotting: A laboratory technique used to detect and identify specific proteins in a sample. This technique involves separating proteins based on their size using electrophoresis, transferring them to a membrane, and then probing the membrane with antibodies that recognize the protein of interest.
4. Immunoprecipitation: A laboratory technique used to isolate and purify specific antigens or antibodies from a complex mixture. This technique involves incubating the mixture with an antibody that recognizes the antigen or antibody of interest, followed by precipitation of the antigen-antibody complex using a variety of methods.
5. Radioimmunoassay (RIA): A sensitive assay used to detect and quantify antigens or antibodies in a sample. This technique uses radioactively labeled antigens or antibodies, which bind to specific antigens or antibodies in the sample, allowing for detection and quantification using a scintillation counter.

These techniques are important tools in medical diagnosis, research, and forensic science.

A multigene family is a group of genetically related genes that share a common ancestry and have similar sequences or structures. These genes are arranged in clusters on a chromosome and often encode proteins with similar functions. They can arise through various mechanisms, including gene duplication, recombination, and transposition. Multigene families play crucial roles in many biological processes, such as development, immunity, and metabolism. Examples of multigene families include the globin genes involved in oxygen transport, the immune system's major histocompatibility complex (MHC) genes, and the cytochrome P450 genes associated with drug metabolism.

Northern blotting is a laboratory technique used in molecular biology to detect and analyze specific RNA molecules (such as mRNA) in a mixture of total RNA extracted from cells or tissues. This technique is called "Northern" blotting because it is analogous to the Southern blotting method, which is used for DNA detection.

The Northern blotting procedure involves several steps:

1. Electrophoresis: The total RNA mixture is first separated based on size by running it through an agarose gel using electrical current. This separates the RNA molecules according to their length, with smaller RNA fragments migrating faster than larger ones.

2. Transfer: After electrophoresis, the RNA bands are denatured (made single-stranded) and transferred from the gel onto a nitrocellulose or nylon membrane using a technique called capillary transfer or vacuum blotting. This step ensures that the order and relative positions of the RNA fragments are preserved on the membrane, similar to how they appear in the gel.

3. Cross-linking: The RNA is then chemically cross-linked to the membrane using UV light or heat treatment, which helps to immobilize the RNA onto the membrane and prevent it from washing off during subsequent steps.

4. Prehybridization: Before adding the labeled probe, the membrane is prehybridized in a solution containing blocking agents (such as salmon sperm DNA or yeast tRNA) to minimize non-specific binding of the probe to the membrane.

5. Hybridization: A labeled nucleic acid probe, specific to the RNA of interest, is added to the prehybridization solution and allowed to hybridize (form base pairs) with its complementary RNA sequence on the membrane. The probe can be either a DNA or an RNA molecule, and it is typically labeled with a radioactive isotope (such as ³²P) or a non-radioactive label (such as digoxigenin).

6. Washing: After hybridization, the membrane is washed to remove unbound probe and reduce background noise. The washing conditions (temperature, salt concentration, and detergent concentration) are optimized based on the stringency required for specific hybridization.

7. Detection: The presence of the labeled probe is then detected using an appropriate method, depending on the type of label used. For radioactive probes, this typically involves exposing the membrane to X-ray film or a phosphorimager screen and analyzing the resulting image. For non-radioactive probes, detection can be performed using colorimetric, chemiluminescent, or fluorescent methods.

8. Data analysis: The intensity of the signal is quantified and compared to controls (such as housekeeping genes) to determine the relative expression level of the RNA of interest. This information can be used for various purposes, such as identifying differentially expressed genes in response to a specific treatment or comparing gene expression levels across different samples or conditions.

Membrane proteins are a type of protein that are embedded in the lipid bilayer of biological membranes, such as the plasma membrane of cells or the inner membrane of mitochondria. These proteins play crucial roles in various cellular processes, including:

1. Cell-cell recognition and signaling
2. Transport of molecules across the membrane (selective permeability)
3. Enzymatic reactions at the membrane surface
4. Energy transduction and conversion
5. Mechanosensation and signal transduction

Membrane proteins can be classified into two main categories: integral membrane proteins, which are permanently associated with the lipid bilayer, and peripheral membrane proteins, which are temporarily or loosely attached to the membrane surface. Integral membrane proteins can further be divided into three subcategories based on their topology:

1. Transmembrane proteins, which span the entire width of the lipid bilayer with one or more alpha-helices or beta-barrels.
2. Lipid-anchored proteins, which are covalently attached to lipids in the membrane via a glycosylphosphatidylinositol (GPI) anchor or other lipid modifications.
3. Monotopic proteins, which are partially embedded in the membrane and have one or more domains exposed to either side of the bilayer.

Membrane proteins are essential for maintaining cellular homeostasis and are targets for various therapeutic interventions, including drug development and gene therapy. However, their structural complexity and hydrophobicity make them challenging to study using traditional biochemical methods, requiring specialized techniques such as X-ray crystallography, nuclear magnetic resonance (NMR) spectroscopy, and single-particle cryo-electron microscopy (cryo-EM).

COS cells are a type of cell line that are commonly used in molecular biology and genetic research. The name "COS" is an acronym for "CV-1 in Origin," as these cells were originally derived from the African green monkey kidney cell line CV-1. COS cells have been modified through genetic engineering to express high levels of a protein called SV40 large T antigen, which allows them to efficiently take up and replicate exogenous DNA.

There are several different types of COS cells that are commonly used in research, including COS-1, COS-3, and COS-7 cells. These cells are widely used for the production of recombinant proteins, as well as for studies of gene expression, protein localization, and signal transduction.

It is important to note that while COS cells have been a valuable tool in scientific research, they are not without their limitations. For example, because they are derived from monkey kidney cells, there may be differences in the way that human genes are expressed or regulated in these cells compared to human cells. Additionally, because COS cells express SV40 large T antigen, they may have altered cell cycle regulation and other phenotypic changes that could affect experimental results. Therefore, it is important to carefully consider the choice of cell line when designing experiments and interpreting results.

Microspheres are tiny, spherical particles that range in size from 1 to 1000 micrometers in diameter. They are made of biocompatible and biodegradable materials such as polymers, glass, or ceramics. In medical terms, microspheres have various applications, including drug delivery systems, medical imaging, and tissue engineering.

In drug delivery, microspheres can be used to encapsulate drugs and release them slowly over time, improving the efficacy of the treatment while reducing side effects. They can also be used for targeted drug delivery, where the microspheres are designed to accumulate in specific tissues or organs.

In medical imaging, microspheres can be labeled with radioactive isotopes or magnetic materials and used as contrast agents to enhance the visibility of tissues or organs during imaging procedures such as X-ray, CT, MRI, or PET scans.

In tissue engineering, microspheres can serve as a scaffold for cell growth and differentiation, promoting the regeneration of damaged tissues or organs. Overall, microspheres have great potential in various medical applications due to their unique properties and versatility.

Dihydrotestosterone (DHT) is a sex hormone and androgen that plays a critical role in the development and maintenance of male characteristics, such as facial hair, deep voice, and muscle mass. It is synthesized from testosterone through the action of the enzyme 5-alpha reductase. DHT is essential for the normal development of the male genitalia during fetal development and for the maturation of the sexual organs at puberty.

In addition to its role in sexual development, DHT also contributes to the growth of hair follicles, the health of the prostate gland, and the maintenance of bone density. However, an excess of DHT has been linked to certain medical conditions, such as benign prostatic hyperplasia (BPH) and androgenetic alopecia (male pattern baldness).

DHT exerts its effects by binding to androgen receptors in various tissues throughout the body. Once bound, DHT triggers a series of cellular responses that regulate gene expression and influence the growth and differentiation of cells. In some cases, these responses can lead to unwanted side effects, such as hair loss or prostate enlargement.

Medications that block the action of 5-alpha reductase, such as finasteride and dutasteride, are sometimes used to treat conditions associated with excess DHT production. These drugs work by reducing the amount of DHT available to bind to androgen receptors, thereby alleviating symptoms and slowing disease progression.

In summary, dihydrotestosterone is a potent sex hormone that plays a critical role in male sexual development and function. While it is essential for normal growth and development, an excess of DHT has been linked to certain medical conditions, such as BPH and androgenetic alopecia. Medications that block the action of 5-alpha reductase are sometimes used to treat these conditions by reducing the amount of DHT available to bind to androgen receptors.

Cross-linking reagents are chemical agents that are used to create covalent bonds between two or more molecules, creating a network of interconnected molecules known as a cross-linked structure. In the context of medical and biological research, cross-linking reagents are often used to stabilize protein structures, study protein-protein interactions, and develop therapeutic agents.

Cross-linking reagents work by reacting with functional groups on adjacent molecules, such as amino groups (-NH2) or sulfhydryl groups (-SH), to form a covalent bond between them. This can help to stabilize protein structures and prevent them from unfolding or aggregating.

There are many different types of cross-linking reagents, each with its own specificity and reactivity. Some common examples include glutaraldehyde, formaldehyde, disuccinimidyl suberate (DSS), and bis(sulfosuccinimidyl) suberate (BS3). The choice of cross-linking reagent depends on the specific application and the properties of the molecules being cross-linked.

It is important to note that cross-linking reagents can also have unintended effects, such as modifying or disrupting the function of the proteins they are intended to stabilize. Therefore, it is essential to use them carefully and with appropriate controls to ensure accurate and reliable results.

Muscarinic receptors are a type of G protein-coupled receptor (GPCR) that bind to the neurotransmitter acetylcholine. They are found in various organ systems, including the nervous system, cardiovascular system, and respiratory system. Muscarinic receptors are activated by muscarine, a type of alkaloid found in certain mushrooms, and are classified into five subtypes (M1-M5) based on their pharmacological properties and signaling pathways.

Muscarinic receptors play an essential role in regulating various physiological functions, such as heart rate, smooth muscle contraction, glandular secretion, and cognitive processes. Activation of M1, M3, and M5 muscarinic receptors leads to the activation of phospholipase C (PLC) and the production of inositol trisphosphate (IP3) and diacylglycerol (DAG), which increase intracellular calcium levels and activate protein kinase C (PKC). Activation of M2 and M4 muscarinic receptors inhibits adenylyl cyclase, reducing the production of cAMP and modulating ion channel activity.

In summary, muscarinic receptors are a type of GPCR that binds to acetylcholine and regulates various physiological functions in different organ systems. They are classified into five subtypes based on their pharmacological properties and signaling pathways.

G-protein-coupled receptors (GPCRs) are a family of membrane receptors that play an essential role in cellular signaling and communication. These receptors possess seven transmembrane domains, forming a structure that spans the lipid bilayer of the cell membrane. They are called "G-protein-coupled" because they interact with heterotrimeric G proteins upon activation, which in turn modulate various downstream signaling pathways.

When an extracellular ligand binds to a GPCR, it causes a conformational change in the receptor's structure, leading to the exchange of guanosine diphosphate (GDP) for guanosine triphosphate (GTP) on the associated G protein's α subunit. This exchange triggers the dissociation of the G protein into its α and βγ subunits, which then interact with various effector proteins to elicit cellular responses.

There are four main families of GPCRs, classified based on their sequence similarities and downstream signaling pathways:

1. Gq-coupled receptors: These receptors activate phospholipase C (PLC), which leads to the production of inositol trisphosphate (IP3) and diacylglycerol (DAG). IP3 induces calcium release from intracellular stores, while DAG activates protein kinase C (PKC).
2. Gs-coupled receptors: These receptors activate adenylyl cyclase, which increases the production of cyclic adenosine monophosphate (cAMP) and subsequently activates protein kinase A (PKA).
3. Gi/o-coupled receptors: These receptors inhibit adenylyl cyclase, reducing cAMP levels and modulating PKA activity. Additionally, they can activate ion channels or regulate other signaling pathways through the βγ subunits.
4. G12/13-coupled receptors: These receptors primarily activate RhoGEFs, which in turn activate RhoA and modulate cytoskeletal organization and cellular motility.

GPCRs are involved in various physiological processes, including neurotransmission, hormone signaling, immune response, and sensory perception. Dysregulation of GPCR function has been implicated in numerous diseases, making them attractive targets for drug development.

Calcium channels are specialized proteins that span the membrane of cells and allow calcium ions (Ca²+) to flow in and out of the cell. They are crucial for many physiological processes, including muscle contraction, neurotransmitter release, hormone secretion, and gene expression.

There are several types of calcium channels, classified based on their biophysical and pharmacological properties. The most well-known are:

1. Voltage-gated calcium channels (VGCCs): These channels are activated by changes in the membrane potential. They are further divided into several subtypes, including L-type, P/Q-type, N-type, R-type, and T-type. VGCCs play a critical role in excitation-contraction coupling in muscle cells and neurotransmitter release in neurons.
2. Receptor-operated calcium channels (ROCCs): These channels are activated by the binding of an extracellular ligand, such as a hormone or neurotransmitter, to a specific receptor on the cell surface. ROCCs are involved in various physiological processes, including smooth muscle contraction and platelet activation.
3. Store-operated calcium channels (SOCCs): These channels are activated by the depletion of intracellular calcium stores, such as those found in the endoplasmic reticulum. SOCCs play a critical role in maintaining calcium homeostasis and signaling within cells.

Dysregulation of calcium channel function has been implicated in various diseases, including hypertension, arrhythmias, migraine, epilepsy, and neurodegenerative disorders. Therefore, calcium channels are an important target for drug development and therapy.

Ras genes are a group of genes that encode for proteins involved in cell signaling pathways that regulate cell growth, differentiation, and survival. Mutations in Ras genes have been associated with various types of cancer, as well as other diseases such as developmental disorders and autoimmune diseases. The Ras protein family includes H-Ras, K-Ras, and N-Ras, which are activated by growth factor receptors and other signals to activate downstream effectors involved in cell proliferation and survival. Abnormal activation of Ras signaling due to mutations or dysregulation can contribute to tumor development and progression.

Adenocarcinoma is a type of cancer that arises from glandular epithelial cells. These cells line the inside of many internal organs, including the breasts, prostate, colon, and lungs. Adenocarcinomas can occur in any of these organs, as well as in other locations where glands are present.

The term "adenocarcinoma" is used to describe a cancer that has features of glandular tissue, such as mucus-secreting cells or cells that produce hormones. These cancers often form glandular structures within the tumor mass and may produce mucus or other substances.

Adenocarcinomas are typically slow-growing and tend to spread (metastasize) to other parts of the body through the lymphatic system or bloodstream. They can be treated with surgery, radiation therapy, chemotherapy, targeted therapy, or a combination of these treatments. The prognosis for adenocarcinoma depends on several factors, including the location and stage of the cancer, as well as the patient's overall health and age.

Gel chromatography is a type of liquid chromatography that separates molecules based on their size or molecular weight. It uses a stationary phase that consists of a gel matrix made up of cross-linked polymers, such as dextran, agarose, or polyacrylamide. The gel matrix contains pores of various sizes, which allow smaller molecules to penetrate deeper into the matrix while larger molecules are excluded.

In gel chromatography, a mixture of molecules is loaded onto the top of the gel column and eluted with a solvent that moves down the column by gravity or pressure. As the sample components move down the column, they interact with the gel matrix and get separated based on their size. Smaller molecules can enter the pores of the gel and take longer to elute, while larger molecules are excluded from the pores and elute more quickly.

Gel chromatography is commonly used to separate and purify proteins, nucleic acids, and other biomolecules based on their size and molecular weight. It is also used in the analysis of polymers, colloids, and other materials with a wide range of applications in chemistry, biology, and medicine.

General anesthesia is a state of controlled unconsciousness, induced by administering various medications, that eliminates awareness, movement, and pain sensation during medical procedures. It involves the use of a combination of intravenous and inhaled drugs to produce a reversible loss of consciousness, allowing patients to undergo surgical or diagnostic interventions safely and comfortably. The depth and duration of anesthesia are carefully monitored and adjusted throughout the procedure by an anesthesiologist or certified registered nurse anesthetist (CRNA) to ensure patient safety and optimize recovery. General anesthesia is typically used for more extensive surgical procedures, such as open-heart surgery, major orthopedic surgeries, and neurosurgery.

Indicators and reagents are terms commonly used in the field of clinical chemistry and laboratory medicine. Here are their definitions:

1. Indicator: An indicator is a substance that changes its color or other physical properties in response to a chemical change, such as a change in pH, oxidation-reduction potential, or the presence of a particular ion or molecule. Indicators are often used in laboratory tests to monitor or signal the progress of a reaction or to indicate the end point of a titration. A familiar example is the use of phenolphthalein as a pH indicator in acid-base titrations, which turns pink in basic solutions and colorless in acidic solutions.

2. Reagent: A reagent is a substance that is added to a system (such as a sample or a reaction mixture) to bring about a chemical reaction, test for the presence or absence of a particular component, or measure the concentration of a specific analyte. Reagents are typically chemicals with well-defined and consistent properties, allowing them to be used reliably in analytical procedures. Examples of reagents include enzymes, antibodies, dyes, metal ions, and organic compounds. In laboratory settings, reagents are often prepared and standardized according to strict protocols to ensure their quality and performance in diagnostic tests and research applications.

Protein-Serine-Threonine Kinases (PSTKs) are a type of protein kinase that catalyzes the transfer of a phosphate group from ATP to the hydroxyl side chains of serine or threonine residues on target proteins. This phosphorylation process plays a crucial role in various cellular signaling pathways, including regulation of metabolism, gene expression, cell cycle progression, and apoptosis. PSTKs are involved in many physiological and pathological processes, and their dysregulation has been implicated in several diseases, such as cancer, diabetes, and neurodegenerative disorders.

Rho GTP-binding proteins are a subfamily of the Ras superfamily of small GTPases, which function as molecular switches in various cellular signaling pathways. These proteins play crucial roles in regulating diverse cellular processes such as actin cytoskeleton dynamics, gene expression, cell cycle progression, and cell migration.

Rho GTP-binding proteins cycle between an active GTP-bound state and an inactive GDP-bound state. In the active state, they interact with various downstream effectors to regulate their respective cellular functions. Guanine nucleotide exchange factors (GEFs) activate Rho GTP-binding proteins by promoting the exchange of GDP for GTP, while GTPase-activating proteins (GAPs) inactivate them by enhancing their intrinsic GTP hydrolysis activity.

There are several members of the Rho GTP-binding protein family, including RhoA, RhoB, RhoC, Rac1, Rac2, Rac3, Cdc42, and Rnd proteins, each with distinct functions and downstream effectors. Dysregulation of Rho GTP-binding proteins has been implicated in various human diseases, including cancer, cardiovascular disease, neurological disorders, and inflammatory diseases.

Drug receptors are specific protein molecules found on the surface of cells, to which drugs can bind. These receptors are part of the cell's communication system and are responsible for responding to neurotransmitters, hormones, and other signaling molecules in the body. When a drug binds to its corresponding receptor, it can alter the receptor's function and trigger a cascade of intracellular events that ultimately lead to a biological response.

Drug receptors can be classified into several types based on their function, including:

1. G protein-coupled receptors (GPCRs): These are the largest family of drug receptors and are involved in various physiological processes such as vision, olfaction, neurotransmission, and hormone signaling. They activate intracellular signaling pathways through heterotrimeric G proteins.
2. Ion channel receptors: These receptors form ion channels that allow the flow of ions across the cell membrane when activated. They are involved in rapid signal transduction and can be directly gated by ligands or indirectly through G protein-coupled receptors.
3. Enzyme-linked receptors: These receptors have an intracellular domain that functions as an enzyme, activating intracellular signaling pathways when bound to a ligand. Examples include receptor tyrosine kinases and receptor serine/threonine kinases.
4. Nuclear receptors: These receptors are located in the nucleus and function as transcription factors, regulating gene expression upon binding to their ligands.

Understanding drug receptors is crucial for developing new drugs and predicting their potential therapeutic and adverse effects. By targeting specific receptors, drugs can modulate cellular responses and produce desired pharmacological actions.

"Intraperitoneal injection" is a medical term that refers to the administration of a substance or medication directly into the peritoneal cavity, which is the space between the lining of the abdominal wall and the organs contained within it. This type of injection is typically used in clinical settings for various purposes, such as delivering chemotherapy drugs, anesthetics, or other medications directly to the abdominal organs.

The procedure involves inserting a needle through the abdominal wall and into the peritoneal cavity, taking care to avoid any vital structures such as blood vessels or nerves. Once the needle is properly positioned, the medication can be injected slowly and carefully to ensure even distribution throughout the cavity.

It's important to note that intraperitoneal injections are typically reserved for situations where other routes of administration are not feasible or effective, as they carry a higher risk of complications such as infection, bleeding, or injury to surrounding organs. As with any medical procedure, it should only be performed by trained healthcare professionals under appropriate clinical circumstances.

Arachidonic acid is a type of polyunsaturated fatty acid that is found naturally in the body and in certain foods. It is an essential fatty acid, meaning that it cannot be produced by the human body and must be obtained through the diet. Arachidonic acid is a key component of cell membranes and plays a role in various physiological processes, including inflammation and blood clotting.

In the body, arachidonic acid is released from cell membranes in response to various stimuli, such as injury or infection. Once released, it can be converted into a variety of bioactive compounds, including prostaglandins, thromboxanes, and leukotrienes, which mediate various physiological responses, including inflammation, pain, fever, and blood clotting.

Arachidonic acid is found in high concentrations in animal products such as meat, poultry, fish, and eggs, as well as in some plant sources such as certain nuts and seeds. It is also available as a dietary supplement. However, it is important to note that excessive intake of arachidonic acid can contribute to the development of inflammation and other health problems, so it is recommended to consume this fatty acid in moderation as part of a balanced diet.

Polymerase Chain Reaction (PCR) is a laboratory technique used to amplify specific regions of DNA. It enables the production of thousands to millions of copies of a particular DNA sequence in a rapid and efficient manner, making it an essential tool in various fields such as molecular biology, medical diagnostics, forensic science, and research.

The PCR process involves repeated cycles of heating and cooling to separate the DNA strands, allow primers (short sequences of single-stranded DNA) to attach to the target regions, and extend these primers using an enzyme called Taq polymerase, resulting in the exponential amplification of the desired DNA segment.

In a medical context, PCR is often used for detecting and quantifying specific pathogens (viruses, bacteria, fungi, or parasites) in clinical samples, identifying genetic mutations or polymorphisms associated with diseases, monitoring disease progression, and evaluating treatment effectiveness.

A neoplasm is a tumor or growth that is formed by an abnormal and excessive proliferation of cells, which can be benign or malignant. Neoplasm proteins are therefore any proteins that are expressed or produced in these neoplastic cells. These proteins can play various roles in the development, progression, and maintenance of neoplasms.

Some neoplasm proteins may contribute to the uncontrolled cell growth and division seen in cancer, such as oncogenic proteins that promote cell cycle progression or inhibit apoptosis (programmed cell death). Others may help the neoplastic cells evade the immune system, allowing them to proliferate undetected. Still others may be involved in angiogenesis, the formation of new blood vessels that supply the tumor with nutrients and oxygen.

Neoplasm proteins can also serve as biomarkers for cancer diagnosis, prognosis, or treatment response. For example, the presence or level of certain neoplasm proteins in biological samples such as blood or tissue may indicate the presence of a specific type of cancer, help predict the likelihood of cancer recurrence, or suggest whether a particular therapy will be effective.

Overall, understanding the roles and behaviors of neoplasm proteins can provide valuable insights into the biology of cancer and inform the development of new diagnostic and therapeutic strategies.

I believe there may be some confusion in your question. "Rabbits" is a common name used to refer to the Lagomorpha species, particularly members of the family Leporidae. They are small mammals known for their long ears, strong legs, and quick reproduction.

However, if you're referring to "rabbits" in a medical context, there is a term called "rabbit syndrome," which is a rare movement disorder characterized by repetitive, involuntary movements of the fingers, resembling those of a rabbit chewing. It is also known as "finger-chewing chorea." This condition is usually associated with certain medications, particularly antipsychotics, and typically resolves when the medication is stopped or adjusted.

Gonadotropin-Releasing Hormone (GnRH), also known as Luteinizing Hormone-Releasing Hormone (LHRH), is a hormonal peptide consisting of 10 amino acids. It is produced and released by the hypothalamus, an area in the brain that links the nervous system to the endocrine system via the pituitary gland.

GnRH plays a crucial role in regulating reproduction and sexual development through its control of two gonadotropins: follicle-stimulating hormone (FSH) and luteinizing hormone (LH). These gonadotropins, in turn, stimulate the gonads (ovaries or testes) to produce sex steroids and eggs or sperm.

GnRH acts on the anterior pituitary gland by binding to its specific receptors, leading to the release of FSH and LH. The hypothalamic-pituitary-gonadal axis is under negative feedback control, meaning that when sex steroid levels are high, they inhibit the release of GnRH, which subsequently decreases FSH and LH secretion.

GnRH agonists and antagonists have clinical applications in various medical conditions, such as infertility treatments, precocious puberty, endometriosis, uterine fibroids, prostate cancer, and hormone-responsive breast cancer.

Intestinal neoplasms refer to abnormal growths in the tissues of the intestines, which can be benign or malignant. These growths are called neoplasms and they result from uncontrolled cell division. In the case of intestinal neoplasms, these growths occur in the small intestine, large intestine (colon), rectum, or appendix.

Benign intestinal neoplasms are not cancerous and often do not invade surrounding tissues or spread to other parts of the body. However, they can still cause problems if they grow large enough to obstruct the intestines or cause bleeding. Common types of benign intestinal neoplasms include polyps, leiomyomas, and lipomas.

Malignant intestinal neoplasms, on the other hand, are cancerous and can invade surrounding tissues and spread to other parts of the body. The most common type of malignant intestinal neoplasm is adenocarcinoma, which arises from the glandular cells lining the inside of the intestines. Other types of malignant intestinal neoplasms include lymphomas, sarcomas, and carcinoid tumors.

Symptoms of intestinal neoplasms can vary depending on their size, location, and type. Common symptoms include abdominal pain, bloating, changes in bowel habits, rectal bleeding, weight loss, and fatigue. If you experience any of these symptoms, it is important to seek medical attention promptly.

SRC-family kinases (SFKs) are a group of non-receptor tyrosine kinases that play important roles in various cellular processes, including cell proliferation, differentiation, survival, and migration. They are named after the founding member, SRC, which was first identified as an oncogene in Rous sarcoma virus.

SFKs share a common structure, consisting of an N-terminal unique domain, a SH3 domain, a SH2 domain, a catalytic kinase domain, and a C-terminal regulatory tail with a negative regulatory tyrosine residue (Y527 in human SRC). In their inactive state, SFKs are maintained in a closed conformation through intramolecular interactions between the SH3 domain, SH2 domain, and the phosphorylated C-terminal tyrosine.

Upon activation by various signals, such as growth factors, cytokines, or integrin engagement, SFKs are activated through a series of events that involve dephosphorylation of the regulatory tyrosine residue, recruitment to membrane receptors via their SH2 and SH3 domains, and trans-autophosphorylation of the activation loop in the kinase domain.

Once activated, SFKs can phosphorylate a wide range of downstream substrates, including other protein kinases, adaptor proteins, and cytoskeletal components, thereby regulating various signaling pathways that control cell behavior. Dysregulation of SFK activity has been implicated in various diseases, including cancer, inflammation, and neurological disorders.

The cytoskeleton is a complex network of various protein filaments that provides structural support, shape, and stability to the cell. It plays a crucial role in maintaining cellular integrity, intracellular organization, and enabling cell movement. The cytoskeleton is composed of three major types of protein fibers: microfilaments (actin filaments), intermediate filaments, and microtubules. These filaments work together to provide mechanical support, participate in cell division, intracellular transport, and help maintain the cell's architecture. The dynamic nature of the cytoskeleton allows cells to adapt to changing environmental conditions and respond to various stimuli.

Substrate specificity in the context of medical biochemistry and enzymology refers to the ability of an enzyme to selectively bind and catalyze a chemical reaction with a particular substrate (or a group of similar substrates) while discriminating against other molecules that are not substrates. This specificity arises from the three-dimensional structure of the enzyme, which has evolved to match the shape, charge distribution, and functional groups of its physiological substrate(s).

Substrate specificity is a fundamental property of enzymes that enables them to carry out highly selective chemical transformations in the complex cellular environment. The active site of an enzyme, where the catalysis takes place, has a unique conformation that complements the shape and charge distribution of its substrate(s). This ensures efficient recognition, binding, and conversion of the substrate into the desired product while minimizing unwanted side reactions with other molecules.

Substrate specificity can be categorized as:

1. Absolute specificity: An enzyme that can only act on a single substrate or a very narrow group of structurally related substrates, showing no activity towards any other molecule.
2. Group specificity: An enzyme that prefers to act on a particular functional group or class of compounds but can still accommodate minor structural variations within the substrate.
3. Broad or promiscuous specificity: An enzyme that can act on a wide range of structurally diverse substrates, albeit with varying catalytic efficiencies.

Understanding substrate specificity is crucial for elucidating enzymatic mechanisms, designing drugs that target specific enzymes or pathways, and developing biotechnological applications that rely on the controlled manipulation of enzyme activities.

Mass spectrometry (MS) is an analytical technique used to identify and quantify the chemical components of a mixture or compound. It works by ionizing the sample, generating charged molecules or fragments, and then measuring their mass-to-charge ratio in a vacuum. The resulting mass spectrum provides information about the molecular weight and structure of the analytes, allowing for identification and characterization.

In simpler terms, mass spectrometry is a method used to determine what chemicals are present in a sample and in what quantities, by converting the chemicals into ions, measuring their masses, and generating a spectrum that shows the relative abundances of each ion type.

Isoenzymes, also known as isoforms, are multiple forms of an enzyme that catalyze the same chemical reaction but differ in their amino acid sequence, structure, and/or kinetic properties. They are encoded by different genes or alternative splicing of the same gene. Isoenzymes can be found in various tissues and organs, and they play a crucial role in biological processes such as metabolism, detoxification, and cell signaling. Measurement of isoenzyme levels in body fluids (such as blood) can provide valuable diagnostic information for certain medical conditions, including tissue damage, inflammation, and various diseases.

The colon, also known as the large intestine, is a part of the digestive system in humans and other vertebrates. It is an organ that eliminates waste from the body and is located between the small intestine and the rectum. The main function of the colon is to absorb water and electrolytes from digested food, forming and storing feces until they are eliminated through the anus.

The colon is divided into several regions, including the cecum, ascending colon, transverse colon, descending colon, sigmoid colon, rectum, and anus. The walls of the colon contain a layer of muscle that helps to move waste material through the organ by a process called peristalsis.

The inner surface of the colon is lined with mucous membrane, which secretes mucus to lubricate the passage of feces. The colon also contains a large population of bacteria, known as the gut microbiota, which play an important role in digestion and immunity.

Doxorubicin is a type of chemotherapy medication known as an anthracycline. It works by interfering with the DNA in cancer cells, which prevents them from growing and multiplying. Doxorubicin is used to treat a wide variety of cancers, including leukemia, lymphoma, breast cancer, lung cancer, ovarian cancer, and many others. It may be given alone or in combination with other chemotherapy drugs.

Doxorubicin is usually administered through a vein (intravenously) and can cause side effects such as nausea, vomiting, hair loss, mouth sores, and increased risk of infection. It can also cause damage to the heart muscle, which can lead to heart failure in some cases. For this reason, doctors may monitor patients' heart function closely while they are receiving doxorubicin treatment.

It is important for patients to discuss the potential risks and benefits of doxorubicin therapy with their healthcare provider before starting treatment.

A xenograft model antitumor assay is a type of preclinical cancer research study that involves transplanting human tumor cells or tissues into an immunodeficient mouse. This model allows researchers to study the effects of various treatments, such as drugs or immune therapies, on human tumors in a living organism.

In this assay, human tumor cells or tissues are implanted into the mouse, typically under the skin or in another organ, where they grow and form a tumor. Once the tumor has established, the mouse is treated with the experimental therapy, and the tumor's growth is monitored over time. The response of the tumor to the treatment is then assessed by measuring changes in tumor size or weight, as well as other parameters such as survival rate and metastasis.

Xenograft model antitumor assays are useful for evaluating the efficacy and safety of new cancer therapies before they are tested in human clinical trials. They provide valuable information on how the tumors respond to treatment, drug pharmacokinetics, and toxicity, which can help researchers optimize dosing regimens and identify potential side effects. However, it is important to note that xenograft models have limitations, such as differences in tumor biology between mice and humans, and may not always predict how well a therapy will work in human patients.

Culture techniques are methods used in microbiology to grow and multiply microorganisms, such as bacteria, fungi, or viruses, in a controlled laboratory environment. These techniques allow for the isolation, identification, and study of specific microorganisms, which is essential for diagnostic purposes, research, and development of medical treatments.

The most common culture technique involves inoculating a sterile growth medium with a sample suspected to contain microorganisms. The growth medium can be solid or liquid and contains nutrients that support the growth of the microorganisms. Common solid growth media include agar plates, while liquid growth media are used for broth cultures.

Once inoculated, the growth medium is incubated at a temperature that favors the growth of the microorganisms being studied. During incubation, the microorganisms multiply and form visible colonies on the solid growth medium or turbid growth in the liquid growth medium. The size, shape, color, and other characteristics of the colonies can provide important clues about the identity of the microorganism.

Other culture techniques include selective and differential media, which are designed to inhibit the growth of certain types of microorganisms while promoting the growth of others, allowing for the isolation and identification of specific pathogens. Enrichment cultures involve adding specific nutrients or factors to a sample to promote the growth of a particular type of microorganism.

Overall, culture techniques are essential tools in microbiology and play a critical role in medical diagnostics, research, and public health.

RhoA (Ras Homolog Family Member A) is a small GTPase protein that acts as a molecular switch, cycling between an inactive GDP-bound state and an active GTP-bound state. It plays a crucial role in regulating various cellular processes such as actin cytoskeleton organization, gene expression, cell cycle progression, and cell migration.

RhoA GTP-binding protein becomes activated when it binds to GTP, and this activation leads to the recruitment of downstream effectors that mediate its functions. The activity of RhoA is tightly regulated by several proteins, including guanine nucleotide exchange factors (GEFs) that promote the exchange of GDP for GTP, GTPase-activating proteins (GAPs) that stimulate the intrinsic GTPase activity of RhoA to hydrolyze GTP to GDP and return it to an inactive state, and guanine nucleotide dissociation inhibitors (GDIs) that sequester RhoA in the cytoplasm and prevent its association with the membrane.

Mutations or dysregulation of RhoA GTP-binding protein have been implicated in various human diseases, including cancer, neurological disorders, and cardiovascular diseases.

Sequence homology in nucleic acids refers to the similarity or identity between the nucleotide sequences of two or more DNA or RNA molecules. It is often used as a measure of biological relationship between genes, organisms, or populations. High sequence homology suggests a recent common ancestry or functional constraint, while low sequence homology may indicate a more distant relationship or different functions.

Nucleic acid sequence homology can be determined by various methods such as pairwise alignment, multiple sequence alignment, and statistical analysis. The degree of homology is typically expressed as a percentage of identical or similar nucleotides in a given window of comparison.

It's important to note that the interpretation of sequence homology depends on the biological context and the evolutionary distance between the sequences compared. Therefore, functional and experimental validation is often necessary to confirm the significance of sequence homology.

Phosphatidylcholines (PtdCho) are a type of phospholipids that are essential components of cell membranes in living organisms. They are composed of a hydrophilic head group, which contains a choline moiety, and two hydrophobic fatty acid chains. Phosphatidylcholines are crucial for maintaining the structural integrity and function of cell membranes, and they also serve as important precursors for the synthesis of signaling molecules such as acetylcholine. They can be found in various tissues and biological fluids, including blood, and are abundant in foods such as soybeans, eggs, and meat. Phosphatidylcholines have been studied for their potential health benefits, including their role in maintaining healthy lipid metabolism and reducing the risk of cardiovascular disease.

Atrophy is a medical term that refers to the decrease in size and wasting of an organ or tissue due to the disappearance of cells, shrinkage of cells, or decreased number of cells. This process can be caused by various factors such as disuse, aging, degeneration, injury, or disease.

For example, if a muscle is immobilized for an extended period, it may undergo atrophy due to lack of use. Similarly, certain medical conditions like diabetes, cancer, and heart failure can lead to the wasting away of various tissues and organs in the body.

Atrophy can also occur as a result of natural aging processes, leading to decreased muscle mass and strength in older adults. In general, atrophy is characterized by a decrease in the volume or weight of an organ or tissue, which can have significant impacts on its function and overall health.

Bombesin is a type of peptide that occurs naturally in the body. It is a small protein-like molecule made up of amino acids, and it is involved in various physiological processes, including regulating appetite and digestion. Bombesin was first discovered in the skin of a frog species called Bombina bombina, hence its name. In the human body, bombesin-like peptides are produced by various tissues, including the stomach and brain. They bind to specific receptors in the body, triggering a range of responses, such as stimulating the release of hormones and increasing gut motility. Bombesin has been studied for its potential role in treating certain medical conditions, including cancer, although more research is needed to establish its safety and efficacy.

Cytoplasm is the material within a eukaryotic cell (a cell with a true nucleus) that lies between the nuclear membrane and the cell membrane. It is composed of an aqueous solution called cytosol, in which various organelles such as mitochondria, ribosomes, endoplasmic reticulum, Golgi apparatus, lysosomes, and vacuoles are suspended. Cytoplasm also contains a variety of dissolved nutrients, metabolites, ions, and enzymes that are involved in various cellular processes such as metabolism, signaling, and transport. It is where most of the cell's metabolic activities take place, and it plays a crucial role in maintaining the structure and function of the cell.

DNA primers are short single-stranded DNA molecules that serve as a starting point for DNA synthesis. They are typically used in laboratory techniques such as the polymerase chain reaction (PCR) and DNA sequencing. The primer binds to a complementary sequence on the DNA template through base pairing, providing a free 3'-hydroxyl group for the DNA polymerase enzyme to add nucleotides and synthesize a new strand of DNA. This allows for specific and targeted amplification or analysis of a particular region of interest within a larger DNA molecule.

Cycloheximide is an antibiotic that is primarily used in laboratory settings to inhibit protein synthesis in eukaryotic cells. It is derived from the actinobacteria species Streptomyces griseus. In medical terms, it is not used as a therapeutic drug in humans due to its significant side effects, including liver toxicity and potential neurotoxicity. However, it remains a valuable tool in research for studying protein function and cellular processes.

The antibiotic works by binding to the 60S subunit of the ribosome, thereby preventing the transfer RNA (tRNA) from delivering amino acids to the growing polypeptide chain during translation. This inhibition of protein synthesis can be lethal to cells, making cycloheximide a useful tool in studying cellular responses to protein depletion or misregulation.

In summary, while cycloheximide has significant research applications due to its ability to inhibit protein synthesis in eukaryotic cells, it is not used as a therapeutic drug in humans because of its toxic side effects.

A precipitin test is a type of immunodiagnostic test used to detect and measure the presence of specific antibodies or antigens in a patient's serum. The test is based on the principle of antigen-antibody interaction, where the addition of an antigen to a solution containing its corresponding antibody results in the formation of an insoluble immune complex known as a precipitin.

In this test, a small amount of the patient's serum is added to a solution containing a known antigen or antibody. If the patient has antibodies or antigens that correspond to the added reagent, they will bind and form a visible precipitate. The size and density of the precipitate can be used to quantify the amount of antibody or antigen present in the sample.

Precipitin tests are commonly used in the diagnosis of various infectious diseases, autoimmune disorders, and allergies. They can also be used in forensic science to identify biological samples. However, they have largely been replaced by more modern immunological techniques such as enzyme-linked immunosorbent assays (ELISAs) and radioimmunoassays (RIAs).

Drug screening assays for antitumor agents are laboratory tests used to identify and evaluate the effectiveness of potential drugs or compounds that can inhibit the growth of tumor cells or induce their death. These assays are typically performed in vitro (in a test tube or petri dish) using cell cultures of various types of cancer cells.

The assays measure different parameters such as cell viability, proliferation, apoptosis (programmed cell death), and cytotoxicity to determine the ability of the drug to kill or inhibit the growth of tumor cells. The results of these assays can help researchers identify promising antitumor agents that can be further developed for clinical use in cancer treatment.

There are different types of drug screening assays for antitumor agents, including high-throughput screening (HTS) assays, which allow for the rapid and automated testing of a large number of compounds against various cancer cell lines. Other types of assays include phenotypic screening assays, target-based screening assays, and functional screening assays, each with its own advantages and limitations.

Overall, drug screening assays for antitumor agents play a critical role in the development of new cancer therapies by providing valuable information on the activity and safety of potential drugs, helping to identify effective treatments and reduce the time and cost associated with bringing new drugs to market.

Epithelium is the tissue that covers the outer surface of the body, lines the internal cavities and organs, and forms various glands. It is composed of one or more layers of tightly packed cells that have a uniform shape and size, and rest on a basement membrane. Epithelial tissues are avascular, meaning they do not contain blood vessels, and are supplied with nutrients by diffusion from the underlying connective tissue.

Epithelial cells perform a variety of functions, including protection, secretion, absorption, excretion, and sensation. They can be classified based on their shape and the number of cell layers they contain. The main types of epithelium are:

1. Squamous epithelium: composed of flat, scalelike cells that fit together like tiles on a roof. It forms the lining of blood vessels, air sacs in the lungs, and the outermost layer of the skin.
2. Cuboidal epithelium: composed of cube-shaped cells with equal height and width. It is found in glands, tubules, and ducts.
3. Columnar epithelium: composed of tall, rectangular cells that are taller than they are wide. It lines the respiratory, digestive, and reproductive tracts.
4. Pseudostratified epithelium: appears stratified or layered but is actually made up of a single layer of cells that vary in height. The nuclei of these cells appear at different levels, giving the tissue a stratified appearance. It lines the respiratory and reproductive tracts.
5. Transitional epithelium: composed of several layers of cells that can stretch and change shape to accommodate changes in volume. It is found in the urinary bladder and ureters.

Epithelial tissue provides a barrier between the internal and external environments, protecting the body from physical, chemical, and biological damage. It also plays a crucial role in maintaining homeostasis by regulating the exchange of substances between the body and its environment.

Sprague-Dawley rats are a strain of albino laboratory rats that are widely used in scientific research. They were first developed by researchers H.H. Sprague and R.C. Dawley in the early 20th century, and have since become one of the most commonly used rat strains in biomedical research due to their relatively large size, ease of handling, and consistent genetic background.

Sprague-Dawley rats are outbred, which means that they are genetically diverse and do not suffer from the same limitations as inbred strains, which can have reduced fertility and increased susceptibility to certain diseases. They are also characterized by their docile nature and low levels of aggression, making them easier to handle and study than some other rat strains.

These rats are used in a wide variety of research areas, including toxicology, pharmacology, nutrition, cancer, and behavioral studies. Because they are genetically diverse, Sprague-Dawley rats can be used to model a range of human diseases and conditions, making them an important tool in the development of new drugs and therapies.

Blood pressure is the force exerted by circulating blood on the walls of the blood vessels. It is measured in millimeters of mercury (mmHg) and is given as two figures:

1. Systolic pressure: This is the pressure when the heart pushes blood out into the arteries.
2. Diastolic pressure: This is the pressure when the heart rests between beats, allowing it to fill with blood.

Normal blood pressure for adults is typically around 120/80 mmHg, although this can vary slightly depending on age, sex, and other factors. High blood pressure (hypertension) is generally considered to be a reading of 130/80 mmHg or higher, while low blood pressure (hypotension) is usually defined as a reading below 90/60 mmHg. It's important to note that blood pressure can fluctuate throughout the day and may be affected by factors such as stress, physical activity, and medication use.

Mitogen-Activated Protein Kinase 1 (MAPK1), also known as Extracellular Signal-Regulated Kinase 2 (ERK2), is a protein kinase that plays a crucial role in intracellular signal transduction pathways. It is a member of the MAPK family, which regulates various cellular processes such as proliferation, differentiation, apoptosis, and stress response.

MAPK1 is activated by a cascade of phosphorylation events initiated by upstream activators like MAPKK (Mitogen-Activated Protein Kinase Kinase) in response to various extracellular signals such as growth factors, hormones, and mitogens. Once activated, MAPK1 phosphorylates downstream targets, including transcription factors and other protein kinases, thereby modulating their activities and ultimately influencing gene expression and cellular responses.

MAPK1 is widely expressed in various tissues and cells, and its dysregulation has been implicated in several pathological conditions, including cancer, inflammation, and neurodegenerative diseases. Therefore, understanding the regulation and function of MAPK1 signaling pathways has important implications for developing therapeutic strategies to treat these disorders.

Pulmonary alveoli, also known as air sacs, are tiny clusters of air-filled pouches located at the end of the bronchioles in the lungs. They play a crucial role in the process of gas exchange during respiration. The thin walls of the alveoli, called alveolar membranes, allow oxygen from inhaled air to pass into the bloodstream and carbon dioxide from the bloodstream to pass into the alveoli to be exhaled out of the body. This vital function enables the lungs to supply oxygen-rich blood to the rest of the body and remove waste products like carbon dioxide.

Protease inhibitors are a class of antiviral drugs that are used to treat infections caused by retroviruses, such as the human immunodeficiency virus (HIV), which is responsible for causing AIDS. These drugs work by blocking the activity of protease enzymes, which are necessary for the replication and multiplication of the virus within infected cells.

Protease enzymes play a crucial role in the life cycle of retroviruses by cleaving viral polyproteins into functional units that are required for the assembly of new viral particles. By inhibiting the activity of these enzymes, protease inhibitors prevent the virus from replicating and spreading to other cells, thereby slowing down the progression of the infection.

Protease inhibitors are often used in combination with other antiretroviral drugs as part of highly active antiretroviral therapy (HAART) for the treatment of HIV/AIDS. Common examples of protease inhibitors include saquinavir, ritonavir, indinavir, and atazanavir. While these drugs have been successful in improving the outcomes of people living with HIV/AIDS, they can also cause side effects such as nausea, diarrhea, headaches, and lipodystrophy (changes in body fat distribution).

Acetylcholine is a neurotransmitter, a type of chemical messenger that transmits signals across a chemical synapse from one neuron (nerve cell) to another "target" neuron, muscle cell, or gland cell. It is involved in both peripheral and central nervous system functions.

In the peripheral nervous system, acetylcholine acts as a neurotransmitter at the neuromuscular junction, where it transmits signals from motor neurons to activate muscles. Acetylcholine also acts as a neurotransmitter in the autonomic nervous system, where it is involved in both the sympathetic and parasympathetic systems.

In the central nervous system, acetylcholine plays a role in learning, memory, attention, and arousal. Disruptions in cholinergic neurotransmission have been implicated in several neurological disorders, including Alzheimer's disease, Parkinson's disease, and myasthenia gravis.

Acetylcholine is synthesized from choline and acetyl-CoA by the enzyme choline acetyltransferase and is stored in vesicles at the presynaptic terminal of the neuron. When a nerve impulse arrives, the vesicles fuse with the presynaptic membrane, releasing acetylcholine into the synapse. The acetylcholine then binds to receptors on the postsynaptic membrane, triggering a response in the target cell. Acetylcholine is subsequently degraded by the enzyme acetylcholinesterase, which terminates its action and allows for signal transduction to be repeated.

Tetrodotoxin (TTX) is a potent neurotoxin that is primarily found in certain species of pufferfish, blue-ringed octopuses, and other marine animals. It blocks voltage-gated sodium channels in nerve cell membranes, leading to muscle paralysis and potentially respiratory failure. TTX has no known antidote, and medical treatment focuses on supportive care for symptoms. Exposure can occur through ingestion, inhalation, or skin absorption, depending on the route of toxicity.

Cell proliferation is the process by which cells increase in number, typically through the process of cell division. In the context of biology and medicine, it refers to the reproduction of cells that makes up living tissue, allowing growth, maintenance, and repair. It involves several stages including the transition from a phase of quiescence (G0 phase) to an active phase (G1 phase), DNA replication in the S phase, and mitosis or M phase, where the cell divides into two daughter cells.

Abnormal or uncontrolled cell proliferation is a characteristic feature of many diseases, including cancer, where deregulated cell cycle control leads to excessive and unregulated growth of cells, forming tumors that can invade surrounding tissues and metastasize to distant sites in the body.

Neoplasms are abnormal growths of cells or tissues in the body that serve no physiological function. They can be benign (non-cancerous) or malignant (cancerous). Benign neoplasms are typically slow growing and do not spread to other parts of the body, while malignant neoplasms are aggressive, invasive, and can metastasize to distant sites.

Neoplasms occur when there is a dysregulation in the normal process of cell division and differentiation, leading to uncontrolled growth and accumulation of cells. This can result from genetic mutations or other factors such as viral infections, environmental exposures, or hormonal imbalances.

Neoplasms can develop in any organ or tissue of the body and can cause various symptoms depending on their size, location, and type. Treatment options for neoplasms include surgery, radiation therapy, chemotherapy, immunotherapy, and targeted therapy, among others.

Organ culture techniques refer to the methods used to maintain or grow intact organs or pieces of organs under controlled conditions in vitro, while preserving their structural and functional characteristics. These techniques are widely used in biomedical research to study organ physiology, pathophysiology, drug development, and toxicity testing.

Organ culture can be performed using a variety of methods, including:

1. Static organ culture: In this method, the organs or tissue pieces are placed on a porous support in a culture dish and maintained in a nutrient-rich medium. The medium is replaced periodically to ensure adequate nutrition and removal of waste products.
2. Perfusion organ culture: This method involves perfusing the organ with nutrient-rich media, allowing for better distribution of nutrients and oxygen throughout the tissue. This technique is particularly useful for studying larger organs such as the liver or kidney.
3. Microfluidic organ culture: In this approach, microfluidic devices are used to create a controlled microenvironment for organ cultures. These devices allow for precise control over the flow of nutrients and waste products, as well as the application of mechanical forces.

Organ culture techniques can be used to study various aspects of organ function, including metabolism, secretion, and response to drugs or toxins. Additionally, these methods can be used to generate three-dimensional tissue models that better recapitulate the structure and function of intact organs compared to traditional two-dimensional cell cultures.

Muscle contraction is the physiological process in which muscle fibers shorten and generate force, leading to movement or stability of a body part. This process involves the sliding filament theory where thick and thin filaments within the sarcomeres (the functional units of muscles) slide past each other, facilitated by the interaction between myosin heads and actin filaments. The energy required for this action is provided by the hydrolysis of adenosine triphosphate (ATP). Muscle contractions can be voluntary or involuntary, and they play a crucial role in various bodily functions such as locomotion, circulation, respiration, and posture maintenance.

Carcinogens are agents (substances or mixtures of substances) that can cause cancer. They may be naturally occurring or man-made. Carcinogens can increase the risk of cancer by altering cellular DNA, disrupting cellular function, or promoting cell growth. Examples of carcinogens include certain chemicals found in tobacco smoke, asbestos, UV radiation from the sun, and some viruses.

It's important to note that not all exposures to carcinogens will result in cancer, and the risk typically depends on factors such as the level and duration of exposure, individual genetic susceptibility, and lifestyle choices. The International Agency for Research on Cancer (IARC) classifies carcinogens into different groups based on the strength of evidence linking them to cancer:

Group 1: Carcinogenic to humans
Group 2A: Probably carcinogenic to humans
Group 2B: Possibly carcinogenic to humans
Group 3: Not classifiable as to its carcinogenicity to humans
Group 4: Probably not carcinogenic to humans

This information is based on medical research and may be subject to change as new studies become available. Always consult a healthcare professional for medical advice.

Bombesin receptors are a group of G protein-coupled receptors that bind to bombesin-like peptides. These receptors play important roles in various physiological processes, including regulation of appetite and energy balance, smooth muscle contraction, and neurotransmission. There are three subtypes of bombesin receptors: BB1, BB2, and BB3 (also known as GRP receptor). They are activated by different bombesin-like peptides, such as bombesin, gastrin-releasing peptide (GRP), and neuromedin B. These receptors have been found to be expressed in a variety of tissues, including the gastrointestinal tract, lung, pancreas, and brain. They are also implicated in several pathological conditions, such as cancer, where they can contribute to tumor growth and progression.

Mitosis is a type of cell division in which the genetic material of a single cell, called the mother cell, is equally distributed into two identical daughter cells. It's a fundamental process that occurs in multicellular organisms for growth, maintenance, and repair, as well as in unicellular organisms for reproduction.

The process of mitosis can be broken down into several stages: prophase, prometaphase, metaphase, anaphase, and telophase. During prophase, the chromosomes condense and become visible, and the nuclear envelope breaks down. In prometaphase, the nuclear membrane is completely disassembled, and the mitotic spindle fibers attach to the chromosomes at their centromeres.

During metaphase, the chromosomes align at the metaphase plate, an imaginary line equidistant from the two spindle poles. In anaphase, sister chromatids are pulled apart by the spindle fibers and move toward opposite poles of the cell. Finally, in telophase, new nuclear envelopes form around each set of chromosomes, and the chromosomes decondense and become less visible.

Mitosis is followed by cytokinesis, a process that divides the cytoplasm of the mother cell into two separate daughter cells. The result of mitosis and cytokinesis is two genetically identical cells, each with the same number and kind of chromosomes as the original parent cell.

Protein kinases are a group of enzymes that play a crucial role in many cellular processes by adding phosphate groups to other proteins, a process known as phosphorylation. This modification can activate or deactivate the target protein's function, thereby regulating various signaling pathways within the cell. Protein kinases are essential for numerous biological functions, including metabolism, signal transduction, cell cycle progression, and apoptosis (programmed cell death). Abnormal regulation of protein kinases has been implicated in several diseases, such as cancer, diabetes, and neurological disorders.

Body weight is the measure of the force exerted on a scale or balance by an object's mass, most commonly expressed in units such as pounds (lb) or kilograms (kg). In the context of medical definitions, body weight typically refers to an individual's total weight, which includes their skeletal muscle, fat, organs, and bodily fluids.

Healthcare professionals often use body weight as a basic indicator of overall health status, as it can provide insights into various aspects of a person's health, such as nutritional status, metabolic function, and risk factors for certain diseases. For example, being significantly underweight or overweight can increase the risk of developing conditions like malnutrition, diabetes, heart disease, and certain types of cancer.

It is important to note that body weight alone may not provide a complete picture of an individual's health, as it does not account for factors such as muscle mass, bone density, or body composition. Therefore, healthcare professionals often use additional measures, such as body mass index (BMI), waist circumference, and blood tests, to assess overall health status more comprehensively.

A drug interaction is the effect of combining two or more drugs, or a drug and another substance (such as food or alcohol), which can alter the effectiveness or side effects of one or both of the substances. These interactions can be categorized as follows:

1. Pharmacodynamic interactions: These occur when two or more drugs act on the same target organ or receptor, leading to an additive, synergistic, or antagonistic effect. For example, taking a sedative and an antihistamine together can result in increased drowsiness due to their combined depressant effects on the central nervous system.
2. Pharmacokinetic interactions: These occur when one drug affects the absorption, distribution, metabolism, or excretion of another drug. For example, taking certain antibiotics with grapefruit juice can increase the concentration of the antibiotic in the bloodstream, leading to potential toxicity.
3. Food-drug interactions: Some drugs may interact with specific foods, affecting their absorption, metabolism, or excretion. An example is the interaction between warfarin (a blood thinner) and green leafy vegetables, which can increase the risk of bleeding due to enhanced vitamin K absorption from the vegetables.
4. Drug-herb interactions: Some herbal supplements may interact with medications, leading to altered drug levels or increased side effects. For instance, St. John's Wort can decrease the effectiveness of certain antidepressants and oral contraceptives by inducing their metabolism.
5. Drug-alcohol interactions: Alcohol can interact with various medications, causing additive sedative effects, impaired judgment, or increased risk of liver damage. For example, combining alcohol with benzodiazepines or opioids can lead to dangerous levels of sedation and respiratory depression.

It is essential for healthcare providers and patients to be aware of potential drug interactions to minimize adverse effects and optimize treatment outcomes.

In the context of cell biology, "S phase" refers to the part of the cell cycle during which DNA replication occurs. The "S" stands for synthesis, reflecting the active DNA synthesis that takes place during this phase. It is preceded by G1 phase (gap 1) and followed by G2 phase (gap 2), with mitosis (M phase) being the final stage of the cell cycle.

During S phase, the cell's DNA content effectively doubles as each chromosome is replicated to ensure that the two resulting daughter cells will have the same genetic material as the parent cell. This process is carefully regulated and coordinated with other events in the cell cycle to maintain genomic stability.

Breast neoplasms refer to abnormal growths in the breast tissue that can be benign or malignant. Benign breast neoplasms are non-cancerous tumors or growths, while malignant breast neoplasms are cancerous tumors that can invade surrounding tissues and spread to other parts of the body.

Breast neoplasms can arise from different types of cells in the breast, including milk ducts, milk sacs (lobules), or connective tissue. The most common type of breast cancer is ductal carcinoma, which starts in the milk ducts and can spread to other parts of the breast and nearby structures.

Breast neoplasms are usually detected through screening methods such as mammography, ultrasound, or MRI, or through self-examination or clinical examination. Treatment options for breast neoplasms depend on several factors, including the type and stage of the tumor, the patient's age and overall health, and personal preferences. Treatment may include surgery, radiation therapy, chemotherapy, hormone therapy, or targeted therapy.

Western blotting is a laboratory technique used in molecular biology to detect and quantify specific proteins in a mixture of many different proteins. This technique is commonly used to confirm the expression of a protein of interest, determine its size, and investigate its post-translational modifications. The name "Western" blotting distinguishes this technique from Southern blotting (for DNA) and Northern blotting (for RNA).

The Western blotting procedure involves several steps:

1. Protein extraction: The sample containing the proteins of interest is first extracted, often by breaking open cells or tissues and using a buffer to extract the proteins.
2. Separation of proteins by electrophoresis: The extracted proteins are then separated based on their size by loading them onto a polyacrylamide gel and running an electric current through the gel (a process called sodium dodecyl sulfate-polyacrylamide gel electrophoresis or SDS-PAGE). This separates the proteins according to their molecular weight, with smaller proteins migrating faster than larger ones.
3. Transfer of proteins to a membrane: After separation, the proteins are transferred from the gel onto a nitrocellulose or polyvinylidene fluoride (PVDF) membrane using an electric current in a process called blotting. This creates a replica of the protein pattern on the gel but now immobilized on the membrane for further analysis.
4. Blocking: The membrane is then blocked with a blocking agent, such as non-fat dry milk or bovine serum albumin (BSA), to prevent non-specific binding of antibodies in subsequent steps.
5. Primary antibody incubation: A primary antibody that specifically recognizes the protein of interest is added and allowed to bind to its target protein on the membrane. This step may be performed at room temperature or 4°C overnight, depending on the antibody's properties.
6. Washing: The membrane is washed with a buffer to remove unbound primary antibodies.
7. Secondary antibody incubation: A secondary antibody that recognizes the primary antibody (often coupled to an enzyme or fluorophore) is added and allowed to bind to the primary antibody. This step may involve using a horseradish peroxidase (HRP)-conjugated or alkaline phosphatase (AP)-conjugated secondary antibody, depending on the detection method used later.
8. Washing: The membrane is washed again to remove unbound secondary antibodies.
9. Detection: A detection reagent is added to visualize the protein of interest by detecting the signal generated from the enzyme-conjugated or fluorophore-conjugated secondary antibody. This can be done using chemiluminescent, colorimetric, or fluorescent methods.
10. Analysis: The resulting image is analyzed to determine the presence and quantity of the protein of interest in the sample.

Western blotting is a powerful technique for identifying and quantifying specific proteins within complex mixtures. It can be used to study protein expression, post-translational modifications, protein-protein interactions, and more. However, it requires careful optimization and validation to ensure accurate and reproducible results.

The spinal cord is a major part of the nervous system, extending from the brainstem and continuing down to the lower back. It is a slender, tubular bundle of nerve fibers (axons) and support cells (glial cells) that carries signals between the brain and the rest of the body. The spinal cord primarily serves as a conduit for motor information, which travels from the brain to the muscles, and sensory information, which travels from the body to the brain. It also contains neurons that can independently process and respond to information within the spinal cord without direct input from the brain.

The spinal cord is protected by the bony vertebral column (spine) and is divided into 31 segments: 8 cervical, 12 thoracic, 5 lumbar, 5 sacral, and 1 coccygeal. Each segment corresponds to a specific region of the body and gives rise to pairs of spinal nerves that exit through the intervertebral foramina at each level.

The spinal cord is responsible for several vital functions, including:

1. Reflexes: Simple reflex actions, such as the withdrawal reflex when touching a hot surface, are mediated by the spinal cord without involving the brain.
2. Muscle control: The spinal cord carries motor signals from the brain to the muscles, enabling voluntary movement and muscle tone regulation.
3. Sensory perception: The spinal cord transmits sensory information, such as touch, temperature, pain, and vibration, from the body to the brain for processing and awareness.
4. Autonomic functions: The sympathetic and parasympathetic divisions of the autonomic nervous system originate in the thoracolumbar and sacral regions of the spinal cord, respectively, controlling involuntary physiological responses like heart rate, blood pressure, digestion, and respiration.

Damage to the spinal cord can result in various degrees of paralysis or loss of sensation below the level of injury, depending on the severity and location of the damage.

SCID mice is an acronym for Severe Combined Immunodeficiency mice. These are genetically modified mice that lack a functional immune system due to the mutation or knockout of several key genes required for immunity. This makes them ideal for studying the human immune system, infectious diseases, and cancer, as well as testing new therapies and treatments in a controlled environment without the risk of interference from the mouse's own immune system. SCID mice are often used in xenotransplantation studies, where human cells or tissues are transplanted into the mouse to study their behavior and interactions with the human immune system.

Androgen receptors (ARs) are a type of nuclear receptor protein that are expressed in various tissues throughout the body. They play a critical role in the development and maintenance of male sexual characteristics and reproductive function. ARs are activated by binding to androgens, which are steroid hormones such as testosterone and dihydrotestosterone (DHT). Once activated, ARs function as transcription factors that regulate gene expression, ultimately leading to various cellular responses.

In the context of medical definitions, androgen receptors can be defined as follows:

Androgen receptors are a type of nuclear receptor protein that bind to androgens, such as testosterone and dihydrotestosterone, and mediate their effects on gene expression in various tissues. They play critical roles in the development and maintenance of male sexual characteristics and reproductive function, and are involved in the pathogenesis of several medical conditions, including prostate cancer, benign prostatic hyperplasia, and androgen deficiency syndromes.

Glucose is a simple monosaccharide (or single sugar) that serves as the primary source of energy for living organisms. It's a fundamental molecule in biology, often referred to as "dextrose" or "grape sugar." Glucose has the molecular formula C6H12O6 and is vital to the functioning of cells, especially those in the brain and nervous system.

In the body, glucose is derived from the digestion of carbohydrates in food, and it's transported around the body via the bloodstream to cells where it can be used for energy. Cells convert glucose into a usable form through a process called cellular respiration, which involves a series of metabolic reactions that generate adenosine triphosphate (ATP)—the main currency of energy in cells.

Glucose is also stored in the liver and muscles as glycogen, a polysaccharide (multiple sugar) that can be broken down back into glucose when needed for energy between meals or during physical activity. Maintaining appropriate blood glucose levels is crucial for overall health, and imbalances can lead to conditions such as diabetes mellitus.

Epithelial cells are types of cells that cover the outer surfaces of the body, line the inner surfaces of organs and glands, and form the lining of blood vessels and body cavities. They provide a protective barrier against the external environment, regulate the movement of materials between the internal and external environments, and are involved in the sense of touch, temperature, and pain. Epithelial cells can be squamous (flat and thin), cuboidal (square-shaped and of equal height), or columnar (tall and narrow) in shape and are classified based on their location and function.

Mitogen-Activated Protein Kinase Kinases (MAP2K or MEK) are a group of protein kinases that play a crucial role in intracellular signal transduction pathways. They are so named because they are activated by mitogens, which are substances that stimulate cell division, and other extracellular signals.

MAP2Ks are positioned upstream of the Mitogen-Activated Protein Kinases (MAPK) in a three-tiered kinase cascade. Once activated, MAP2Ks phosphorylate and activate MAPKs, which then go on to regulate various cellular processes such as proliferation, differentiation, survival, and apoptosis.

There are several subfamilies of MAP2Ks, including MEK1/2, MEK3/6 (also known as MKK3/6), MEK4/7 (also known as MKK4/7), and MEK5. Each MAP2K is specific to activating a particular MAPK, and they are activated by different MAP3Ks (MAP kinase kinase kinases) in response to various extracellular signals.

Dysregulation of the MAPK/MAP2K signaling pathways has been implicated in numerous diseases, including cancer, cardiovascular disease, and neurological disorders. Therefore, targeting these pathways with therapeutic agents has emerged as a promising strategy for treating various diseases.

Biological transport refers to the movement of molecules, ions, or solutes across biological membranes or through cells in living organisms. This process is essential for maintaining homeostasis, regulating cellular functions, and enabling communication between cells. There are two main types of biological transport: passive transport and active transport.

Passive transport does not require the input of energy and includes:

1. Diffusion: The random movement of molecules from an area of high concentration to an area of low concentration until equilibrium is reached.
2. Osmosis: The diffusion of solvent molecules (usually water) across a semi-permeable membrane from an area of lower solute concentration to an area of higher solute concentration.
3. Facilitated diffusion: The assisted passage of polar or charged substances through protein channels or carriers in the cell membrane, which increases the rate of diffusion without consuming energy.

Active transport requires the input of energy (in the form of ATP) and includes:

1. Primary active transport: The direct use of ATP to move molecules against their concentration gradient, often driven by specific transport proteins called pumps.
2. Secondary active transport: The coupling of the movement of one substance down its electrochemical gradient with the uphill transport of another substance, mediated by a shared transport protein. This process is also known as co-transport or counter-transport.

The bombesin receptors are a group of G-protein coupled receptors which bind bombesin. Three bombesin receptors are currently ... previously known as Bombesin-like receptor 3 BRS3 "Bombesin Receptors". IUPHAR Database of Receptors and Ion Channels. ... v t e (G protein-coupled receptors, All stub articles, Transmembrane receptor stubs). ... known: BB1, previously known as Neuromedin B receptor NMBR BB2, previously known as Gastrin-releasing peptide receptor GRPR BB3 ...
Bombesin-like peptide receptors include gastrin-releasing peptide receptor, neuromedin B receptor, and bombesin-like receptor-3 ... "Bombesin Receptors: BB3". IUPHAR Database of Receptors and Ion Channels. International Union of Basic and Clinical Pharmacology ... "Bombesin Receptors: BB3". IUPHAR Database of Receptors and Ion Channels. International Union of Basic and Clinical Pharmacology ... "Cloning and expression of the neuromedin B receptor and the third subtype of bombesin receptor genes in the mouse". Brain Res. ...
"Bombesin Receptors: BB1". IUPHAR Database of Receptors and Ion Channels. International Union of Basic and Clinical Pharmacology ... "Bombesin Receptors: BB1". IUPHAR Database of Receptors and Ion Channels. International Union of Basic and Clinical Pharmacology ... "Entrez Gene: NMBR neuromedin B receptor". Corjay MH, Dobrzanski DJ, Way JM, et al. (1991). "Two distinct bombesin receptor ... Receptors,+Bombesin at the U.S. National Library of Medicine Medical Subject Headings (MeSH) This article incorporates text ...
"Bombesin Receptors: BB2". IUPHAR Database of Receptors and Ion Channels. International Union of Basic and Clinical Pharmacology ... "Bombesin Receptors: BB2". IUPHAR Database of Receptors and Ion Channels. International Union of Basic and Clinical Pharmacology ... IUPHAR GPCR Database - BB2 receptor Receptors,+Bombesin at the U.S. National Library of Medicine Medical Subject Headings (MeSH ... 1991). "Two distinct bombesin receptor subtypes are expressed and functional in human lung carcinoma cells". J. Biol. Chem. 266 ...
Yamada K, Wada E, Wada K (November 2000). "Bombesin-like peptides: studies on food intake and social behaviour with receptor ... Mammalian Bombesin Receptors: Nomenclature, Distribution, Pharmacology, Signaling, and Functions in Normal and Disease States ... Mammalian Bombesin Receptors: Nomenclature, Distribution, Pharmacology, Signaling, and Functions in Normal and Disease States ... Weber HC (February 2009). "Regulation and signaling of human bombesin receptors and their biological effects". Current Opinion ...
Battey J, Wada E (1991). "Two distinct receptor subtypes for mammalian bombesin-like peptides". Trends Neurosci. 14 (12): 524- ... Bombesin-like peptides comprise a large family of peptides which were initially isolated from amphibian skin, where they ... Bombesin-like peptides, like many other active peptides, are synthesized as larger protein precursors that are enzymatically ... Chin WW, Krane IM, Naylor SL, Helin-Davis D, Spindel ER (1988). "Molecular cloning of cDNAs encoding the human bombesin-like ...
Frankel A, Tsao MS, Viallet J (1994). "Receptor subtype expression and responsiveness to bombesin in cultured human bronchial ... 1995). "Expression and characterization of cloned human bombesin receptors". Mol. Pharmacol. 47 (1): 10-20. PMID 7838118. Moody ... 2002). "Identification and characterisation of functional bombesin receptors in human astrocytes". Eur. J. Pharmacol. 438 (1-2 ... The post-ganglionic fibers of the vagus nerve that innervate bombesin/GRP neurons of the stomach release GRP, which stimulates ...
ISBN 978-0-89766-441-7. Gmerek DE, Cowan A (1988). "Role of opioid receptors in bombesin-induced grooming" (PDF). Annals of the ... Delta-opioid receptor agonists, Dissociative drugs, Kappa-opioid receptor agonists, Morphinans, Phenols, Semisynthetic opioids ... Xorphanol is a mixed agonist-antagonist of opioid receptors, acting preferentially as a high-efficacy partial agonist/near-full ... The drug has also been found to act as an agonist of the δ-opioid receptor (Ki = 1.0 nM; IC50 = 8 nM; Imax = 76%). Xorphanol ...
... : an antibacterial agent from the root bark of Morus alba against oral pathogens Non-peptide bombesin receptor ... Kuwanon G is an antimicrobial bombesin receptor antagonist, isolated from Morus alba. ...
Mammalian bombesin receptors: nomenclature, distribution, pharmacology, signaling, and functions in normal and disease states ... This receptor is a G protein-coupled receptor with seven transmembrane spanning regions, hence the receptor is also denoted as ... Neuromedin B (NMB) is a bombesin-related peptide in mammals. It was originally purified from pig spinal cord, and later shown ... the heterotrimeric G protein that is attached to the receptor is activated. The G-protein is called heterotrimeric because it ...
The Bombesin peptide has been shown to be overexpressed in BB2 receptors in prostate cancer. CB-TE2A a stable chelation system ... "MicroPET Imaging of Breast Cancer Using Radiolabeled Bombesin Analogs Targeting the Gastrin-releasing Peptide Receptor". Breast ... A commercial 64Cu-DOTA-TATE product has been FDA approved for localization of somatostatin receptor positive NETs since 2020. ... Other preclinical studies have shown that by targeting the gastrin-releasing peptide receptor pancreatic and breast cancer can ...
"Activation of p300 histone acetyltransferase activity and acetylation of the androgen receptor by bombesin in prostate cancer ... As has been also found for other steroid hormone receptors such as estrogen receptors, androgen receptors can have actions that ... Testicular receptor 2, Testicular receptor 4, TGFB1I1, TMF1, TRIM68, UBE2I, UXT, and ZMIZ1. Membrane androgen receptor ... The androgen receptor (AR), also known as NR3C4 (nuclear receptor subfamily 3, group C, member 4), is a type of nuclear ...
This is done both directly on the parietal cell[failed verification] and indirectly via binding onto CCK2/gastrin receptors on ... Stimulatory factor: bombesin or gastrin-releasing peptide (GRP) Inhibitory factor: somatostatin - acts on somatostatin-2 ... Gastrin binds to cholecystokinin B receptors to stimulate the release of histamines in enterochromaffin-like cells, and it ... These include: stomach antrum distension vagal stimulation (mediated by the neurocrine bombesin, or GRP in humans) the presence ...
... and Rac are important components in the signal transduction pathways that mediate bombesin receptor induced PKD3 activation. ... Moreover, the catalytic activation of PKD3 in response to RacV12, Galpha (13/12) signalling, bombesin correlated with Ser-731/ ...
2002). "Cloning, expression, and mapping of a gene that is upregulated in adipose tissue of mice deficient in bombesin receptor ...
... blocks bombesin- and LPA-induced EGF receptor transactivation and DNA synthesis in rat-1 cells". Exp. Cell Res. 290 (2): 437-46 ...
... bombesin, bradykinin, endothelin, γ-aminobutyric acid (GABA), hepatocyte growth factor (HGF), melanocortins, neuropeptide Y, ... transmembrane domain receptors, 7TM receptors, heptahelical receptors, serpentine receptors, and G protein-linked receptors ( ... G protein-coupled receptors database List of MeSH codes (D12.776) Metabotropic receptor Orphan receptor Pepducins, a class of ... is a receptor that can bind with stimulative signal molecules, while inhibitory hormone receptor (Ri) is a receptor that can ...
PHI PHM PHV Endogenous Adrenomedullin Apelin Asprosin Bombesin Calcitonin Carnosine CART CLIP DSIP Enteroglucagon Formyl ... Neuropeptide receptor Neurotransmitter receptor Peptide+receptor at the U.S. National Library of Medicine Medical Subject ... Signaling peptide receptor is a type of receptor which binds one or more signaling peptides or signaling proteins. An example ... Another example is the μ-opioid receptor (MOR), which is bound and activated by the opioid peptide hormone β-endorphin. ...
... the Sukhoi Su-2 Neuromedin B receptor or BB1, a bombesin receptor, previously known as Neuromedin B receptor (NMBR) Baahubali: ...
Bombesin receptor InterPro: IPR001556 Bombesin-like receptor 3 (BRS3) Neuromedin B receptor (NMBR) Gastrin-releasing peptide ... chemokine receptor (DARC, DUFF) G Protein-coupled Receptor 30 (GPER, CML2, GPCR estrogen receptor) Angiotensin II receptor ... Opioid receptor InterPro: IPR001418 delta Opioid receptor (OPRD1, OPRD) kappa Opioid receptor (OPRK1, OPRK) mu Opioid receptor ... Motilin receptor (MLNR, GPR38) Anaphylatoxin receptors InterPro: IPR002234 C3a receptor (C3AR1, C3AR) C5a receptor (C5AR1, C5AR ...
Possibly of interest however is that nemifitide binds to several receptors including 5-HT2A (where it has been shown to act as ... an antagonist), NPY1, bombesin, and MC4 and MC5, though at only micromolar concentrations. Whether any of these relatively weak ...
Acetylcholine binds to both metabotropic muscarinic receptors (mAChR) and the ionotropic nicotinic receptors (nAChR). The ... Pancreatic Polypeptide Peptide YY Prolactin-releasing peptide Calcitonin Adrenomedullin Natriuretic Bombesin-like peptides ... 5-HT2c receptor agonist Natural neuroactive substance DeRiemer, S. A.; Strong, J. A.; Albert, K. A.; Greengard, P.; Kaczmarek, ... It acts on dopamine receptors. Parkinson's disease is at least in part related to dropping out of dopaminergic cells in deep- ...
... may refer to: BB3, a postcode district the BB postcode area Bombesin-like receptor 3, also known as BB3 Big Brother 3 ( ...
... bombesin - bombesin receptor - bone morphogenetic protein - bradykinin - bradykinin receptor - BRCA1 - buffer solution C- ... interleukin receptor - interleukin-1 receptor - interleukin-2 receptor - interleukin-3 - interleukin-3 receptor - intermediate ... G protein-coupled receptor - G3P - GABA - GABA receptor - GABA-A receptor - gag-onc fusion protein - galanin - gamete - gamma- ... IgE receptor - IGF type 1 receptor - IGF type 2 receptor - IgG - IgM - immediate-early protein - immune cell - immune system - ...
... calcitonin and bombesin/gastrin-releasing peptide, while lacking, or rarely and weakly expressing, androgen receptor and ... They are negative for androgen receptor and prostate-specific antigen (PSA) and are positive for prostate acid phosphatase. ... Morphogenesis, proliferation and androgen receptor status". Annals of Oncology. 12 Suppl 2: S141-4. doi:10.1093/annonc/12.suppl ... and bombesin/gastrin-releasing peptide. Neuroendocrine tumor cells express cytokeratins that are typically expressed by luminal ...
... namely for patients with somatostatin receptor-positive GEP-NETs. These receptors are commonly found on tumors located in the ... 177LuNeoBOMB1 and 68GaNeoBOMB1 are new generation antagonist bombesin analogs in development to treat, image, monitor and stage ... Lutathera is most notable as the first FDA approved peptide receptor radionuclide therapy (PRRT) to combat GEP-NETs. GEP-NETs ... After binding to the receptor, Lutathera enters the cell and uses its radioactive property to damage DNA. This mechanism ...
Development of a potent bombesin receptor antagonist with prolonged in vivo inhibitory activity on bombesin-stimulated amylase ...
Preston, Shaun R.; Miller, Glenn V.; Primrose, John N. (1996). "Bombesin-like peptides and cancer". Critical Reviews in ... "Expression of progastrin-releasing peptide and gastrin-releasing peptide receptor mRNA transcripts in tumor cells of patients ... and migration of a colorectal cancer cell line by amidated and glycine-extended gastrin-releasing peptide via the same receptor ...
The endogenous receptor for substance P is neurokinin 1 receptor (NK1-receptor, NK1R). It belongs to the tachykinin receptor ... Panula P, Hadjiconstantinou M, Yang HY, Costa E (Oct 1983). "Immunohistochemical localization of bombesin/gastrin-releasing ... "Absence of the SP/SP receptor circuitry in the substance P-precursor knockout mice or SP receptor, neurokinin (NK)1 knockout ... The SP receptor promoter contains regions that are sensitive to cAMP, AP-1, AP-4, CEBPB, and epidermal growth factor. Because ...
Strength of response is dependent upon the concentration of receptors of target cell and the amount of ligand ( the specific ... Motilin Neurotensin Substance P Somatostatin Bombesin Serotonin Angiotensin Nitric Oxide Kinins Histamine "The Endocrine System ... This type of local hormone stimulates pain receptors and increases the inflammatory response. Nonsteroidal anti-inflammatory ... The Secretin family are peptides that act as local hormones which regulate activity of G-protein coupled receptors. Most often ...
The bombesin receptors are a group of G-protein coupled receptors which bind bombesin. Three bombesin receptors are currently ... previously known as Bombesin-like receptor 3 BRS3 "Bombesin Receptors". IUPHAR Database of Receptors and Ion Channels. ... v t e (G protein-coupled receptors, All stub articles, Transmembrane receptor stubs). ... known: BB1, previously known as Neuromedin B receptor NMBR BB2, previously known as Gastrin-releasing peptide receptor GRPR BB3 ...
... receptor family (fBB4-R) was isolated from a cDNA library from the brain of the frog, Bombina orientalis. Its pharmacology and ... A synthetic glycine-extended bombesin analogue interacts with the GRP/bombesin receptor. European Journal of Pharmacology 2000 ... Rational Design of a Peptide Agonist That Interacts Selectively with the Orphan Receptor, Bombesin Receptor Subtype 3. Journal ... Bombesin receptor subtype-3 is expressed by the enteric nervous system and by interstitial cells of Cajal in the rat ...
... Ann N Y Acad Sci. 1988:547:138-49. doi: ...
BB2 bombesin receptor-expressing spinal neurons transmit herpes-associated itch by BB2 receptor-independent signaling.. Sasaki ... BB2 bombesin receptor-expressing spinal neurons transmit herpes-associated itch by BB2 receptor-independent signaling. ... bombesin receptor-expressing spinal neurons were lesioned intrathecally with 400 ng of Bombesin-SAP (Cat. #IT-40). Lesioned ... BB2 bombesin receptor-expressing spinal neurons transmit herpes-associated itch by BB2 receptor-independent signaling. ...
Bombesin Receptors on Gastrin Cells. / VIGNA, STEVEN R.; GIRAUD, ANDREW S.; SOLL, ANDREW H. et al. In: Annals of the New York ... Bombesin Receptors on Gastrin Cells. Annals of the New York Academy of Sciences. 1988 Dec;547(1):131-137. doi: 10.1111/j.1749- ... Bombesin Receptors on Gastrin Cells. In: Annals of the New York Academy of Sciences. 1988 ; Vol. 547, No. 1. pp. 131-137. ... title = "Bombesin Receptors on Gastrin Cells",. author = "VIGNA, {STEVEN R.} and GIRAUD, {ANDREW S.} and SOLL, {ANDREW H.} and ...
Bombesin receptors in the IUPHAR/BPS Guide to PHARMACOLOGY. ... bombesin receptor subtype-3 , bombesin like receptor 3 Genes. ... BB2 receptor Previous and unofficial names. GRP-R , BB2 , GRP-preferring bombesin receptor , Gastrin-releasing peptide receptor ... Characterization of bombesin receptors using a novel, potent, radiolabeled antagonist that distinguishes bombesin receptor ... BB1 receptor Previous and unofficial names. NMB-R [40,57] , BB1 , neuromedin B receptor , neuromedin-B-preferring bombesin ...
Bombesin antagonists inhibit in vitro and in vivo growth of human gastric cancer and binding of bombesin to its receptors ... Metabolic stability and tumor inhibition of bombesin/GRP receptor antagonists journal, March 1992 * Davis, T. P.; Crowell, S.; ... Characterization of high-affinity receptors for bombesin/gastrin releasing peptide on the human prostate cancer cell lines PC-3 ... Potent bombesin antagonists with C-terminal Leu-psi(CH2-N)-Tac-NH2 or its derivatives. journal, December 1994 * Cai, R. Z.; ...
Interests: immunology; COVID-19 and ACE2 receptor; cancer; inflammation; TLR receptor; Trk receptor; GPCR signaling; insulin ... The key players potentiating receptor GPCR biased signaling of IRβ receptors can advance our understanding of the current dogma ... Insulin Receptors and Insulin Action in the Heart: The Effects of Left Ventricular Assist Devices by Konstantina Pantazi ... These receptors are found on interneurons and striatal projections neurons, as well as on glial cells and dopamine axons. A ...
When such chemical-signals couple or bind to a receptor, they cause some form of cellular/tissue-response, e.g. a change in the ... Freeze thaw will destroy a percentage in every cycle and should be avoided.Antibody for research use.The receptors are ligand ... In this sense, am olfactory receptor is a protein-molecule that recognizes and responds to endogenous-chemical signals, ... chemokinesor cytokines e.g. an acetylcholine-receptor recognizes and responds to its endogenous-ligand, acetylcholine. However ...
A novel bombesin receptor antagonist inhibits autocrine signals in a small cell lung carcinoma cell line. Biochem Biophys Res ... A novel bombesin receptor antagonist inhibits autocrine signals in a small cell lung carcinoma cell line.. ...
Structure-function studies of bombesin and bradykinin receptors and their ligands for new therapeutic opportunities  Rasaeifar ... G-protein coupled receptors represents the largest family of membrane protein in eukaryotes cells with more than 800 members. ...
bombesin receptor subtype 3. protein-coding. BTG4. BTG anti-proliferation factor 4. protein-coding. ... T-cell receptor beta chain V region CTL-L17. protein-coding. BHLHE23. basic helix-loop-helix family member e23. protein-coding ... bone morphogenetic protein receptor type 1B. protein-coding. BRAF. B-Raf proto-oncogene, serine/threonine kinase. protein- ...
A component of the toxin, bombesin, binds to the receptors of certain tumors, stabilizing them. So dont rub it on your skin, ...
Bombesin Receptor 2 Antibody , CSB-PA080284 , CusabioBombesin Receptor 2 Antibody is Available at Gentaur Genprice with the ... Human acetylcholine receptor antibody, AChRab ELISA Kit , CSB-E08371h , CusabioHuman acetylcholine receptor antibody, AChRab ... Aliases: Acetylcholine receptor subunit delta, CHRND, ACHRD. Background: After binding acetylcholine, the AChR responds by an ... Immunogen: Recombinant Human Acetylcholine receptor subunit delta protein (334-471AA). Immunogen Species: Homo sapiens (Human) ...
Targeting neuropeptide receptors for cancer imaging and therapy: perspectives with bombesin, neurotensin, and neuropeptide-Y ... Radiolabeled somatostatin receptor antagonists are preferable to agonists for in vivo peptide receptor targeting of tumors. ... Quality of life in patients with midgut NET following peptide receptor radionuclide therapy. Eur J Nucl Med Mol Imaging 2019; ... Proof of Therapeutic Efficacy of a (177)Lu-Labeled Neurotensin Receptor 1 Antagonist in a Colon Carcinoma Xenograft Model. J ...
18F-Labeled Bombesin Analogs for Targeting GRP Receptor-Expressing Prostate Cancer Xianzhong Zhang, Weibo Cai, Feng Cao, Eduard ... 18F-Labeled Bombesin Analogs for Targeting GRP Receptor-Expressing Prostate Cancer Xianzhong Zhang, Weibo Cai, Feng Cao, Eduard ... 18F-Labeled Bombesin Analogs for Targeting GRP Receptor-Expressing Prostate Cancer Xianzhong Zhang, Weibo Cai, Feng Cao, Eduard ... 18F-Labeled Bombesin Analogs for Targeting GRP Receptor-Expressing Prostate Cancer Xianzhong Zhang, Weibo Cai, Feng Cao, Eduard ...
The aim of this thesis was to develop novel bombesin tracers to target Gastrin Releasing Peptide Receptor (GRPR), which is over ... Gastrin releasing peptide receptor (GRPR) may be a valid target for nuclear imaging of PCa. GRPR is highly expressed in several ... Different bombesin peptides have been radio-labeled with different SPECT and PET radionuclides and evaluated in vitro and in ... G. Carlucci: Strategies for gastrin releasing peptide receptor targeted imaging in prostate cancer. ...
Potent bombesin-like peptides for GRP-receptor targeting of tumors with 99mTc: a preclinical study. J Med Chem. 2005;48:100-110 ... gastrin receptor targeting peptides for staging and therapy of medullary thyroid cancer and other CCK-B receptor expressing ... gastrin receptor-targeting peptides for staging and therapy of medullary thyroid cancer and other cholecystokinin-B receptor- ... CCK-2/Gastrin Receptor-Targeted Tumor Imaging with 99mTc-Labeled Minigastrin Analogs Berthold A. Nock, Theodosia Maina, Martin ...
Small-cell carcinomas are stimulated by bombesin/GRP and related peptides and contain receptors for them. Similarly, serum ... Small cell carcinomas are also stimulated by bombesin/gastrin-releasing peptide-related peptides and contain receptors for them ... correlates with survival in patients with normal bombesin levels. Although indivi- duals with elevated serum bombesin also have ... Trials of anti-bombesin monoclonal antibodies as a treatment for small-cell lung cancer are already underway [8]. At present, ...
Normal p21N-ras couples bombesin and other growth factor receptors to inositol phosphate production. MJO Wakelam, SA Davies, MD ... Systematic G-protein-coupled receptor analysis inDrosophila melanogaster identifies a leucokinin receptor with novel roles. JC ...
Bombesin (BN), a 14-amino acid peptide with high affinity to the GRP receptor, is used for GRP receptor-targeted tumor imaging ... receptors. The CCK2 receptor-specific CCK peptide analogue was conjugated with DTPA for targeting this receptor [85]. The ... Many receptor binding peptides such as octreotide, bombesin, neurotensin, and RGD analogues have been labeled using [18F]FP-NP( ... However, in recent years, somatostatin and bombesin antagonist peptide analogues have also been best shown for receptor ...
The IUPHAR/BPS Guide to PHARMACOLOGY G Protein-Coupled Receptor List. ... Bombesin receptors Family name. Ligand. Official IUPHAR receptor name. Human gene symbol. Rat gene symbol. Mouse gene symbol. ... Adenosine receptors. adenosine A1 receptor ADORA1. Adora1. Adora1. Adenosine receptors. adenosine A2A receptor ADORA2A. Adora2a ... Adenosine receptors. adenosine A2B receptor ADORA2B. Adora2b. Adora2b. Adenosine receptors. adenosine A3 receptor ADORA3. ...
Gastrin Releasing Peptide Receptor (GRPR) Antibody Pair Kit (with Standard) , MBS2101748 , Mybiosource Product Short Name: [ ... Bombesin;... ... Gastrin Releasing Peptide Receptor (GRPR) Antibody Pair Kit ( ... MBS2101748 , Gastrin Releasing Peptide Receptor (GRPR) Antibody Pair Kit (with Standard) MyBiosource ... MBS2101747 , Gastrin Releasing Peptide Receptor (GRPR) Antibody Pair Kit (with Standard) MyBiosource ...
Gastrin Releasing Peptide Receptor (GRPR) Antibody Pair Kit (with Standard) , MBS2101748 , Mybiosource Product Short Name: [ ... Bombesin;... ... Gastrin Releasing Peptide Receptor (GRPR)] Product Name ... MBS2101748 , Gastrin Releasing Peptide Receptor (GRPR) Antibody Pair Kit (with Standard) MyBiosource ...
Upon peptide-receptor interaction, the conjugate can potentially undergo receptor-mediated endocytosis, in which the conjugate ... Peptides derived from sequence of cell surface proteins, such as intercellular adhesion molecule-1 (ICAM-1), LHRH, Bombesin, ... These differences could be in the expressed surface receptors (i.e., the absence or presence of certain receptors), the ... Early sorting endosomesmay separate the receptor fromthe conjugate and recycle receptors to cell surface. The conjugate moves ...
Identification of the bombesin receptor on murine and human cells by cross-linking experiments. Kris, R. M., Hazan, R., ... EGF receptor‐mediated signals are differentially modulated by concanavalin A. Hazan, R., Krushel, L. & Crossin, K. L., Jan 1995 ... A signaling pathway leading to metastasis is controlled by N-cadherin and the FGF receptor. Suyama, K., Shapiro, I., Guttman, M ... Epidermal Growth Factor (EGF) Stimulates Association and Kinase Activity of Raf-1 with the EGF Receptor. App, H., Hazan, R., ...
The target of 64Cu SAR-Bombesin is the Gastrin Releasing Peptide receptor, which is found on prostate tumors as well as several ...
... an isoform of the Bombesin receptor-activated protein (the protein product of C6orf89), which localizes to the cis-Golgi and ... 4) (Peng et al., 2018), two ER membrane proteins that act as receptors for LC3β (also known as MAP1LC3B), an essential ... Both SEC62 and FAM134B appear to act as reticulophagy receptors by engaging with cytosolic LC3β, whereas ATG9A appears to act ... Both SEC62 and FAM134B appear to act as reticulophagy receptors by engaging with cytosolic LC3β, whereas ATG9A appears to act ...
HYNIC and DOMA conjugated radiolabeled bombesin analogs as receptor-targeted probes for scintigraphic detection of breast tumor ... Preparation of a First 18F-Labeled Agonist for M1 Muscarinic Acetylcholine Receptors ...
  • The aim of this study was to evaluate 3 new 99m Tc-labeled minigastrin analogs modified with open chain tetraamines at the N-terminus for their suitability in the CCK-2/gastrin-R-targeted imaging of tumors (CCK-2/gastrin-R = cholecystokinin subtype 2/gastrin receptor). (snmjournals.org)
  • 90%) and high-density expression of CCK-2/gastrin-R (CCK-2/gastrin-R = cholecystokinin subtype 2/gastrin receptor) in human medullary thyroid cancer (MTC), already suspected by the highly sensitive pentagastrin diagnostic test ( 5 - 7 ). (snmjournals.org)
  • The bombesin (Bn) receptor family includes the gastrin-releasing peptide (GRPR) and neuromedin B (NMBR) receptors, Bn receptor subtype 3 (BRS-3) and Bn receptor subtype 4 (BB4). (immune-system-research.com)
  • Different bombesin peptides have been radio-labeled with different SPECT and PET radionuclides and evaluated in vitro and in vivo. (rug.nl)
  • Small-cell carcinomas are stimulated by bombesin/GRP and related peptides and contain receptors for them. (cancernetwork.com)
  • Peptides derived from sequence of cell surface proteins, such as intercellular adhesion molecule-1 (ICAM-1), LHRH, Bombesin, and LFA-1, have shown potent binding affinity to the target cell surface receptors. (biosyn.com)
  • Moreover, peptides derived from ICAM-1 receptor can be internalized by the leukemic T-cells along with the conjugated moiety offering the promise to selectively treat cancers and autoimmune diseases. (biosyn.com)
  • Arg-Gly-Asp (RGD) peptides,2 poly-Arg peptides), 3,4 proteins (e.g., antibodies,5 transport proteins, and transferrin6), and small molecules (e.g., folate7) have been used to selectively direct drugs to cancer cells with upregulated receptors by forming drug-carrier conjugates (Fig. 1). (biosyn.com)
  • The third group is comprised of tumor targeting peptides (TTPs) that are specific for tumor-related surface markers, such as G-protein-coupled receptors which are most important targets in drug development. (creative-peptides.com)
  • Most of the peptides are overexpressed in tumor cells, and amongst them, the GnRH receptor is the target of a considerable number of GnRH agonists and antagonists which are commonly used in cancer management. (creative-peptides.com)
  • Other examples of these are peptides with RGD (arginine/glycine/aspartic acid) or NGR (asparagine/glycine/arginine) motifs that bind to integrins or cell surface associated molecules or receptors frequently overexpressed on tumor cells or tumor-associated blood vessels. (creative-peptides.com)
  • A novel bombesin receptor antagonist inhibits autocrine signals in a small cell lung carcinoma cell line. (rush.edu)
  • Proof of Therapeutic Efficacy of a (177)Lu-Labeled Neurotensin Receptor 1 Antagonist in a Colon Carcinoma Xenograft Model. (thieme-connect.de)
  • Aminophylline is a nonselective adenosine receptor antagonist and phosphodiesterase inhibitor capable of reversing ischemia-induced bradyasystole. (adooq.com)
  • Gastrin releasing peptide receptor (GRPR) may be a valid target for nuclear imaging of PCa. (rug.nl)
  • The aim of this thesis was to develop novel bombesin tracers to target Gastrin Releasing Peptide Receptor (GRPR), which is over-expressed in Prostate Cancer (PCa). (rug.nl)
  • Of particular clinical relevance is the independence of CCK-2/gastrin-R status on the degree of tumor differentiation in human MTCs ( 5 , 6 ), whereas, in advanced and clinically aggressive forms of the disease, somatostatin receptor expression is lacking ( 7 , 8 ). (snmjournals.org)
  • As nonsulfated gastrin derivatives were shown to be more suitable for tumor targeting by virtue of their CCK-2 receptor selectivity, high affinity, and favorable in vivo profile ( 20 ), Behr et al. (snmjournals.org)
  • The target of 64Cu SAR-Bombesin is the Gastrin Releasing Peptide receptor, which is found on prostate tumors as well as several other tumors. (urologytimes.com)
  • Kannan, Raghuraman Gastrin releasing protein receptor specific bombesin (BBN) peptide-gold nanoconjugates were successfully synthesized using gold nanorods and dithiolated peptide. (umsystem.edu)
  • Background The gastrin releasing peptide receptor (GRPR) and the somatostatin receptor 2 (SSTR2) are overexpressed on primary breast cancer (BC), making them ideal candidates for receptor- mediated nuclear imaging and therapy. (johnshopkins.edu)
  • In the present study we have expressed the murine gastrin-releasing peptide receptor (mGRP-R) in Sf9 cells using a recombinant baculovirus and characterized it structurally and functionally. (utmb.edu)
  • Bombesin/gastrin-releasing peptide receptors can be overexpressed in malignant cells. (creative-peptides.com)
  • However, stable fBB 4 -R cell lines were obtained in CHO-K1 cells which were shown to faithfully demonstrate the correct pharmacology of the related Bn receptor, the GRP receptor, when expressed in these cells. (acs.org)
  • DPhe 6 ,βAla 11 ,Phe 13 ,Nle 14 ]Bn(6−14) was found to have high affinity ( K i = 0.4 nM) for the fBB 4 receptor and 125 I-[DTyr 6 ,βala 11 ,Phe 13 ,Nle 14 ]Bn(6−14) to be an excellent ligand for this receptor. (acs.org)
  • The integration of GPCR and receptor tyrosine kinase (RTK) signaling, including IR upon ligand stimulation, is eloquently reviewed. (mdpi.com)
  • Freeze thaw will destroy a percentage in every cycle and should be avoided.Antibody for research use.The receptors are ligand binding factors of type 1, 2 or 3 and protein-molecules that receive chemical-signals from outside a cell. (antibodies-shop.com)
  • In this sense, am olfactory receptor is a protein-molecule that recognizes and responds to endogenous-chemical signals, chemokinesor cytokines e.g. an acetylcholine-receptor recognizes and responds to its endogenous-ligand, acetylcholine. (antibodies-shop.com)
  • The natural ligand for the BB3 receptor remains unknown. (7tmantibodies.com)
  • Because the natural ligand of the BB3 receptor is not known most of the information on the possible physiological or pathophysiological role of this receptor has come from BB3 receptor knockout studies. (7tmantibodies.com)
  • Results Binding of GRPR and SSTR radioligands to tumor tissue correlated significantly with receptor mRNA expression. (johnshopkins.edu)
  • There was a close correlation between agonist the receptor occupation and the receptor activation. (acs.org)
  • The advent of radiolabeled somatostatin analogs in the targeted imaging and radionuclide therapy of tumors overexpressing somatostatin receptors has paved the way for other radiopeptides to target alternative cancer-associated peptide receptor systems ( 1 - 4 ). (snmjournals.org)
  • The availability of an anti-androgen receptor (AR) monoclonal antibody has allowed the identification of both AR-positive and AR-negative neuroendocrine subpopulations in both benign and malignant tumors [5]. (cancernetwork.com)
  • Receptor mRNA expression levels were associated with clinico-pathological factors and expression levels of primary tumors and corresponding metastases were compared. (johnshopkins.edu)
  • In addition, most neuroendocrine tumors show a marked overexpression of somatostatin receptors, especially of sst2, which instigated the development of somatostatin agonists such as octreotide. (creative-peptides.com)
  • Systematic analyses have revealed that physicochemical properties of the drug-peptide conjugates and their mechanism of receptor-mediated cellular internalization are important controlling factors for developing a successful targeting system. (biosyn.com)
  • Whereas baculovirus expression systems have been extensively used for high-level expression of steroid receptors and receptors coupled to adenylate cyclase, there are few studies on peptide receptors coupled to phospholipase C (PLC). (utmb.edu)
  • The data further define the respective functions of the neuromedin B receptor and GRP receptor in itch, and reveals a working relationship between the different interneuron populations. (atsbio.com)
  • The ability of this system to express mGRP-R in increased amounts should be useful for obtaining enough receptor for making antibodies, performing reconstitution studies, and studying GRP-R modulation by agonists, and this system also provides useful insights into the importance of both glycosylation and G protein coupling with various agonists. (utmb.edu)
  • The purpose of the present study was to determine whether bombesin stimulates CCK release in rats and, if so, to determine whether bombesin regulates CCK mRNA levels in a manner similar to that of feeding. (duke.edu)
  • Despite increasing plasma CCK levels, bombesin infusion, unlike dietary stimulation, had no effect on duodenal CCK mRNA levels. (duke.edu)
  • The gold nanorod-bombesin (GNR-BBN) conjugates showed extraordinary in vitro stabilities against various biomolecules including NaCl, cysteine, histidine, bovine serum albumin, human serum albumin, and dithiothreitol. (umsystem.edu)
  • The bombesin receptors are a group of G-protein coupled receptors which bind bombesin. (wikipedia.org)
  • When such chemical-signals couple or bind to a receptor, they cause some form of cellular/tissue-response, e.g. a change in the electrical-activity of a cell. (antibodies-shop.com)
  • Nevertheless it has been found that the synthetic bombesin analogs can bind and activate BB3 receptors. (7tmantibodies.com)
  • Neurotransmitters that are released bind to receptors on another neuron. (msdmanuals.com)
  • Neurotransmitters diffuse across the synaptic cleft and bind briefly to specific receptors on the adjoining neuron or effector cell. (msdmanuals.com)
  • G protein-coupled receptors (GPCR) have recently been implicated in intracellular crosstalk pathways with IR. (mdpi.com)
  • BB2 bombesin receptor-expressing spinal neurons transmit herpes-associated itch by BB2 receptor-independent signaling. (atsbio.com)
  • Sasaki A, Adhikari S, Andoh T, Kuraishi Y (2013) BB2 bombesin receptor-expressing spinal neurons transmit herpes-associated itch by BB2 receptor-independent signaling. (atsbio.com)
  • Summary: Using a skin rash model created by inoculating mice with human herpes virus, bombesin receptor-expressing spinal neurons were lesioned intrathecally with 400 ng of Bombesin-SAP (Cat. (atsbio.com)
  • Summary: After itch detection, the itch pathway moves through an array of G-protein coupled receptors and transient receptor potential channels in dorsal root ganglion neurons into dorsal horn neurons which integrate and transduce these signals, sending them to the somatosensory cortex. (atsbio.com)
  • In such cases, the dendrites (a neuron's receiving branches) on the postsynaptic neurons release neurotransmitters that affect receptors on the presynaptic neurons. (msdmanuals.com)
  • The expression levels of Gα subunits influence the biased profiling of β-agonists and antagonists in that they determine both their activity and efficacy by affecting different membrane distribution of receptor-G protein populations. (mdpi.com)
  • In the naïve state, the level of Gα expression influences the partitioning of not only Gα but also the co-expressed receptor in different membrane domains. (mdpi.com)
  • G-protein coupled receptors represents the largest family of membrane protein in eukaryotes cells with more than 800 members. (tesisenred.net)
  • Specifically, within minutes of stimulation of resting fibroblasts with serum, growth factors or bombesin, a portion of NDP kinase becomes associated with membrane ruffles and lamellipodia. (liberty.edu)
  • These differences could be in the expressed surface receptors (i.e., the absence or presence of certain receptors), the metabolism profiles (i.e., different enzyme expression or intracellular trafficking), the site/location of the cells (i.e., circulating in blood stream vs. organ), and the nature of the cells (i.e., normal vs. cancerous). (biosyn.com)
  • BB3 receptor knockout mice develop mild obesity, associated with hypertension and impairment of glucose metabolism. (7tmantibodies.com)
  • The signal may stimulate or inhibit the receiving cell, depending on the neurotransmitter and receptor involved. (msdmanuals.com)
  • Although some of these analogs originally showed promising results in rats ( 18 ), none displayed convincing accumulation in the strongly receptor-positive stomach or detected small lesions in MTC patients ( 19 ). (snmjournals.org)
  • Similarly, serum bombesin levels appear to be a useful prognostic tool in cases of neuroendocrine differentiated disease. (cancernetwork.com)
  • Although indivi- duals with elevated serum bombesin also have elevated PSA, the latter is not a reliable prognostic indicator in these patients (unpublished observations). (cancernetwork.com)
  • fBB 4 -R expression in cells widely used for other Bn receptor subtypes was unsuccessful as was expression in two frog cell lines. (acs.org)
  • The three Bn receptor subtypes couple primarily to the G q/11 and G 12/13 family of G proteins [ 14 ]. (guidetomalariapharmacology.org)
  • For example, tumor cells have certain upregulated receptors, enzymes, and other metabolic features that are not present in normal cells in the body. (biosyn.com)
  • This was associated with DIM‐enhanced phosphorylation of the signaling intermediates Akt, insulin receptor substrate‐1, and insulin receptor early in differentiation. (researchgate.net)
  • Scholars@Duke publication: Regulation of intestinal cholecystokinin and somatostatin mRNA by bombesin in rats. (duke.edu)
  • The neuropeptide bombesin has been shown to stimulate secretion of several gastrointestinal hormones, including cholecystokinin (CCK). (duke.edu)
  • Potential-Dependent Characterization of Bombesin Adsorbed States on Roughened Ag, Au, and Cu Electrode Surfaces at Physiological pH. (acs.org)
  • and Otero, Angela de S., "Receptor Activation Regulates Cortical, but not Vesicular Localization of NDP Kinase" (2003). (liberty.edu)
  • Results DIM, but not I3C, increased adipocyte differentiation through upregulation of peroxisome proliferator‐activated receptor γ and CCAAT/enhancer‐binding protein α. (researchgate.net)
  • In Sf9 cells the mGRP-R had at least two of the four potential extracellular glycosylation sites glycosylated, whereas in the native receptor all four were approximately equally glycosylated. (utmb.edu)
  • In binding studies the affinity of the mGRP-R in Sf9 cells for the agonists bombesin (Bn), GRP, and neuromedin B (NMB) varied differently with infection time: with Bn the affinity decreased 3-fold with longer infection times, with GRP it remained unchanged, and with NMB it decreased 10-fold. (utmb.edu)
  • These results demonstrate that by the use of recombinant baculovirus infected Sf9 cells the PLC-linked receptor mGRP-R can be expressed in amounts significantly greater than those in native tissues. (utmb.edu)
  • The mGRP-R expressed in these Sf9 cells is incompletely glycosylated and has less complex N-linked oligosaccharide chains, yet it is fully coupled to G proteins and activates phospholipase C, similar to the native receptor, if short infection times are used. (utmb.edu)
  • Three of the five classes of Bn receptor antagonists that interacted with higher affinity with the fBB 4 -R functioned as fBB 4 -R antagonists and two as partial agonists. (acs.org)
  • BB3 receptor desensitization, β-arrestin recruitment and internalization are regulated by phosphorylation of carboxyl-terminal threonine360/serine361 (pT360/pS361-BB3), threonine363/threonine364 (pT363/pT364-BB3) and threonine370 (pT370-BB3). (7tmantibodies.com)
  • A temporal gate for viral enhancers to co-opt Toll-like-receptor transcriptional activation pathways upon acute infection. (sabbiotech.cn)
  • The aim of this study was to determine whether these receptors are also suitable targets for metastatic BC. (johnshopkins.edu)
  • Recently, a fourth member of the bombesin (Bn) receptor family (fBB 4 -R) was isolated from a cDNA library from the brain of the frog, Bombina orientalis . (acs.org)
  • To establish a proper dose of bombesin for stimulating CCK release, rats received 1-h intravenous infusions of 0.25, 1, 4, or 16 micrograms.kg-1.h-1 bombesin. (duke.edu)
  • With the use of this dose, rats then received infusions of bombesin or saline lasting up to 24 h. (duke.edu)
  • Finally, to determine whether the decrease in plasma CCK levels after prolonged bombesin treatment was due to tachyphylaxis, rats treated with bombesin for 4 h were also fed soybean trypsin inhibitor (a known stimulus of CCK secretion). (duke.edu)
  • Other reports have also shown that IR can interact with Gαi subunits upon receptor activation. (mdpi.com)
  • Receptor Activation Regulates Cortical, but not Vesicular Localization" by Betty C. Gallagher, Kimberly A.P. Mitchell et al. (liberty.edu)
  • Data obtained from patients with androgen- independent prostatic carcinoma have revealed that prostate-specific antigen (PSA) correlates with survival in patients with normal bombesin levels. (cancernetwork.com)
  • Basal plasma CCK levels averaged 1.8 +/- 0.4 pM and increased to peak levels of 2.9 +/- 0.6 pM within 15 min of infusion with 4 micrograms.kg-1.h-1 bombesin (the maximally effective dose). (duke.edu)
  • Bombesin treatment stimulated an increase in plasma CCK levels at 1 h, but levels declined to basal by 4 h, where they remained at 24 h. (duke.edu)
  • These results suggested the BB3 receptor could play a role in energy balance, weight control and control of blood glucose levels. (7tmantibodies.com)