Relating to the size of solids.
Colloids with a gaseous dispersing phase and either liquid (fog) or solid (smoke) dispersed phase; used in fumigation or in inhalation therapy; may contain propellant agents.
Substances made up of an aggregation of small particles, as that obtained by grinding or trituration of a solid drug. In pharmacy it is a form in which substances are administered. (From Dorland, 28th ed)
Nanometer-sized particles that are nanoscale in three dimensions. They include nanocrystaline materials; NANOCAPSULES; METAL NANOPARTICLES; DENDRIMERS, and QUANTUM DOTS. The uses of nanoparticles include DRUG DELIVERY SYSTEMS and cancer targeting and imaging.
Chemistry dealing with the composition and preparation of agents having PHARMACOLOGIC ACTIONS or diagnostic use.
The preparation, mixing, and assembling of a drug. (From Remington, The Science and Practice of Pharmacy, 19th ed, p1814)
The application of scientific knowledge or technology to pharmacy and the pharmaceutical industry. It includes methods, techniques, and instrumentation in the manufacture, preparation, compounding, dispensing, packaging, and storing of drugs and other preparations used in diagnostic and determinative procedures, and in the treatment of patients.
Forms to which substances are incorporated to improve the delivery and the effectiveness of drugs. Drug carriers are used in drug-delivery systems such as the controlled-release technology to prolong in vivo drug actions, decrease drug metabolism, and reduce drug toxicity. Carriers are also used in designs to increase the effectiveness of drug delivery to the target sites of pharmacological actions. Liposomes, albumin microspheres, soluble synthetic polymers, DNA complexes, protein-drug conjugates, and carrier erythrocytes among others have been employed as biodegradable drug carriers.
Small uniformly-sized spherical particles, of micrometer dimensions, frequently labeled with radioisotopes or various reagents acting as tags or markers.
Colloids with liquid continuous phase and solid dispersed phase; the term is used loosely also for solid-in-gas (AEROSOLS) and other colloidal systems; water-insoluble drugs may be given as suspensions.
Usually inert substances added to a prescription in order to provide suitable consistency to the dosage form. These include binders, matrix, base or diluent in pills, tablets, creams, salves, etc.
Colloids formed by the combination of two immiscible liquids such as oil and water. Lipid-in-water emulsions are usually liquid, like milk or lotion. Water-in-lipid emulsions tend to be creams. The formation of emulsions may be aided by amphiphatic molecules that surround one component of the system to form MICELLES.
A class of lipoproteins of small size (4-13 nm) and dense (greater than 1.063 g/ml) particles. HDL lipoproteins, synthesized in the liver without a lipid core, accumulate cholesterol esters from peripheral tissues and transport them to the liver for re-utilization or elimination from the body (the reverse cholesterol transport). Their major protein component is APOLIPOPROTEIN A-I. HDL also shuttle APOLIPOPROTEINS C and APOLIPOPROTEINS E to and from triglyceride-rich lipoproteins during their catabolism. HDL plasma level has been inversely correlated with the risk of cardiovascular diseases.
Two-phase systems in which one is uniformly dispersed in another as particles small enough so they cannot be filtered or will not settle out. The dispersing or continuous phase or medium envelops the particles of the discontinuous phase. All three states of matter can form colloids among each other.
A class of lipoproteins of small size (18-25 nm) and light (1.019-1.063 g/ml) particles with a core composed mainly of CHOLESTEROL ESTERS and smaller amounts of TRIGLYCERIDES. The surface monolayer consists mostly of PHOSPHOLIPIDS, a single copy of APOLIPOPROTEIN B-100, and free cholesterol molecules. The main LDL function is to transport cholesterol and cholesterol esters to extrahepatic tissues.
Deacetylated CHITIN, a linear polysaccharide of deacetylated beta-1,4-D-glucosamine. It is used in HYDROGEL and to treat WOUNDS.
The exposure to potentially harmful chemical, physical, or biological agents by inhaling them.
Microscopy in which the object is examined directly by an electron beam scanning the specimen point-by-point. The image is constructed by detecting the products of specimen interactions that are projected above the plane of the sample, such as backscattered electrons. Although SCANNING TRANSMISSION ELECTRON MICROSCOPY also scans the specimen point by point with the electron beam, the image is constructed by detecting the electrons, or their interaction products that are transmitted through the sample plane, so that is a form of TRANSMISSION ELECTRON MICROSCOPY.
The infective system of a virus, composed of the viral genome, a protein core, and a protein coat called a capsid, which may be naked or enclosed in a lipoprotein envelope called the peplos.
Transparent, tasteless crystals found in nature as agate, amethyst, chalcedony, cristobalite, flint, sand, QUARTZ, and tridymite. The compound is insoluble in water or acids except hydrofluoric acid.
A biocompatible polymer used as a surgical suture material.
Systems for the delivery of drugs to target sites of pharmacological actions. Technologies employed include those concerning drug preparation, route of administration, site targeting, metabolism, and toxicity.
The ability of a substance to be dissolved, i.e. to form a solution with another substance. (From McGraw-Hill Dictionary of Scientific and Technical Terms, 6th ed)
Nanoparticles produced from metals whose uses include biosensors, optics, and catalysts. In biomedical applications the particles frequently involve the noble metals, especially gold and silver.
Nanometer-sized, hollow, spherically-shaped objects that can be utilized to encapsulate small amounts of pharmaceuticals, enzymes, or other catalysts (Glossary of Biotechnology and Nanobiotechnology, 4th ed).
Characteristics or attributes of the outer boundaries of objects, including molecules.
The chemical and physical integrity of a pharmaceutical product.
Microscopy using an electron beam, instead of light, to visualize the sample, thereby allowing much greater magnification. The interactions of ELECTRONS with specimens are used to provide information about the fine structure of that specimen. In TRANSMISSION ELECTRON MICROSCOPY the reactions of the electrons that are transmitted through the specimen are imaged. In SCANNING ELECTRON MICROSCOPY an electron beam falls at a non-normal angle on the specimen and the image is derived from the reactions occurring above the plane of the specimen.
Electron microscopy in which the ELECTRONS or their reaction products that pass down through the specimen are imaged below the plane of the specimen.
Method of using a polycrystalline powder and Rietveld refinement (LEAST SQUARES ANALYSIS) of X-RAY DIFFRACTION or NEUTRON DIFFRACTION. It circumvents the difficulties of producing single large crystals.
Devices that cause a liquid or solid to be converted into an aerosol (spray) or a vapor. It is used in drug administration by inhalation, humidification of ambient air, and in certain analytical instruments.
The testing of materials and devices, especially those used for PROSTHESES AND IMPLANTS; SUTURES; TISSUE ADHESIVES; etc., for hardness, strength, durability, safety, efficacy, and biocompatibility.
Poly-2-methylpropenoic acids. Used in the manufacture of methacrylate resins and plastics in the form of pellets and granules, as absorbent for biological materials and as filters; also as biological membranes and as hydrogens. Synonyms: methylacrylate polymer; poly(methylacrylate); acrylic acid methyl ester polymer.
The quality or state of being wettable or the degree to which something can be wet. This is also the ability of any solid surface to be wetted when in contact with a liquid whose surface tension is reduced so that the liquid spreads over the surface of the solid.
Lipid-protein complexes involved in the transportation and metabolism of lipids in the body. They are spherical particles consisting of a hydrophobic core of TRIGLYCERIDES and CHOLESTEROL ESTERS surrounded by a layer of hydrophilic free CHOLESTEROL; PHOSPHOLIPIDS; and APOLIPOPROTEINS. Lipoproteins are classified by their varying buoyant density and sizes.
Particles of any solid substance, generally under 30 microns in size, often noted as PM30. There is special concern with PM1 which can get down to PULMONARY ALVEOLI and induce MACROPHAGE ACTIVATION and PHAGOCYTOSIS leading to FOREIGN BODY REACTION and LUNG DISEASES.
Dosage forms of a drug that act over a period of time by controlled-release processes or technology.
Materials which have structured components with at least one dimension in the range of 1 to 100 nanometers. These include NANOCOMPOSITES; NANOPARTICLES; NANOTUBES; and NANOWIRES.
Quartz (SiO2). A glassy or crystalline form of silicon dioxide. Many colored varieties are semiprecious stones. (From Grant & Hackh's Chemical Dictionary, 5th ed)
Method of tissue preparation in which the tissue specimen is frozen and then dehydrated at low temperature in a high vacuum. This method is also used for dehydrating pharmaceutical and food products.
The process of breakdown of food for metabolism and use by the body.
The most abundant protein component of HIGH DENSITY LIPOPROTEINS or HDL. This protein serves as an acceptor for CHOLESTEROL released from cells thus promoting efflux of cholesterol to HDL then to the LIVER for excretion from the body (reverse cholesterol transport). It also acts as a cofactor for LECITHIN CHOLESTEROL ACYLTRANSFERASE that forms CHOLESTEROL ESTERS on the HDL particles. Mutations of this gene APOA1 cause HDL deficiency, such as in FAMILIAL ALPHA LIPOPROTEIN DEFICIENCY DISEASE and in some patients with TANGIER DISEASE.
Foodstuff used especially for domestic and laboratory animals, or livestock.
Air pollutants found in the work area. They are usually produced by the specific nature of the occupation.
Condition of having pores or open spaces. This often refers to bones, bone implants, or bone cements, but can refer to the porous state of any solid substance.
Compounds formed by the joining of smaller, usually repeating, units linked by covalent bonds. These compounds often form large macromolecules (e.g., BIOPOLYMERS; PLASTICS).
Polymerized forms of styrene used as a biocompatible material, especially in dentistry. They are thermoplastic and are used as insulators, for injection molding and casting, as sheets, plates, rods, rigid forms and beads.
Differential thermal analysis in which the sample compartment of the apparatus is a differential calorimeter, allowing an exact measure of the heat of transition independent of the specific heat, thermal conductivity, and other variables of the sample.
The branch of medicine concerned with the application of NANOTECHNOLOGY to the prevention and treatment of disease. It involves the monitoring, repair, construction, and control of human biological systems at the molecular level, using engineered nanodevices and NANOSTRUCTURES. (From Freitas Jr., Nanomedicine, vol 1, 1999).
Polymers of ETHYLENE OXIDE and water, and their ethers. They vary in consistency from liquid to solid depending on the molecular weight indicated by a number following the name. They are used as SURFACTANTS, dispersing agents, solvents, ointment and suppository bases, vehicles, and tablet excipients. Some specific groups are NONOXYNOLS, OCTOXYNOLS, and POLOXAMERS.
A cytosolic ribonucleoprotein complex that acts to induce elongation arrest of nascent presecretory and membrane proteins until the ribosome becomes associated with the rough endoplasmic reticulum. It consists of a 7S RNA and at least six polypeptide subunits (relative molecular masses 9, 14, 19, 54, 68, and 72K).
A generic term for fats and lipoids, the alcohol-ether-soluble constituents of protoplasm, which are insoluble in water. They comprise the fats, fatty oils, essential oils, waxes, phospholipids, glycolipids, sulfolipids, aminolipids, chromolipids (lipochromes), and fatty acids. (Grant & Hackh's Chemical Dictionary, 5th ed)
A process of separating particulate matter from a fluid, such as air or a liquid, by passing the fluid carrier through a medium that will not pass the particulates. (McGraw-Hill Dictionary of Scientific and Technical Terms, 4th ed)
A nonionic polyoxyethylene-polyoxypropylene block co-polymer with the general formula HO(C2H4O)a(-C3H6O)b(C2H4O)aH. It is available in different grades which vary from liquids to solids. It is used as an emulsifying agent, solubilizing agent, surfactant, and wetting agent for antibiotics. Poloxamer is also used in ointment and suppository bases and as a tablet binder or coater. (Martindale The Extra Pharmacopoeia, 31st ed)
Spherical particles of nanometer dimensions.
Protein components on the surface of LIPOPROTEINS. They form a layer surrounding the hydrophobic lipid core. There are several classes of apolipoproteins with each playing a different role in lipid transport and LIPID METABOLISM. These proteins are synthesized mainly in the LIVER and the INTESTINES.
Silver. An element with the atomic symbol Ag, atomic number 47, and atomic weight 107.87. It is a soft metal that is used medically in surgical instruments, dental prostheses, and alloys. Long-continued use of silver salts can lead to a form of poisoning known as ARGYRIA.
Earth or other matter in fine, dry particles. (Random House Unabridged Dictionary, 2d ed)
The development and use of techniques to study physical phenomena and construct structures in the nanoscale size range or smaller.
The administration of drugs by the respiratory route. It includes insufflation into the respiratory tract.
Triglycerides are the most common type of fat in the body, stored in fat cells and used as energy; they are measured in blood tests to assess heart disease risk, with high levels often resulting from dietary habits, obesity, physical inactivity, smoking, and alcohol consumption.
The monitoring of the level of toxins, chemical pollutants, microbial contaminants, or other harmful substances in the environment (soil, air, and water), workplace, or in the bodies of people and animals present in that environment.
Solid dosage forms, of varying weight, size, and shape, which may be molded or compressed, and which contain a medicinal substance in pure or diluted form. (Dorland, 28th ed)
Completed forms of the pharmaceutical preparation in which prescribed doses of medication are included. They are designed to resist action by gastric fluids, prevent vomiting and nausea, reduce or alleviate the undesirable taste and smells associated with oral administration, achieve a high concentration of drug at target site, or produce a delayed or long-acting drug effect.
Any substance in the air which could, if present in high enough concentration, harm humans, animals, vegetation or material. Substances include GASES; PARTICULATE MATTER; and volatile ORGANIC CHEMICALS.
Artificial, single or multilaminar vesicles (made from lecithins or other lipids) that are used for the delivery of a variety of biological molecules or molecular complexes to cells, for example, drug delivery and gene transfer. They are also used to study membranes and membrane proteins.
A polyvinyl polymer of variable molecular weight; used as suspending and dispersing agent and vehicle for pharmaceuticals; also used as blood volume expander.
A milky, product excreted from the latex canals of a variety of plant species that contain cauotchouc. Latex is composed of 25-35% caoutchouc, 60-75% water, 2% protein, 2% resin, 1.5% sugar & 1% ash. RUBBER is made by the removal of water from latex.(From Concise Encyclopedia Biochemistry and Molecular Biology, 3rd ed). Hevein proteins are responsible for LATEX HYPERSENSITIVITY. Latexes are used as inert vehicles to carry antibodies or antigens in LATEX FIXATION TESTS.
A dark-gray, metallic element of widespread distribution but occurring in small amounts; atomic number, 22; atomic weight, 47.90; symbol, Ti; specific gravity, 4.5; used for fixation of fractures. (Dorland, 28th ed)
Cholesterol which is contained in or bound to high-density lipoproteins (HDL), including CHOLESTEROL ESTERS and free cholesterol.
The scattering of x-rays by matter, especially crystals, with accompanying variation in intensity due to interference effects. Analysis of the crystal structure of materials is performed by passing x-rays through them and registering the diffraction image of the rays (CRYSTALLOGRAPHY, X-RAY). (From McGraw-Hill Dictionary of Scientific and Technical Terms, 4th ed)
The act and process of chewing and grinding food in the mouth.
The assembly of VIRAL STRUCTURAL PROTEINS and nucleic acid (VIRAL DNA or VIRAL RNA) to form a VIRUS PARTICLE.
A large family of narrow-leaved herbaceous grasses of the order Cyperales, subclass Commelinidae, class Liliopsida (monocotyledons). Food grains (EDIBLE GRAIN) come from members of this family. RHINITIS, ALLERGIC, SEASONAL can be induced by POLLEN of many of the grasses.
A small aerosol canister used to release a calibrated amount of medication for inhalation.
Preparation for electron microscopy of minute replicas of exposed surfaces of the cell which have been ruptured in the frozen state. The specimen is frozen, then cleaved under high vacuum at the same temperature. The exposed surface is shadowed with carbon and platinum and coated with carbon to obtain a carbon replica.
Methylester of cellulose. Methylcellulose is used as an emulsifying and suspending agent in cosmetics, pharmaceutics and the chemical industry. It is used therapeutically as a bulk laxative.
The motion of air currents.
A class of lipoproteins of very light (0.93-1.006 g/ml) large size (30-80 nm) particles with a core composed mainly of TRIGLYCERIDES and a surface monolayer of PHOSPHOLIPIDS and CHOLESTEROL into which are imbedded the apolipoproteins B, E, and C. VLDL facilitates the transport of endogenously made triglycerides to extrahepatic tissues. As triglycerides and Apo C are removed, VLDL is converted to INTERMEDIATE-DENSITY LIPOPROTEINS, then to LOW-DENSITY LIPOPROTEINS from which cholesterol is delivered to the extrahepatic tissues.
Separation of particles according to density by employing a gradient of varying densities. At equilibrium each particle settles in the gradient at a point equal to its density. (McGraw-Hill Dictionary of Scientific and Technical Terms, 4th ed)
A polysaccharide with glucose units linked as in CELLOBIOSE. It is the chief constituent of plant fibers, cotton being the purest natural form of the substance. As a raw material, it forms the basis for many derivatives used in chromatography, ion exchange materials, explosives manufacturing, and pharmaceutical preparations.
Application of pharmaceutically active agents on the tissues of the EYE.
Established cell cultures that have the potential to propagate indefinitely.
Respirators to protect individuals from breathing air contaminated with harmful dusts, fogs, fumes, mists, gases, smokes, sprays, or vapors.
A clear, odorless, tasteless liquid that is essential for most animal and plant life and is an excellent solvent for many substances. The chemical formula is hydrogen oxide (H2O). (McGraw-Hill Dictionary of Scientific and Technical Terms, 4th ed)
Agents that modify interfacial tension of water; usually substances that have one lipophilic and one hydrophilic group in the molecule; includes soaps, detergents, emulsifiers, dispersing and wetting agents, and several groups of antiseptics.
The tendency of a gas or solute to pass from a point of higher pressure or concentration to a point of lower pressure or concentration and to distribute itself throughout the available space. Diffusion, especially FACILITATED DIFFUSION, is a major mechanism of BIOLOGICAL TRANSPORT.
The presence of bacteria, viruses, and fungi in the air. This term is not restricted to pathogenic organisms.
Vaccines using supra-molecular structures composed of multiple copies of recombinantly expressed viral structural proteins. They are often antigentically indistinguishable from the virus from which they were derived.
Methods of creating machines and devices.
A spectroscopic technique in which a range of wavelengths is presented simultaneously with an interferometer and the spectrum is mathematically derived from the pattern thus obtained.
The extent to which the active ingredient of a drug dosage form becomes available at the site of drug action or in a biological medium believed to reflect accessibility to a site of action.
SURFACE-ACTIVE AGENTS that induce a dispersion of undissolved material throughout a liquid.
A polymer prepared from polyvinyl acetates by replacement of the acetate groups with hydroxyl groups. It is used as a pharmaceutic aid and ophthalmic lubricant as well as in the manufacture of surface coatings artificial sponges, cosmetics, and other products.
A CHROMATOGRAPHY method using supercritical fluid, usually carbon dioxide under very high pressure (around 73 atmospheres or 1070 psi at room temperature) as the mobile phase. Other solvents are sometimes added as modifiers. This is used both for analytical (SFC) and extraction (SFE) purposes.
Major structural proteins of triacylglycerol-rich LIPOPROTEINS. There are two forms, apolipoprotein B-100 and apolipoprotein B-48, both derived from a single gene. ApoB-100 expressed in the liver is found in low-density lipoproteins (LIPOPROTEINS, LDL; LIPOPROTEINS, VLDL). ApoB-48 expressed in the intestine is found in CHYLOMICRONS. They are important in the biosynthesis, transport, and metabolism of triacylglycerol-rich lipoproteins. Plasma Apo-B levels are high in atherosclerotic patients but non-detectable in ABETALIPOPROTEINEMIA.
Any aspect of the operations in the preparation, processing, transport, storage, packaging, wrapping, exposure for sale, service, or delivery of food.
The various filaments, granules, tubules or other inclusions within mitochondria.
Compounds that provide LUBRICATION between surfaces in order to reduce FRICTION.
A device that delivers medication to the lungs in the form of a dry powder.
The second most abundant protein component of HIGH DENSITY LIPOPROTEINS or HDL. It has a high lipid affinity and is known to displace APOLIPOPROTEIN A-I from HDL particles and generates a stable HDL complex. ApoA-II can modulate the activation of LECITHIN CHOLESTEROL ACYLTRANSFERASE in the presence of APOLIPOPROTEIN A-I, thus affecting HDL metabolism.
Calcium salts of phosphoric acid. These compounds are frequently used as calcium supplements.
The principal sterol of all higher animals, distributed in body tissues, especially the brain and spinal cord, and in animal fats and oils.
Cholesterol which is contained in or bound to low density lipoproteins (LDL), including CHOLESTEROL ESTERS and free cholesterol.
Acrylic resins, also known as polymethyl methacrylate (PMMA), are a type of synthetic resin formed from polymerized methyl methacrylate monomers, used in various medical applications such as dental restorations, orthopedic implants, and ophthalmic lenses due to their biocompatibility, durability, and transparency.
Synthesized magnetic particles under 100 nanometers possessing many biomedical applications including DRUG DELIVERY SYSTEMS and CONTRAST AGENTS. The particles are usually coated with a variety of polymeric compounds.
A normal intermediate in the fermentation (oxidation, metabolism) of sugar. The concentrated form is used internally to prevent gastrointestinal fermentation. (From Stedman, 26th ed)
A yellow metallic element with the atomic symbol Au, atomic number 79, and atomic weight 197. It is used in jewelry, goldplating of other metals, as currency, and in dental restoration. Many of its clinical applications, such as ANTIRHEUMATIC AGENTS, are in the form of its salts.
The resistance that a gaseous or liquid system offers to flow when it is subjected to shear stress. (From McGraw-Hill Dictionary of Scientific and Technical Terms, 6th ed)
Fluorinated hydrocarbons are organic compounds consisting primarily of carbon and fluorine atoms, where hydrogen atoms may also be present, known for their high stability, chemical resistance, and various industrial applications, including refrigerants, fire extinguishing agents, and electrical insulation materials.
A type of familial lipid metabolism disorder characterized by a variable pattern of elevated plasma CHOLESTEROL and/or TRIGLYCERIDES. Multiple genes on different chromosomes may be involved, such as the major late transcription factor (UPSTREAM STIMULATORY FACTORS) on CHROMOSOME 1.
The property of objects that determines the direction of heat flow when they are placed in direct thermal contact. The temperature is the energy of microscopic motions (vibrational and translational) of the particles of atoms.
Gases, fumes, vapors, and odors escaping from the cylinders of a gasoline or diesel internal-combustion engine. (From McGraw-Hill Dictionary of Scientific and Technical Terms, 4th ed & Random House Unabridged Dictionary, 2d ed)
The diversion of RADIATION (thermal, electromagnetic, or nuclear) from its original path as a result of interactions or collisions with atoms, molecules, or larger particles in the atmosphere or other media. (McGraw-Hill Dictionary of Scientific and Technical Terms, 6th ed)
Nanometer-scale composite structures composed of organic molecules intimately incorporated with inorganic molecules. (Glossary of Biotechnology and Nanobiotechology Terms, 4th ed)
A mixture of very-low-density lipoproteins (VLDL), particularly the triglyceride-poor VLDL, with slow diffuse electrophoretic mobilities in the beta and alpha2 regions which are similar to that of beta-lipoproteins (LDL) or alpha-lipoproteins (HDL). They can be intermediate (remnant) lipoproteins in the de-lipidation process, or remnants of mutant CHYLOMICRONS and VERY-LOW-DENSITY LIPOPROTEINS which cannot be metabolized completely as seen in FAMILIAL DYSBETALIPOPROTEINEMIA.
Particles consisting of aggregates of molecules held loosely together by secondary bonds. The surface of micelles are usually comprised of amphiphatic compounds that are oriented in a way that minimizes the energy of interaction between the micelle and its environment. Liquids that contain large numbers of suspended micelles are referred to as EMULSIONS.
Compressed gases or vapors in a container which, upon release of pressure and expansion through a valve, carry another substance from the container. They are used for cosmetics, household cleaners, and so on. Examples are BUTANES; CARBON DIOXIDE; FLUOROCARBONS; NITROGEN; and PROPANE. (McGraw-Hill Dictionary of Scientific and Technical Terms, 4th ed)
Structural proteins of the alpha-lipoproteins (HIGH DENSITY LIPOPROTEINS), including APOLIPOPROTEIN A-I and APOLIPOPROTEIN A-II. They can modulate the activity of LECITHIN CHOLESTEROL ACYLTRANSFERASE. These apolipoproteins are low in atherosclerotic patients. They are either absent or present in extremely low plasma concentration in TANGIER DISEASE.
Centrifugation with a centrifuge that develops centrifugal fields of more than 100,000 times gravity. (McGraw-Hill Dictionary of Scientific and Technical Terms, 4th ed)
The normality of a solution with respect to HYDROGEN ions; H+. It is related to acidity measurements in most cases by pH = log 1/2[1/(H+)], where (H+) is the hydrogen ion concentration in gram equivalents per liter of solution. (McGraw-Hill Dictionary of Scientific and Technical Terms, 6th ed)
The study of the deformation and flow of matter, usually liquids or fluids, and of the plastic flow of solids. The concept covers consistency, dilatancy, liquefaction, resistance to flow, shearing, thixotrophy, and VISCOSITY.
Tailored macromolecules harboring covalently-bound biologically active modules that target specific tissues and cells. The active modules or functional groups can include drugs, prodrugs, antibodies, and oligonucleotides, which can act synergistically and be multitargeting.
The adhesion of gases, liquids, or dissolved solids onto a surface. It includes adsorptive phenomena of bacteria and viruses onto surfaces as well. ABSORPTION into the substance may follow but not necessarily.
The outer protein protective shell of a virus, which protects the viral nucleic acid.
The physical phenomena describing the structure and properties of atoms and molecules, and their reaction and interaction processes.
Hard or soft soluble containers used for the oral administration of medicine.
A mild astringent and topical protectant with some antiseptic action. It is also used in bandages, pastes, ointments, dental cements, and as a sunblock.
Inorganic compounds that contain chromium as an integral part of the molecule.
Elements of limited time intervals, contributing to particular results or situations.
Inorganic or organic compounds containing trivalent iron.
Positively charged particles composed of two protons and two NEUTRONS, i.e. equivalent to HELIUM nuclei, which are emitted during disintegration of heavy ISOTOPES. Alpha rays have very strong ionizing power, but weak penetrability.
An oxide of aluminum, occurring in nature as various minerals such as bauxite, corundum, etc. It is used as an adsorbent, desiccating agent, and catalyst, and in the manufacture of dental cements and refractories.
The formation of crystalline substances from solutions or melts. (McGraw-Hill Dictionary of Scientific and Technical Terms, 4th ed)
Polymers of organic acids and alcohols, with ester linkages--usually polyethylene terephthalate; can be cured into hard plastic, films or tapes, or fibers which can be woven into fabrics, meshes or velours.
The quality or state of being able to be bent or creased repeatedly. (From Webster, 3d ed)
The contamination of indoor air.
The study of CHEMICAL PHENOMENA and processes in terms of the underlying PHYSICAL PHENOMENA and processes.
Pharmacologic agents delivered into the nostrils in the form of a mist or spray.
Drugs intended for human or veterinary use, presented in their finished dosage form. Included here are materials used in the preparation and/or formulation of the finished dosage form.
Electrophoresis in which a polyacrylamide gel is used as the diffusion medium.
Natural or synthetic dyes used as coloring agents in processed foods.
Proteins that form the CAPSID of VIRUSES.
Uptake of substances through the SKIN.
A disaccharide of GLUCOSE and GALACTOSE in human and cow milk. It is used in pharmacy for tablets, in medicine as a nutrient, and in industry.
Electron microscopy involving rapid freezing of the samples. The imaging of frozen-hydrated molecules and organelles permits the best possible resolution closest to the living state, free of chemical fixatives or stains.
Liquids that dissolve other substances (solutes), generally solids, without any change in chemical composition, as, water containing sugar. (Grant & Hackh's Chemical Dictionary, 5th ed)
Viruses which lack a complete genome so that they cannot completely replicate or cannot form a protein coat. Some are host-dependent defectives, meaning they can replicate only in cell systems which provide the particular genetic function which they lack. Others, called SATELLITE VIRUSES, are able to replicate only when their genetic defect is complemented by a helper virus.
Any of a group of polysaccharides of the general formula (C6-H10-O5)n, composed of a long-chain polymer of glucose in the form of amylose and amylopectin. It is the chief storage form of energy reserve (carbohydrates) in plants.
The study of MAGNETIC PHENOMENA.
An area showing altered staining behavior in the nucleus or cytoplasm of a virus-infected cell. Some inclusion bodies represent "virus factories" in which viral nucleic acid or protein is being synthesized; others are merely artifacts of fixation and staining. One example, Negri bodies, are found in the cytoplasm or processes of nerve cells in animals that have died from rabies.
A measure of the amount of WATER VAPOR in the air.
Descriptions of specific amino acid, carbohydrate, or nucleotide sequences which have appeared in the published literature and/or are deposited in and maintained by databanks such as GENBANK, European Molecular Biology Laboratory (EMBL), National Biomedical Research Foundation (NBRF), or other sequence repositories.
Domesticated bovine animals of the genus Bos, usually kept on a farm or ranch and used for the production of meat or dairy products or for heavy labor.
Liquid chromatographic techniques which feature high inlet pressures, high sensitivity, and high speed.
Accumulation of a drug or chemical substance in various organs (including those not relevant to its pharmacologic or therapeutic action). This distribution depends on the blood flow or perfusion rate of the organ, the ability of the drug to penetrate organ membranes, tissue specificity, protein binding. The distribution is usually expressed as tissue to plasma ratios.
Synthetic or natural materials, other than DRUGS, that are used to replace or repair any body TISSUES or bodily function.
In the medical field, manikins are realistic, full-size models of human bodies used for teaching and practicing medical skills, such as CPR, intubation, or surgical procedures, as they provide a realistic and safe training environment without the use of actual patients.
The rate dynamics in chemical or physical systems.
Either of the pair of organs occupying the cavity of the thorax that effect the aeration of the blood.
The first stomach of ruminants. It lies on the left side of the body, occupying the whole of the left side of the abdomen and even stretching across the median plane of the body to the right side. It is capacious, divided into an upper and a lower sac, each of which has a blind sac at its posterior extremity. The rumen is lined by mucous membrane containing no digestive glands, but mucus-secreting glands are present in large numbers. Coarse, partially chewed food is stored and churned in the rumen until the animal finds circumstances convenient for rumination. When this occurs, little balls of food are regurgitated through the esophagus into the mouth, and are subjected to a second more thorough mastication, swallowed, and passed on into other parts of the compound stomach. (From Black's Veterinary Dictionary, 17th ed)
Technique whereby the weight of a sample can be followed over a period of time while its temperature is being changed (usually increased at a constant rate).
Fatty acid esters of cholesterol which constitute about two-thirds of the cholesterol in the plasma. The accumulation of cholesterol esters in the arterial intima is a characteristic feature of atherosclerosis.
The sum of the weight of all the atoms in a molecule.
An anti-inflammatory, synthetic glucocorticoid. It is used topically as an anti-inflammatory agent and in aerosol form for the treatment of ASTHMA.
A property of the surface of an object that makes it stick to another surface.
A muscarinic antagonist used as an antispasmodic, in rhinitis, in urinary incontinence, and in the treatment of ulcers. At high doses it has nicotinic effects resulting in neuromuscular blocking.
Drugs used for their effects on the respiratory system.
Complexes of RNA-binding proteins with ribonucleic acids (RNA).
Unctuous combustible substances that are liquid or easily liquefiable on warming, and are soluble in ether but insoluble in water. Such substances, depending on their origin, are classified as animal, mineral, or vegetable oils. Depending on their behavior on heating, they are volatile or fixed. (Dorland, 28th ed)
The ratio of the density of a material to the density of some standard material, such as water or air, at a specified temperature.
Intermediate-density subclass of the high-density lipoproteins, with particle sizes between 7 to 8 nm. As the larger lighter HDL2 lipoprotein, HDL3 lipoprotein is lipid-rich.
A series of hydrocarbons containing both chlorine and fluorine. These have been used as refrigerants, blowing agents, cleaning fluids, solvents, and as fire extinguishing agents. They have been shown to cause stratospheric ozone depletion and have been banned for many uses.
Lipids containing one or more phosphate groups, particularly those derived from either glycerol (phosphoglycerides see GLYCEROPHOSPHOLIPIDS) or sphingosine (SPHINGOLIPIDS). They are polar lipids that are of great importance for the structure and function of cell membranes and are the most abundant of membrane lipids, although not stored in large amounts in the system.
An enzyme secreted from the liver into the plasma of many mammalian species. It catalyzes the esterification of the hydroxyl group of lipoprotein cholesterol by the transfer of a fatty acid from the C-2 position of lecithin. In familial lecithin:cholesterol acyltransferase deficiency disease, the absence of the enzyme results in an excess of unesterified cholesterol in plasma. EC 2.3.1.43.
Synthetic thermoplastics that are tough, flexible, inert, and resistant to chemicals and electrical current. They are often used as biocompatible materials for prostheses and implants.
A plant species of the family POACEAE. It is a tall grass grown for its EDIBLE GRAIN, corn, used as food and animal FODDER.
The process of intracellular viral multiplication, consisting of the synthesis of PROTEINS; NUCLEIC ACIDS; and sometimes LIPIDS, and their assembly into a new infectious particle.
Cholesterol which is contained in or bound to very low density lipoproteins (VLDL). High circulating levels of VLDL cholesterol are found in HYPERLIPOPROTEINEMIA TYPE IIB. The cholesterol on the VLDL is eventually delivered by LOW-DENSITY LIPOPROTEINS to the tissues after the catabolism of VLDL to INTERMEDIATE-DENSITY LIPOPROTEINS, then to LDL.
The application of high intensity ultrasound to liquids.
A group of compounds that are derivatives of octadecanoic acid which is one of the most abundant fatty acids found in animal lipids. (Stedman, 25th ed)
The process of keeping pharmaceutical products in an appropriate location.
The engulfing and degradation of microorganisms; other cells that are dead, dying, or pathogenic; and foreign particles by phagocytic cells (PHAGOCYTES).
Semi-synthetic complex derived from nucleic-acid free viral particles. They are essentially reconstituted viral coats, where the infectious nucleocapsid is replaced by a compound of choice. Virosomes retain their fusogenic activity and thus deliver the incorporated compound (antigens, drugs, genes) inside the target cell. They can be used for vaccines (VACCINES, VIROSOME), drug delivery, or gene transfer.
Sorbitan mono-9-octadecanoate poly(oxy-1,2-ethanediyl) derivatives; complex mixtures of polyoxyethylene ethers used as emulsifiers or dispersing agents in pharmaceuticals.
Proteins found in any species of virus.
A nonmetallic element with atomic symbol C, atomic number 6, and atomic weight [12.0096; 12.0116]. It may occur as several different allotropes including DIAMOND; CHARCOAL; and GRAPHITE; and as SOOT from incompletely burned fuel.
Conditions with excess LIPIDS in the blood.
Strongly cationic polymer that binds to certain proteins; used as a marker in immunology, to precipitate and purify enzymes and lipids. Synonyms: aziridine polymer; Epamine; Epomine; ethylenimine polymer; Montrek; PEI; Polymin(e).
Theoretical representations that simulate the behavior or activity of biological processes or diseases. For disease models in living animals, DISEASE MODELS, ANIMAL is available. Biological models include the use of mathematical equations, computers, and other electronic equipment.
Any of various animals that constitute the family Suidae and comprise stout-bodied, short-legged omnivorous mammals with thick skin, usually covered with coarse bristles, a rather long mobile snout, and small tail. Included are the genera Babyrousa, Phacochoerus (wart hogs), and Sus, the latter containing the domestic pig (see SUS SCROFA).
Removal of moisture from a substance (chemical, food, tissue, etc.).
Supplying a building or house, their rooms and corridors, with fresh air. The controlling of the environment thus may be in public or domestic sites and in medical or non-medical locales. (From Dorland, 28th ed)
Pollution prevention through the design of effective chemical products that have low or no toxicity and use of chemical processes that reduce or eliminate the use and generation of hazardous substances.
An optical source that emits photons in a coherent beam. Light Amplification by Stimulated Emission of Radiation (LASER) is brought about using devices that transform light of varying frequencies into a single intense, nearly nondivergent beam of monochromatic radiation. Lasers operate in the infrared, visible, ultraviolet, or X-ray regions of the spectrum.
A phenomenon in which infection by a first virus results in resistance of cells or tissues to infection by a second, unrelated virus.
A condition of elevated levels of TRIGLYCERIDES in the blood.
Seeds from grasses (POACEAE) which are important in the diet.
Ribonucleic acid that makes up the genetic material of viruses.
The species Oryctolagus cuniculus, in the family Leporidae, order LAGOMORPHA. Rabbits are born in burrows, furless, and with eyes and ears closed. In contrast with HARES, rabbits have 22 chromosome pairs.
Zirconium. A rather rare metallic element, atomic number 40, atomic weight 91.22, symbol Zr. (From Dorland, 28th ed)
Electrophoresis applied to BLOOD PROTEINS.

Glomerular size-selective dysfunction in NIDDM is not ameliorated by ACE inhibition or by calcium channel blockade. (1/6488)

BACKGROUND: In patients with insulin-dependent diabetes mellitus (IDDM) and overt nephropathy glomerular barrier size-selectivity progressively deteriorates with time and is effectively improved by angiotensin converting enzyme (ACE) inhibition. Whether similar glomerular functional changes develop in proteinuric patients with non-insulin-dependent diabetes mellitus (NIDDM), and whether antihypertensive agents can favorably affect glomerular filtration of macromolecules in these patients, has not been documented yet. METHODS: We investigated renal hemodynamics and fractional clearance of neutral dextrans of graded sizes, in nine proteinuric patients with NIDDM and renal biopsy findings of typical diabetic glomerulopathy. Six healthy volunteers served as controls. We also investigated the effects of an ACE inhibitor and of a calcium channel blocker, both given in doses targeted to achieve a comparable level of systemic blood pressure control, on glomerular hemodynamics and sieving function. Theoretical analysis of glomerular macromolecule transport was adopted to evaluate intrinsic glomerular membrane permeability properties. RESULTS: Fractional clearance of large macromolecules (42 to 66 A in radius) was significantly higher in diabetic patients than in controls, and the distribution of membrane pore radii was calculated to be shifted towards larger pore sizes in diabetics (mean radius increased from 55 to 60 A). Despite effective blood pressure control, neither antihypertensive affected glomerular hemodynamics to any significant extent. Fractional clearance of dextrans, as well as of albumin and IgG, and total urinary proteins were not modified by either treatments. CONCLUSIONS: These data indicate that patients with NIDDM and overt nephropathy develop abnormalities in size-selective function of the glomerular barrier and, at variance to IDDM, such changes were not ameliorated either by ACE inhibition or calcium channel blockade.  (+info)

Dynamics of plaque formation in Alzheimer's disease. (2/6488)

Plaques that form in the brains of Alzheimer patients are made of deposits of the amyloid-beta peptide. We analyze the time evolution of amyloid-beta deposition in immunostained brain slices from transgenic mice. We find that amyloid-beta deposits appear in clusters whose characteristic size increases from 14 microm in 8-month-old mice to 22 microm in 12-month-old mice. We show that the clustering has implications for the biological growth of amyloid-beta by presenting a growth model that accounts for the experimentally observed structure of individual deposits and predicts the formation of clusters of deposits and their time evolution.  (+info)

Cryoelectron microscopy of a nucleating model bile in vitreous ice: formation of primordial vesicles. (3/6488)

Because gallstones form so frequently in human bile, pathophysiologically relevant supersaturated model biles are commonly employed to study cholesterol crystal formation. We used cryo-transmission electron microscopy, complemented by polarizing light microscopy, to investigate early stages of cholesterol nucleation in model bile. In the system studied, the proposed microscopic sequence involves the evolution of small unilamellar to multilamellar vesicles to lamellar liquid crystals and finally to cholesterol crystals. Small aliquots of a concentrated (total lipid concentration = 29.2 g/dl) model bile containing 8.5% cholesterol, 22.9% egg yolk lecithin, and 68.6% taurocholate (all mole %) were vitrified at 2 min to 20 days after fourfold dilution to induce supersaturation. Mixed micelles together with a category of vesicles denoted primordial, small unilamellar vesicles of two distinct morphologies (sphere/ellipsoid and cylinder/arachoid), large unilamellar vesicles, multilamellar vesicles, and cholesterol monohydrate crystals were imaged. No evidence of aggregation/fusion of small unilamellar vesicles to form multilamellar vesicles was detected. Low numbers of multilamellar vesicles were present, some of which were sufficiently large to be identified as liquid crystals by polarizing light microscopy. Dimensions, surface areas, and volumes of spherical/ellipsoidal and cylindrical/arachoidal vesicles were quantified. Early stages in the separation of vesicles from micelles, referred to as primordial vesicles, were imaged 23-31 min after dilution. Observed structures such as enlarged micelles in primordial vesicle interiors, segments of bilayer, and faceted edges at primordial vesicle peripheries are probably early stages of small unilamellar vesicle assembly. A decrease in the mean surface area of spherical/ellipsoidal vesicles was correlated with the increased production of cholesterol crystals at 10-20 days after supersaturation by dilution, supporting the role of small unilamellar vesicles as key players in cholesterol nucleation and as cholesterol donors to crystals. This is the first visualization of an intermediate structure that has been temporally linked to the development of small unilamellar vesicles in the separation of vesicles from micelles in a model bile and suggests a time-resolved system for further investigation.  (+info)

Sodium ion uptake into isolated plasma membrane vesicles: indirect effects of other ions. (4/6488)

Vesicles derived from plasma membrane of corneal endothelium were agitated to their minimum size distribution. When isotonic salt solutions surrounding the vesicles were changed there were alterations to the vesicle size distribution: the modal point of the logarithmic distribution did not change but the log variance did, indicating that substantial fission and fusion of vesicles occurred depending upon the nature of the surrounding solute. Orientation and total membrane area was conserved in the transformed population of vesicles. Although the ions added to the external isotonic salt solutions in the present series of experiments have no direct effect upon sodium membrane transporters in these membranes, kinetics of sodium accumulation into the vesicles were affected in a way that correlated with changes to the vesicle size distribution. Early-saturating (<1 min) intravesicular concentrations of sodium corresponded with apparently stable populations. Late-saturating (>1 min) intravesicular concentrations of sodium corresponded with significant vesicle distribution shifts and included a few seconds of delay. During the linear accumulation phase, both populations showed similar magnitudes of sodium transport. The significance of these data is discussed.  (+info)

Morphological behavior of acidic and neutral liposomes induced by basic amphiphilic alpha-helical peptides with systematically varied hydrophobic-hydrophilic balance. (5/6488)

Lipid-peptide interaction has been investigated using cationic amphiphilic alpha-helical peptides and systematically varying their hydrophobic-hydrophilic balance (HHB). The influence of the peptides on neutral and acidic liposomes was examined by 1) Trp fluorescence quenched by brominated phospholipid, 2) membrane-clearing ability, 3) size determination of liposomes by dynamic light scattering, 4) morphological observation by electron microscopy, and 5) ability to form planar lipid bilayers from channels. The peptides examined consist of hydrophobic Leu and hydrophilic Lys residues with ratios 13:5, 11:7, 9:9, 7:11, and 5:13 (abbreviated as Hels 13-5, 11-7, 9-9, 7-11, and 5-13, respectively; Kiyota, T., S. Lee, and G. Sugihara. 1996. Biochemistry. 35:13196-13204). The most hydrophobic peptide (Hel 13-5) induced a twisted ribbon-like fibril structure for egg PC liposomes. In a 3/1 (egg PC/egg PG) lipid mixture, Hel 13-5 addition caused fusion of the liposomes. Hel 13-5 formed ion channels in neutral lipid bilayer (egg PE/egg PC = 7/3) at low peptide concentrations, but not in an acidic bilayer (egg PE/brain PS = 7/3). The peptides with hydrophobicity less than Hel 13-5 (Hels 11-7 and Hel 9-9) were able to partially immerse their hydrophobic part of the amphiphilic helix in lipid bilayers and fragment liposome to small bicelles or micelles, and then the bicelles aggregated to form a larger assembly. Peptides Hel 11-7 and Hel 9-9 each formed strong ion channels. Peptides (Hel 7-11 and Hel 5-13) with a more hydrophilic HHB interacted with an acidic lipid bilayer by charge interaction, in which the former immerses the hydrophobic part in lipid bilayer, and the latter did not immerse, and formed large assemblies by aggregation of original liposomes. The present study clearly showed that hydrophobic-hydrophilic balance of a peptide is a crucial factor in understanding lipid-peptide interactions.  (+info)

Concatemerization of tRNA molecules in the presence of trivaline derivative. (6/6488)

The interaction of tRNA with trivaline dansyl hydrazide trifluoroacetate (DHTV) has been studied. The shape of curves of fluorimetric titration of tRNA with DHTV and vice versa can be explained only by formation of DHTV dimers on tRNA molecules, and subsequent association of DHTV-saturated tRNA molecules with each other. The ability of tRNA molecules to form concatemers in solution in the presence of DHTV has been demonstrated by electron microscopy. Electron microscopy of the tRNA-DHTV complexes stained with uranyl acetate revealed flexible rods 6-7 nm thick and up to several micrometers long.  (+info)

Hexavalent chromium responsible for lung lesions induced by intratracheal instillation of chromium fumes in rats. (7/6488)

Lung toxicity of chromium fumes (Cr fumes) was examined by a single intratracheal instillation into rats of 10.6 mg and 21.3 mg Cr fumes/kg body weight and by repeated (3 times) instillations of 10.8 mg and 21.7 mg Cr fumes/kg. The pathological changes were compared with those induced by single administrations of 3.2 mg and 19.2 mg Na2CO3 solution-insoluble fraction of Cr fumes (Cr-Fr)/kg and 20.8 mg commercially available chromium (III) oxide powder (Cr (III) oxide)/kg. Single and repeated administrations of Cr fumes suppressed growth rate in a dose-dependent manner, but administrations of Cr-Fr and Cr (III) oxide did not. A single administration of Cr fumes produced granulomas in the entire airways and alveoli with progressive fibrotic changes, as well as severe mobilization and destruction of macrophages and foamy cells. Those histopathological changes were aggravated by the repeated administration of Cr fumes. On the other hand, single administrations of Cr-Fr and Cr (III) oxide produced no remarkable histopathological changes. Cr fumes were found to be composed of 73.5% chromium (III) oxide and 26.5% chromium (VI) oxide. The primary particles of Cr fumes and Cr-Fr were similar, 0.02 micron in size (sigma g: 1.25), and Cr (III) oxide particles were 0.30 micron in size (sigma g: 1.53), measured by analytical electron microscopy (ATEM). Diffuse clusters of the primary particles in Cr fumes were identified as Cr (VI) oxide. The present results suggested that the lung toxicity of Cr fumes was mainly caused by these Cr (VI) oxide (CrO3) particles in Cr fumes.  (+info)

A new model rat with acute bronchiolitis and its application to research on the toxicology of inhaled particulate matter. (8/6488)

The aim of the present study was to establish a useful animal model that simulates humans sensitive to inhaled particulate matter (PM). We have developed a new rat model of acute bronchiolitis (Br) by exposing animals to NiCl2 (Ni) aerosols for five days. Three days following the Ni exposure, the animals developed signs of tachypnea, mucous hypersecretion, and bronchiolar inflammation which seemed to progress quickly during the fourth to fifth day. They recovered from lesions after four weeks in clean air. To assess the sensitivity of the Br rats to inhaled particles, two kinds of PM of respirable size were tested with doses similar to or a little higher to the recommended threshold limit values (TLVs) for the working environment in Japan. Titanium dioxide (TiO2 = Ti) was chosen as an inert and insoluble particles and vanadium pentoxide (V2O5 = V), as a representative soluble and toxic airborne material. The Br rats exposed to either Ti or V were compared the pathological changes in the lungs and the clearance of particles to those in normal control or Br rats kept in clean air. The following significant differences were observed in Br rats: 1. delayed recovery from pre-existing lesions or exacerbated inflammation, 2. reductions in deposition and clearance rate of inhaled particles with the progress of lesions. The present results suggest that Br rats are more susceptible to inhaled particles than control rats. Therefore, concentrations of particulate matter lower than the TLVs for Japan, which have no harmful effects on normal lungs, may not always be safe in the case of pre-existing lung inflammation.  (+info)

In the context of medical and health sciences, particle size generally refers to the diameter or dimension of particles, which can be in the form of solid particles, droplets, or aerosols. These particles may include airborne pollutants, pharmaceutical drugs, or medical devices such as nanoparticles used in drug delivery systems.

Particle size is an important factor to consider in various medical applications because it can affect the behavior and interactions of particles with biological systems. For example, smaller particle sizes can lead to greater absorption and distribution throughout the body, while larger particle sizes may be filtered out by the body's natural defense mechanisms. Therefore, understanding particle size and its implications is crucial for optimizing the safety and efficacy of medical treatments and interventions.

Aerosols are defined in the medical field as suspensions of fine solid or liquid particles in a gas. In the context of public health and medicine, aerosols often refer to particles that can remain suspended in air for long periods of time and can be inhaled. They can contain various substances, such as viruses, bacteria, fungi, or chemicals, and can play a role in the transmission of respiratory infections or other health effects.

For example, when an infected person coughs or sneezes, they may produce respiratory droplets that can contain viruses like influenza or SARS-CoV-2 (the virus that causes COVID-19). Some of these droplets can evaporate quickly and leave behind smaller particles called aerosols, which can remain suspended in the air for hours and potentially be inhaled by others. This is one way that respiratory viruses can spread between people in close proximity to each other.

Aerosols can also be generated through medical procedures such as bronchoscopy, suctioning, or nebulizer treatments, which can produce aerosols containing bacteria, viruses, or other particles that may pose an infection risk to healthcare workers or other patients. Therefore, appropriate personal protective equipment (PPE) and airborne precautions are often necessary to reduce the risk of transmission in these settings.

In the context of medical terminology, "powders" do not have a specific technical definition. However, in a general sense, powders refer to dry, finely ground or pulverized solid substances that can be dispersed in air or liquid mediums. In medicine, powders may include various forms of medications, such as crushed tablets or capsules, which are intended to be taken orally, mixed with liquids, or applied topically. Additionally, certain medical treatments and therapies may involve the use of medicated powders for various purposes, such as drying agents, abrasives, or delivery systems for active ingredients.

Nanoparticles are defined in the field of medicine as tiny particles that have at least one dimension between 1 to 100 nanometers (nm). They are increasingly being used in various medical applications such as drug delivery, diagnostics, and therapeutics. Due to their small size, nanoparticles can penetrate cells, tissues, and organs more efficiently than larger particles, making them ideal for targeted drug delivery and imaging.

Nanoparticles can be made from a variety of materials including metals, polymers, lipids, and dendrimers. The physical and chemical properties of nanoparticles, such as size, shape, charge, and surface chemistry, can greatly affect their behavior in biological systems and their potential medical applications.

It is important to note that the use of nanoparticles in medicine is still a relatively new field, and there are ongoing studies to better understand their safety and efficacy.

Pharmaceutical chemistry is a branch of chemistry that deals with the design, synthesis, and development of chemical entities used as medications. It involves the study of drugs' physical, chemical, and biological properties, as well as their interactions with living organisms. This field also encompasses understanding the absorption, distribution, metabolism, and excretion (ADME) of drugs in the body, which are critical factors in drug design and development. Pharmaceutical chemists often work closely with biologists, medical professionals, and engineers to develop new medications and improve existing ones.

Drug compounding is the process of combining, mixing, or altering ingredients to create a customized medication to meet the specific needs of an individual patient. This can be done for a variety of reasons, such as when a patient has an allergy to a certain ingredient in a mass-produced medication, or when a patient requires a different dosage or formulation than what is available commercially.

Compounding requires specialized training and equipment, and compounding pharmacists must follow strict guidelines to ensure the safety and efficacy of the medications they produce. Compounded medications are not approved by the U.S. Food and Drug Administration (FDA), but the FDA does regulate the ingredients used in compounding and has oversight over the practices of compounding pharmacies.

It's important to note that while compounding can provide benefits for some patients, it also carries risks, such as the potential for contamination or incorrect dosing. Patients should only receive compounded medications from reputable pharmacies that follow proper compounding standards and procedures.

Medical technology, also known as health technology, refers to the use of medical devices, medicines, vaccines, procedures, and systems for the purpose of preventing, diagnosing, or treating disease and disability. This can include a wide range of products and services, from simple devices like tongue depressors and bandages, to complex technologies like MRI machines and artificial organs.

Pharmaceutical technology, on the other hand, specifically refers to the application of engineering and scientific principles to the development, production, and control of pharmaceutical drugs and medical devices. This can include the design and construction of manufacturing facilities, the development of new drug delivery systems, and the implementation of quality control measures to ensure the safety and efficacy of pharmaceutical products.

Both medical technology and pharmaceutical technology play crucial roles in modern healthcare, helping to improve patient outcomes, reduce healthcare costs, and enhance the overall quality of life for individuals around the world.

A drug carrier, also known as a drug delivery system or vector, is a vehicle that transports a pharmaceutical compound to a specific site in the body. The main purpose of using drug carriers is to improve the efficacy and safety of drugs by enhancing their solubility, stability, bioavailability, and targeted delivery, while minimizing unwanted side effects.

Drug carriers can be made up of various materials, including natural or synthetic polymers, lipids, inorganic nanoparticles, or even cells and viruses. They can encapsulate, adsorb, or conjugate drugs through different mechanisms, such as physical entrapment, electrostatic interaction, or covalent bonding.

Some common types of drug carriers include:

1. Liposomes: spherical vesicles composed of one or more lipid bilayers that can encapsulate hydrophilic and hydrophobic drugs.
2. Polymeric nanoparticles: tiny particles made of biodegradable polymers that can protect drugs from degradation and enhance their accumulation in target tissues.
3. Dendrimers: highly branched macromolecules with a well-defined structure and size that can carry multiple drug molecules and facilitate their release.
4. Micelles: self-assembled structures formed by amphiphilic block copolymers that can solubilize hydrophobic drugs in water.
5. Inorganic nanoparticles: such as gold, silver, or iron oxide nanoparticles, that can be functionalized with drugs and targeting ligands for diagnostic and therapeutic applications.
6. Cell-based carriers: living cells, such as red blood cells, stem cells, or immune cells, that can be loaded with drugs and used to deliver them to specific sites in the body.
7. Viral vectors: modified viruses that can infect cells and introduce genetic material encoding therapeutic proteins or RNA interference molecules.

The choice of drug carrier depends on various factors, such as the physicochemical properties of the drug, the route of administration, the target site, and the desired pharmacokinetics and biodistribution. Therefore, selecting an appropriate drug carrier is crucial for achieving optimal therapeutic outcomes and minimizing side effects.

Microspheres are tiny, spherical particles that range in size from 1 to 1000 micrometers in diameter. They are made of biocompatible and biodegradable materials such as polymers, glass, or ceramics. In medical terms, microspheres have various applications, including drug delivery systems, medical imaging, and tissue engineering.

In drug delivery, microspheres can be used to encapsulate drugs and release them slowly over time, improving the efficacy of the treatment while reducing side effects. They can also be used for targeted drug delivery, where the microspheres are designed to accumulate in specific tissues or organs.

In medical imaging, microspheres can be labeled with radioactive isotopes or magnetic materials and used as contrast agents to enhance the visibility of tissues or organs during imaging procedures such as X-ray, CT, MRI, or PET scans.

In tissue engineering, microspheres can serve as a scaffold for cell growth and differentiation, promoting the regeneration of damaged tissues or organs. Overall, microspheres have great potential in various medical applications due to their unique properties and versatility.

In the context of medical definitions, "suspensions" typically refers to a preparation in which solid particles are suspended in a liquid medium. This is commonly used for medications that are administered orally, where the solid particles disperse upon shaking and settle back down when left undisturbed. The solid particles can be made up of various substances such as drugs, nutrients, or other active ingredients, while the liquid medium is often water, oil, or alcohol-based.

It's important to note that "suspensions" in a medical context should not be confused with the term as it relates to pharmacology or physiology, where it may refer to the temporary stopping of a bodily function or the removal of something from a solution through settling or filtration.

Excipients are inactive substances that serve as vehicles or mediums for the active ingredients in medications. They make up the bulk of a pharmaceutical formulation and help to stabilize, preserve, and enhance the delivery of the active drug compound. Common examples of excipients include binders, fillers, coatings, disintegrants, flavors, sweeteners, and colors. While excipients are generally considered safe and inert, they can sometimes cause allergic reactions or other adverse effects in certain individuals.

An emulsion is a type of stable mixture of two immiscible liquids, such as oil and water, which are normally unable to mix together uniformly. In an emulsion, one liquid (the dispersed phase) is broken down into small droplets and distributed throughout the other liquid (the continuous phase), creating a stable, cloudy mixture.

In medical terms, emulsions can be used in various pharmaceutical and cosmetic applications. For example, certain medications may be formulated as oil-in-water or water-in-oil emulsions to improve their absorption, stability, or palatability. Similarly, some skincare products and makeup removers contain emulsifiers that help create stable mixtures of water and oils, allowing for effective cleansing and moisturizing.

Emulsions can also occur naturally in the body, such as in the digestion of fats. The bile salts produced by the liver help to form small droplets of dietary lipids (oil) within the watery environment of the small intestine, allowing for efficient absorption and metabolism of these nutrients.

High-Density Lipoproteins (HDL) are a type of lipoprotein that play a crucial role in the transportation and metabolism of cholesterol in the body. They are often referred to as "good" cholesterol because they help remove excess cholesterol from cells and carry it back to the liver, where it can be broken down and removed from the body. This process is known as reverse cholesterol transport.

HDLs are composed of a lipid core containing cholesteryl esters and triglycerides, surrounded by a shell of phospholipids, free cholesterol, and apolipoproteins, primarily apoA-I. The size and composition of HDL particles can vary, leading to the classification of different subclasses of HDL with varying functions and metabolic fates.

Elevated levels of HDL have been associated with a lower risk of developing cardiovascular diseases, while low HDL levels increase the risk. However, it is essential to consider that HDL function and quality may be more important than just the quantity in determining cardiovascular risk.

Colloids are a type of mixture that contains particles that are intermediate in size between those found in solutions and suspensions. These particles range in size from about 1 to 1000 nanometers in diameter, which is smaller than what can be seen with the naked eye, but larger than the molecules in a solution.

Colloids are created when one substance, called the dispersed phase, is dispersed in another substance, called the continuous phase. The dispersed phase can consist of particles such as proteins, emulsified fats, or finely divided solids, while the continuous phase is usually a liquid, but can also be a gas or a solid.

Colloids are important in many areas of medicine and biology, including drug delivery, diagnostic imaging, and tissue engineering. They are also found in nature, such as in milk, blood, and fog. The properties of colloids can be affected by factors such as pH, temperature, and the presence of other substances, which can influence their stability and behavior.

Low-density lipoproteins (LDL), also known as "bad cholesterol," are a type of lipoprotein that carry cholesterol and other fats from the liver to cells throughout the body. High levels of LDL in the blood can lead to the buildup of cholesterol in the walls of the arteries, which can increase the risk of heart disease and stroke.

Lipoproteins are complex particles composed of proteins (apolipoproteins) and lipids (cholesterol, triglycerides, and phospholipids) that are responsible for transporting fat molecules around the body in the bloodstream. LDL is one type of lipoprotein, along with high-density lipoproteins (HDL), very low-density lipoproteins (VLDL), and chylomicrons.

LDL particles are smaller than HDL particles and can easily penetrate the artery walls, leading to the formation of plaques that can narrow or block the arteries. Therefore, maintaining healthy levels of LDL in the blood is essential for preventing cardiovascular disease.

Chitosan is a complex carbohydrate that is derived from the exoskeletons of crustaceans, such as shrimp and crabs. It is made up of chains of N-acetyl-d-glucosamine and d-glucosamine units. Chitosan has been studied for its potential medical and health benefits, including its ability to lower cholesterol levels, promote weight loss, and help control blood sugar levels. It is also used in wound care products due to its antibacterial and absorbent properties. However, more research is needed to confirm these potential benefits and establish recommended dosages and safety guidelines.

Inhalation exposure is a term used in occupational and environmental health to describe the situation where an individual breathes in substances present in the air, which could be gases, vapors, fumes, mist, or particulate matter. These substances can originate from various sources, such as industrial processes, chemical reactions, or natural phenomena.

The extent of inhalation exposure is determined by several factors, including:

1. Concentration of the substance in the air
2. Duration of exposure
3. Frequency of exposure
4. The individual's breathing rate
5. The efficiency of the individual's respiratory protection, if any

Inhalation exposure can lead to adverse health effects, depending on the toxicity and concentration of the inhaled substances. Short-term or acute health effects may include irritation of the eyes, nose, throat, or lungs, while long-term or chronic exposure can result in more severe health issues, such as respiratory diseases, neurological disorders, or cancer.

It is essential to monitor and control inhalation exposures in occupational settings to protect workers' health and ensure compliance with regulatory standards. Various methods are employed for exposure assessment, including personal air sampling, area monitoring, and biological monitoring. Based on the results of these assessments, appropriate control measures can be implemented to reduce or eliminate the risks associated with inhalation exposure.

Scanning electron microscopy (SEM) is a type of electron microscopy that uses a focused beam of electrons to scan the surface of a sample and produce a high-resolution image. In SEM, a beam of electrons is scanned across the surface of a specimen, and secondary electrons are emitted from the sample due to interactions between the electrons and the atoms in the sample. These secondary electrons are then detected by a detector and used to create an image of the sample's surface topography. SEM can provide detailed images of the surface of a wide range of materials, including metals, polymers, ceramics, and biological samples. It is commonly used in materials science, biology, and electronics for the examination and analysis of surfaces at the micro- and nanoscale.

A virion is the complete, infectious form of a virus outside its host cell. It consists of the viral genome (DNA or RNA) enclosed within a protein coat called the capsid, which is often surrounded by a lipid membrane called the envelope. The envelope may contain viral proteins and glycoproteins that aid in attachment to and entry into host cells during infection. The term "virion" emphasizes the infectious nature of the virus particle, as opposed to non-infectious components like individual capsid proteins or naked viral genome.

Silicon dioxide is not a medical term, but a chemical compound with the formula SiO2. It's commonly known as quartz or sand and is not something that would typically have a medical definition. However, in some cases, silicon dioxide can be used in pharmaceutical preparations as an excipient (an inactive substance that serves as a vehicle or medium for a drug) or as a food additive, often as an anti-caking agent.

In these contexts, it's important to note that silicon dioxide is considered generally recognized as safe (GRAS) by the U.S. Food and Drug Administration (FDA). However, exposure to very high levels of respirable silica dust, such as in certain industrial settings, can increase the risk of lung disease, including silicosis.

Polyglycolic acid (PGA) is a synthetic polymer of glycolic acid, which is commonly used in surgical sutures. It is a biodegradable material that degrades in the body through hydrolysis into glycolic acid, which can be metabolized and eliminated from the body. PGA sutures are often used for approximating tissue during surgical procedures due to their strength, handling properties, and predictable rate of absorption. The degradation time of PGA sutures is typically around 60-90 days, depending on factors such as the size and location of the suture.

Drug delivery systems (DDS) refer to techniques or technologies that are designed to improve the administration of a pharmaceutical compound in terms of its efficiency, safety, and efficacy. A DDS can modify the drug release profile, target the drug to specific cells or tissues, protect the drug from degradation, and reduce side effects.

The goal of a DDS is to optimize the bioavailability of a drug, which is the amount of the drug that reaches the systemic circulation and is available at the site of action. This can be achieved through various approaches, such as encapsulating the drug in a nanoparticle or attaching it to a biomolecule that targets specific cells or tissues.

Some examples of DDS include:

1. Controlled release systems: These systems are designed to release the drug at a controlled rate over an extended period, reducing the frequency of dosing and improving patient compliance.
2. Targeted delivery systems: These systems use biomolecules such as antibodies or ligands to target the drug to specific cells or tissues, increasing its efficacy and reducing side effects.
3. Nanoparticle-based delivery systems: These systems use nanoparticles made of polymers, lipids, or inorganic materials to encapsulate the drug and protect it from degradation, improve its solubility, and target it to specific cells or tissues.
4. Biodegradable implants: These are small devices that can be implanted under the skin or into body cavities to deliver drugs over an extended period. They can be made of biodegradable materials that gradually break down and release the drug.
5. Inhalation delivery systems: These systems use inhalers or nebulizers to deliver drugs directly to the lungs, bypassing the digestive system and improving bioavailability.

Overall, DDS play a critical role in modern pharmaceutical research and development, enabling the creation of new drugs with improved efficacy, safety, and patient compliance.

Solubility is a fundamental concept in pharmaceutical sciences and medicine, which refers to the maximum amount of a substance (solute) that can be dissolved in a given quantity of solvent (usually water) at a specific temperature and pressure. Solubility is typically expressed as mass of solute per volume or mass of solvent (e.g., grams per liter, milligrams per milliliter). The process of dissolving a solute in a solvent results in a homogeneous solution where the solute particles are dispersed uniformly throughout the solvent.

Understanding the solubility of drugs is crucial for their formulation, administration, and therapeutic effectiveness. Drugs with low solubility may not dissolve sufficiently to produce the desired pharmacological effect, while those with high solubility might lead to rapid absorption and short duration of action. Therefore, optimizing drug solubility through various techniques like particle size reduction, salt formation, or solubilization is an essential aspect of drug development and delivery.

Medical definitions generally refer to terms and concepts within the medical field. The term "metal nanoparticles" is more commonly used in materials science, chemistry, and physics. However, I can provide a general scientific definition that could be relevant to medical applications:

Metal nanoparticles are tiny particles with at least one dimension ranging from 1 to 100 nanometers (nm), composed of metals or metal compounds. They have unique optical, electronic, and chemical properties due to their small size and high surface-to-volume ratio, making them useful in various fields, including medical research. In medicine, metal nanoparticles can be used in drug delivery systems, diagnostics, and therapeutic applications such as photothermal therapy and radiation therapy. Examples of metals used for nanoparticle synthesis include gold, silver, and iron.

A nanocapsule is a type of nanoparticle that is characterized by its hollow, spherical structure. It is composed of a polymeric membrane that encapsulates an inner core or "cargo" which can be made up of various substances such as drugs, proteins, or imaging agents. The small size of nanocapsules (typically ranging from 10 to 1000 nanometers in diameter) allows them to penetrate cells and tissue more efficiently than larger particles, making them useful for targeted drug delivery and diagnostic applications.

The polymeric membrane can be designed to be biodegradable or non-biodegradable, depending on the desired application. Additionally, the surface of nanocapsules can be functionalized with various moieties such as antibodies, peptides, or small molecules to enhance their targeting capabilities and improve their stability in biological environments.

Overall, nanocapsules have great potential for use in a variety of medical applications, including cancer therapy, gene delivery, and vaccine development.

Surface properties in the context of medical science refer to the characteristics and features of the outermost layer or surface of a biological material or structure, such as cells, tissues, organs, or medical devices. These properties can include physical attributes like roughness, smoothness, hydrophobicity or hydrophilicity, and electrical conductivity, as well as chemical properties like charge, reactivity, and composition.

In the field of biomaterials science, understanding surface properties is crucial for designing medical implants, devices, and drug delivery systems that can interact safely and effectively with biological tissues and fluids. Surface modifications, such as coatings or chemical treatments, can be used to alter surface properties and enhance biocompatibility, improve lubricity, reduce fouling, or promote specific cellular responses like adhesion, proliferation, or differentiation.

Similarly, in the field of cell biology, understanding surface properties is essential for studying cell-cell interactions, cell signaling, and cell behavior. Cells can sense and respond to changes in their environment, including variations in surface properties, which can influence cell shape, motility, and function. Therefore, characterizing and manipulating surface properties can provide valuable insights into the mechanisms of cellular processes and offer new strategies for developing therapies and treatments for various diseases.

Drug stability refers to the ability of a pharmaceutical drug product to maintain its physical, chemical, and biological properties during storage and use, under specified conditions. A stable drug product retains its desired quality, purity, strength, and performance throughout its shelf life. Factors that can affect drug stability include temperature, humidity, light exposure, and container compatibility. Maintaining drug stability is crucial to ensure the safety and efficacy of medications for patients.

Electron microscopy (EM) is a type of microscopy that uses a beam of electrons to create an image of the sample being examined, resulting in much higher magnification and resolution than light microscopy. There are several types of electron microscopy, including transmission electron microscopy (TEM), scanning electron microscopy (SEM), and reflection electron microscopy (REM).

In TEM, a beam of electrons is transmitted through a thin slice of the sample, and the electrons that pass through the sample are focused to form an image. This technique can provide detailed information about the internal structure of cells, viruses, and other biological specimens, as well as the composition and structure of materials at the atomic level.

In SEM, a beam of electrons is scanned across the surface of the sample, and the electrons that are scattered back from the surface are detected to create an image. This technique can provide information about the topography and composition of surfaces, as well as the structure of materials at the microscopic level.

REM is a variation of SEM in which the beam of electrons is reflected off the surface of the sample, rather than scattered back from it. This technique can provide information about the surface chemistry and composition of materials.

Electron microscopy has a wide range of applications in biology, medicine, and materials science, including the study of cellular structure and function, disease diagnosis, and the development of new materials and technologies.

Transmission electron microscopy (TEM) is a type of microscopy in which an electron beam is transmitted through a ultra-thin specimen, interacting with it as it passes through. An image is formed from the interaction of the electrons with the specimen; the image is then magnified and visualized on a fluorescent screen or recorded on an electronic detector (or photographic film in older models).

TEM can provide high-resolution, high-magnification images that can reveal the internal structure of specimens including cells, viruses, and even molecules. It is widely used in biological and materials science research to investigate the ultrastructure of cells, tissues and materials. In medicine, TEM is used for diagnostic purposes in fields such as virology and bacteriology.

It's important to note that preparing a sample for TEM is a complex process, requiring specialized techniques to create thin (50-100 nm) specimens. These include cutting ultrathin sections of embedded samples using an ultramicrotome, staining with heavy metal salts, and positive staining or negative staining methods.

Powder diffraction is not a medical term, but rather a technique used in the field of materials science and physics. It refers to the analysis of the diffraction pattern produced when a beam of X-rays, neutrons, or electrons is shone onto a powdered sample of a material. The diffraction pattern provides information about the crystal structure and composition of the material, making it a valuable tool in the study of materials used in medical devices, pharmaceuticals, and other healthcare applications.

Nebulizer: A nebulizer is a medical device that delivers medication in the form of a mist to the respiratory system. It is often used for people who have difficulty inhaling medication through traditional inhalers, such as young children or individuals with severe respiratory conditions. The medication is placed in the nebulizer cup and then converted into a fine mist by the machine. This allows the user to breathe in the medication directly through a mouthpiece or mask.

Vaporizer: A vaporizer, on the other hand, is a device that heats up a liquid, often water or essential oils, to produce steam or vapor. While some people use vaporizers for therapeutic purposes, such as to help relieve congestion or cough, it is important to note that vaporizers are not considered medical devices and their effectiveness for these purposes is not well-established.

It's worth noting that nebulizers and vaporizers are different from each other in terms of their purpose and usage. Nebulizers are used specifically for delivering medication, while vaporizers are used to produce steam or vapor, often for non-medical purposes.

I'm happy to help! However, I must clarify that "materials testing" is not a medical term per se. It is a term used in various fields, including engineering and materials science, to describe the process of subjecting materials to different tests to evaluate their properties and performance under various conditions.

In the context of medical devices or implants, materials testing may refer to the evaluation of the physical and mechanical properties of materials used in their construction. These tests can include assessments of strength, durability, biocompatibility, and other factors that are critical to ensuring the safety and efficacy of medical devices.

Medical device manufacturers must comply with regulatory standards for materials testing to ensure that their products meet specific requirements for performance, safety, and quality. These standards may vary depending on the type of device, its intended use, and the country or region in which it will be marketed and sold.

Polymethacrylic acids are not typically referred to as a medical term, but rather as a chemical one. They are a type of synthetic polymer made up of repeating units of methacrylic acid (MAA). These polymers have various applications in different industries, including the medical field.

In medicine, polymethacrylates are often used in the formulation of controlled-release drug delivery systems, such as beads or microspheres, due to their ability to swell and shrink in response to changes in pH or temperature. This property allows for the gradual release of drugs encapsulated within these polymers over an extended period.

Polymethacrylates are also used in dental applications, such as in the production of artificial teeth and dentures, due to their durability and resistance to wear. Additionally, they can be found in some surgical sealants and adhesives.

While polymethacrylic acids themselves may not have a specific medical definition, their various forms and applications in medical devices and drug delivery systems contribute significantly to the field of medicine.

"Wettability" is not a term that has a specific medical definition. It is a term that is more commonly used in the fields of chemistry, physics, and materials science to describe how well a liquid spreads on a solid surface. In other words, it refers to the ability of a liquid to maintain contact with a solid surface, which can have implications for various medical applications such as the design of medical devices or the study of biological surfaces. However, it is not a term that would typically be used in a clinical medical context.

Lipoproteins are complex particles composed of multiple proteins and lipids (fats) that play a crucial role in the transport and metabolism of fat molecules in the body. They consist of an outer shell of phospholipids, free cholesterols, and apolipoproteins, enclosing a core of triglycerides and cholesteryl esters.

There are several types of lipoproteins, including:

1. Chylomicrons: These are the largest lipoproteins and are responsible for transporting dietary lipids from the intestines to other parts of the body.
2. Very-low-density lipoproteins (VLDL): Produced by the liver, VLDL particles carry triglycerides to peripheral tissues for energy storage or use.
3. Low-density lipoproteins (LDL): Often referred to as "bad cholesterol," LDL particles transport cholesterol from the liver to cells throughout the body. High levels of LDL in the blood can lead to plaque buildup in artery walls and increase the risk of heart disease.
4. High-density lipoproteins (HDL): Known as "good cholesterol," HDL particles help remove excess cholesterol from cells and transport it back to the liver for excretion or recycling. Higher levels of HDL are associated with a lower risk of heart disease.

Understanding lipoproteins and their roles in the body is essential for assessing cardiovascular health and managing risks related to heart disease and stroke.

Particulate Matter (PM) refers to the mixture of tiny particles and droplets in the air that are solid or liquid in nature. These particles vary in size, with some being visible to the naked eye while others can only be seen under a microscope. PM is classified based on its diameter:

* PM10 includes particles with a diameter of 10 micrometers or smaller. These particles are often found in dust, pollen, and smoke.
* PM2.5 includes particles with a diameter of 2.5 micrometers or smaller. These fine particles are produced from sources such as power plants, industrial processes, and vehicle emissions. They can also come from natural sources like wildfires.

Exposure to particulate matter has been linked to various health problems, including respiratory issues, cardiovascular disease, and premature death. The smaller the particle, the deeper it can penetrate into the lungs, making PM2.5 particularly harmful to human health.

I couldn't find a medical definition specifically for "delayed-action preparations." However, in the context of pharmacology, it may refer to medications or treatments that have a delayed onset of action. These are designed to release the active drug slowly over an extended period, which can help to maintain a consistent level of the medication in the body and reduce the frequency of dosing.

Examples of delayed-action preparations include:

1. Extended-release (ER) or controlled-release (CR) formulations: These are designed to release the drug slowly over several hours, reducing the need for frequent dosing. Examples include extended-release tablets and capsules.
2. Transdermal patches: These deliver medication through the skin and can provide a steady rate of drug delivery over several days. Examples include nicotine patches for smoking cessation or fentanyl patches for pain management.
3. Injectable depots: These are long-acting injectable formulations that slowly release the drug into the body over weeks to months. An example is the use of long-acting antipsychotic injections for the treatment of schizophrenia.
4. Implantable devices: These are small, biocompatible devices placed under the skin or within a body cavity that release a steady dose of medication over an extended period. Examples include hormonal implants for birth control or drug-eluting stents used in cardiovascular procedures.

Delayed-action preparations can improve patient compliance and quality of life by reducing dosing frequency, minimizing side effects, and maintaining consistent therapeutic levels.

Nanostructures, in the context of medical and biomedical research, refer to materials or devices with structural features that have at least one dimension ranging between 1-100 nanometers (nm). At this size scale, the properties of these structures can differ significantly from bulk materials, exhibiting unique phenomena that are often influenced by quantum effects.

Nanostructures have attracted considerable interest in biomedicine due to their potential applications in various areas such as drug delivery, diagnostics, regenerative medicine, and tissue engineering. They can be fabricated from a wide range of materials including metals, polymers, ceramics, and carbon-based materials.

Some examples of nanostructures used in biomedicine include:

1. Nanoparticles: These are tiny particles with at least one dimension in the nanoscale range. They can be made from various materials like metals, polymers, or lipids and have applications in drug delivery, imaging, and diagnostics.
2. Quantum dots: These are semiconductor nanocrystals that exhibit unique optical properties due to quantum confinement effects. They are used as fluorescent labels for bioimaging and biosensing applications.
3. Carbon nanotubes: These are hollow, cylindrical structures made of carbon atoms arranged in a hexagonal lattice. They have exceptional mechanical strength, electrical conductivity, and thermal stability, making them suitable for various biomedical applications such as drug delivery, tissue engineering, and biosensors.
4. Nanofibers: These are elongated nanostructures with high aspect ratios (length much greater than width). They can be fabricated from various materials like polymers, ceramics, or composites and have applications in tissue engineering, wound healing, and drug delivery.
5. Dendrimers: These are highly branched, nanoscale polymers with a well-defined structure and narrow size distribution. They can be used as drug carriers, gene delivery vehicles, and diagnostic agents.
6. Nanoshells: These are hollow, spherical nanoparticles consisting of a dielectric core covered by a thin metallic shell. They exhibit unique optical properties that make them suitable for applications such as photothermal therapy, biosensing, and imaging.

I'm sorry for any confusion, but "quartz" is not a medical term. Quartz is a mineral that is one of the most common minerals on Earth. It is found in many different types of rocks and is made up of silicon dioxide (SiO2). It is often used in electronics and watches because of its piezoelectric properties, which means it can generate an electric charge when subjected to pressure or stress.

It does not have any direct relation with medical field, although there are some Quartz based equipment like quartz crystal microbalance (QCM) sensors that are used in medical research for the detection of biomolecules and pathogens.

Freeze-drying, also known as lyophilization, is a method of preservation that involves the removal of water from a frozen product by sublimation, which is the direct transition of a solid to a gas. This process allows for the preservation of the original shape and structure of the material while significantly extending its shelf life. In medical contexts, freeze-drying can be used for various purposes, including the long-term storage of pharmaceuticals, vaccines, and diagnostic samples. The process helps maintain the efficacy and integrity of these materials until they are ready to be reconstituted with water and used.

Digestion is the complex process of breaking down food into smaller molecules that can be absorbed and utilized by the body for energy, growth, and cell repair. This process involves both mechanical and chemical actions that occur in the digestive system, which includes the mouth, esophagus, stomach, small intestine, large intestine, and accessory organs such as the pancreas, liver, and gallbladder.

The different stages of digestion are:

1. Ingestion: This is the first step in digestion, where food is taken into the mouth.
2. Mechanical digestion: This involves physically breaking down food into smaller pieces through chewing, churning, and mixing with digestive enzymes.
3. Chemical digestion: This involves breaking down food molecules into simpler forms using various enzymes and chemicals produced by the digestive system.
4. Absorption: Once the food is broken down into simple molecules, they are absorbed through the walls of the small intestine into the bloodstream and transported to different parts of the body.
5. Elimination: The undigested material that remains after absorption is moved through the large intestine and eliminated from the body as feces.

The process of digestion is essential for maintaining good health, as it provides the necessary nutrients and energy required for various bodily functions.

Apolipoprotein A-I (ApoA-I) is a major protein component of high-density lipoproteins (HDL) in human plasma. It plays a crucial role in the metabolism and transport of lipids, particularly cholesterol, within the body. ApoA-I facilitates the formation of HDL particles, which are involved in the reverse transport of cholesterol from peripheral tissues to the liver for excretion. This process is known as reverse cholesterol transport and helps maintain appropriate cholesterol levels in the body. Low levels of ApoA-I or dysfunctional ApoA-I have been associated with an increased risk of developing cardiovascular diseases.

Animal feed refers to any substance or mixture of substances, whether processed, unprocessed, or partially processed, which is intended to be used as food for animals, including fish, without further processing. It includes ingredients such as grains, hay, straw, oilseed meals, and by-products from the milling, processing, and manufacturing industries. Animal feed can be in the form of pellets, crumbles, mash, or other forms, and is used to provide nutrients such as energy, protein, fiber, vitamins, and minerals to support the growth, reproduction, and maintenance of animals. It's important to note that animal feed must be safe, nutritious, and properly labeled to ensure the health and well-being of the animals that consume it.

Occupational air pollutants refer to harmful substances present in the air in workplaces or occupational settings. These pollutants can include dusts, gases, fumes, vapors, or mists that are produced by industrial processes, chemical reactions, or other sources. Examples of occupational air pollutants include:

1. Respirable crystalline silica: A common mineral found in sand, stone, and concrete that can cause lung disease and cancer when inhaled in high concentrations.
2. Asbestos: A naturally occurring mineral fiber that was widely used in construction materials and industrial applications until the 1970s. Exposure to asbestos fibers can cause lung diseases such as asbestosis, lung cancer, and mesothelioma.
3. Welding fumes: Fumes generated during welding processes can contain harmful metals such as manganese, chromium, and nickel that can cause neurological damage and respiratory problems.
4. Isocyanates: Chemicals used in the production of foam insulation, spray-on coatings, and other industrial applications that can cause asthma and other respiratory symptoms.
5. Coal dust: Fine particles generated during coal mining, transportation, and handling that can cause lung disease and other health problems.
6. Diesel exhaust: Emissions from diesel engines that contain harmful particulates and gases that can cause respiratory and cardiovascular problems.

Occupational air pollutants are regulated by various government agencies, including the Occupational Safety and Health Administration (OSHA) in the United States, to protect workers from exposure and minimize health risks.

In the context of medical terminology, "porosity" is not a term that is frequently used to describe human tissues or organs. However, in dermatology and cosmetics, porosity refers to the ability of the skin to absorb and retain moisture or topical treatments.

A skin with high porosity has larger pores and can absorb more products, while a skin with low porosity has smaller pores and may have difficulty absorbing products. It is important to note that this definition of porosity is not a medical one but is instead used in the beauty industry.

In the context of medical definitions, polymers are large molecules composed of repeating subunits called monomers. These long chains of monomers can have various structures and properties, depending on the type of monomer units and how they are linked together. In medicine, polymers are used in a wide range of applications, including drug delivery systems, medical devices, and tissue engineering scaffolds. Some examples of polymers used in medicine include polyethylene, polypropylene, polystyrene, polyvinyl chloride (PVC), and biodegradable polymers such as polylactic acid (PLA) and polycaprolactone (PCL).

I'm sorry for any confusion, but "Polystyrenes" is not a medical term. Polystyrene is a type of synthetic aromatic hydrocarbon polymer that is used in a variety of commercial and industrial products, such as packaging materials, insulation, and disposable cutlery. It's important to note that some polystyrene products may contain potentially harmful chemicals, such as styrene, which can leach out into food or drink, posing potential health risks. However, the medical community primarily deals with the health effects of exposure to these chemicals rather than defining the material itself.

Differential scanning calorimetry (DSC) is a thermoanalytical technique used to measure the difference in the amount of heat required to increase the temperature of a sample and a reference as a function of temperature. It is commonly used to study phase transitions, such as melting, crystallization, and glass transition, as well as chemical reactions, in a wide range of materials, including polymers, pharmaceuticals, and biological samples.

In DSC, the sample and reference are placed in separate pans and heated at a constant rate. The heat flow required to maintain this heating rate is continuously measured for both the sample and the reference. As the temperature of the sample changes during a phase transition or chemical reaction, the heat flow required to maintain the same heating rate will change relative to the reference. This allows for the measurement of the enthalpy change (ΔH) associated with the transition or reaction.

Differential scanning calorimetry is a powerful tool in materials science and research as it can provide information about the thermal behavior, stability, and composition of materials. It can also be used to study the kinetics of reactions and phase transitions, making it useful for optimizing processing conditions and developing new materials.

Nanomedicine is a branch of medicine that utilizes nanotechnology, which deals with materials, devices, or systems at the nanometer scale (typically between 1-100 nm), to prevent and treat diseases. It involves the development of novel therapeutics, diagnostics, and medical devices that can interact with biological systems at the molecular level for improved detection, monitoring, and targeted treatment of various diseases and conditions.

Nanomedicine encompasses several areas, including:

1. Drug delivery: Nanocarriers such as liposomes, polymeric nanoparticles, dendrimers, and inorganic nanoparticles can be used to encapsulate drugs, enhancing their solubility, stability, and targeted delivery to specific cells or tissues, thereby reducing side effects.
2. Diagnostics: Nanoscale biosensors and imaging agents can provide early detection and monitoring of diseases with high sensitivity and specificity, enabling personalized medicine and improved patient outcomes.
3. Regenerative medicine: Nanomaterials can be used to create scaffolds and matrices for tissue engineering, promoting cell growth, differentiation, and vascularization in damaged or diseased tissues.
4. Gene therapy: Nanoparticles can be employed to deliver genetic material such as DNA, RNA, or gene-editing tools (e.g., CRISPR-Cas9) for the targeted correction of genetic disorders or cancer treatment.
5. Medical devices: Nanotechnology can improve the performance and functionality of medical devices by enhancing their biocompatibility, strength, and electrical conductivity, as well as incorporating sensing and drug delivery capabilities.

Overall, nanomedicine holds great promise for addressing unmet medical needs, improving diagnostic accuracy, and developing more effective therapies with reduced side effects. However, it also presents unique challenges related to safety, regulation, and scalability that must be addressed before widespread clinical adoption.

Polyethylene glycols (PEGs) are a family of synthetic, water-soluble polymers with a wide range of molecular weights. They are commonly used in the medical field as excipients in pharmaceutical formulations due to their ability to improve drug solubility, stability, and bioavailability. PEGs can also be used as laxatives to treat constipation or as bowel cleansing agents prior to colonoscopy examinations. Additionally, some PEG-conjugated drugs have been developed for use in targeted cancer therapies.

In a medical context, PEGs are often referred to by their average molecular weight, such as PEG 300, PEG 400, PEG 1500, and so on. Higher molecular weight PEGs tend to be more viscous and have longer-lasting effects in the body.

It's worth noting that while PEGs are generally considered safe for use in medical applications, some people may experience allergic reactions or hypersensitivity to these compounds. Prolonged exposure to high molecular weight PEGs has also been linked to potential adverse effects, such as decreased fertility and developmental toxicity in animal studies. However, more research is needed to fully understand the long-term safety of PEGs in humans.

A Signal Recognition Particle (SRP) is a complex molecular machine found in the cytosol of eukaryotic cells and on the bacterial cytoplasmic membrane. It plays a crucial role in the co-translational targeting and translocation of secretory and membrane proteins.

The SRP is composed of two main components: a small RNA molecule called 7SL RNA, and six proteins (SRP9, SRP14, SRP54, SRP68, SRP72, and SRP19 in humans). The 7SL RNA provides the binding site for the SRP proteins, while SRP54 contains the Alu domain that recognizes the signal sequence of nascent polypeptide chains as they emerge from ribosomes during translation.

When a signal sequence is exposed on a nascent polypeptide chain, it interacts with the SRP54 component of the SRP, causing the entire SRP to bind to the ribosome-nascent chain complex. This interaction leads to the arrest of protein synthesis and the recruitment of the SRP receptor (SR). The SRP-SR complex then targets the ribosome-nascent chain complex to the Sec61 translocon on the endoplasmic reticulum membrane in eukaryotes or the plasma membrane in bacteria. Upon docking, the SRP is released from the complex, and protein synthesis resumes, allowing for the translocation of the nascent polypeptide chain across the membrane into the lumen of the endoplasmic reticulum or the periplasmic space in bacteria.

In summary, a Signal Recognition Particle is a ribonucleoprotein complex that plays an essential role in recognizing signal sequences on nascent polypeptide chains and targeting them to the appropriate translocation machinery for secretion or membrane integration.

Lipids are a broad group of organic compounds that are insoluble in water but soluble in nonpolar organic solvents. They include fats, waxes, sterols, fat-soluble vitamins (such as vitamins A, D, E, and K), monoglycerides, diglycerides, triglycerides, and phospholipids. Lipids serve many important functions in the body, including energy storage, acting as structural components of cell membranes, and serving as signaling molecules. High levels of certain lipids, particularly cholesterol and triglycerides, in the blood are associated with an increased risk of cardiovascular disease.

Filtration in the medical context refers to a process used in various medical treatments and procedures, where a substance is passed through a filter with the purpose of removing impurities or unwanted components. The filter can be made up of different materials such as paper, cloth, or synthetic membranes, and it works by trapping particles or molecules based on their size, shape, or charge.

For example, filtration is commonly used in kidney dialysis to remove waste products and excess fluids from the blood. In this case, the patient's blood is pumped through a special filter called a dialyzer, which separates waste products and excess fluids from the blood based on size differences between these substances and the blood cells. The clean blood is then returned to the patient's body.

Filtration is also used in other medical applications such as water purification, air filtration, and tissue engineering. In each case, the goal is to remove unwanted components or impurities from a substance, making it safer or more effective for use in medical treatments and procedures.

Poloxamers are a type of triblock copolymer made up of a central hydrophobic chain of polyoxypropylene (poly(propylene oxide)) flanked by two hydrophilic chains of polyoxyethylene (poly(ethylene oxide)). They are amphiphilic molecules, meaning they have both hydrophilic and hydrophobic parts.

Poloxamers are often used in the pharmaceutical industry as drug delivery agents, emulsifiers, solubilizers, and stabilizers. They can form micelles in aqueous solutions above their critical micelle concentration (CMC), with the hydrophobic chains oriented toward the interior of the micelle and the hydrophilic chains on the exterior, interacting with the water molecules. This unique property allows poloxamers to solubilize drugs that are otherwise poorly soluble in water, improving their bioavailability.

Poloxamers have been studied for various medical applications, including as drug carriers for chemotherapy, diagnostic agents, and mucoadhesive materials. Some specific poloxamer compounds have been approved by the FDA for use in pharmaceutical formulations, such as Poloxamer 188 and Poloxamer 407.

In a medical context, poloxamers are not typically used as standalone treatments but rather as components of drug delivery systems or formulations.

Nanospheres are defined in the medical context as tiny, spherical particles that have a diameter in the nanometer range (typically between 1 to 1000 nm). They can be made up of various materials such as polymers, lipids, metals or ceramics. Nanospheres have unique properties due to their small size and large surface area, making them useful for a variety of medical applications including drug delivery, diagnostic imaging, and tissue engineering.

In the field of drug delivery, nanospheres can be used to encapsulate drugs and deliver them to specific sites in the body, improving the efficacy and safety of treatments. They can also be designed to target certain cell types or release their cargo in response to specific stimuli. Additionally, nanospheres can be used as contrast agents for medical imaging techniques such as magnetic resonance imaging (MRI) and computed tomography (CT).

Overall, nanospheres are a promising tool in the development of new medical technologies and therapies.

Apolipoproteins are a group of proteins that are associated with lipids (fats) in the body and play a crucial role in the metabolism, transportation, and regulation of lipids. They are structural components of lipoprotein particles, which are complexes of lipids and proteins that transport lipids in the bloodstream.

There are several types of apolipoproteins, including ApoA, ApoB, ApoC, ApoD, ApoE, and others. Each type has a specific function in lipid metabolism. For example, ApoA is a major component of high-density lipoprotein (HDL), often referred to as "good cholesterol," and helps remove excess cholesterol from cells and tissues and transport it to the liver for excretion. ApoB, on the other hand, is a major component of low-density lipoprotein (LDL), or "bad cholesterol," and plays a role in the delivery of cholesterol to cells and tissues.

Abnormal levels of apolipoproteins or dysfunctional forms of these proteins have been linked to various diseases, including cardiovascular disease, Alzheimer's disease, and metabolic disorders such as diabetes. Therefore, measuring apolipoprotein levels in the blood can provide valuable information for diagnosing and monitoring these conditions.

I'm sorry for any confusion, but "Silver" is not a medical term. It is a chemical element with the symbol Ag and atomic number 47. Silver is a soft, white, lustrous transition metal that occurs in its pure, free form (native silver) as an alloy with gold and other metals, and in minerals such as argentite and chlorargyrite.

In the medical field, silver compounds have been used for their antimicrobial properties. For example, silver sulfadiazine is a common topical cream used to prevent or treat wound infections. Colloidal silver, a suspension of silver particles in a liquid, has also been promoted as a dietary supplement and alternative treatment for various conditions, but its effectiveness and safety are not well-established.

In medical terms, "dust" is not defined as a specific medical condition or disease. However, generally speaking, dust refers to small particles of solid matter that can be found in the air and can come from various sources, such as soil, pollen, hair, textiles, paper, or plastic.

Exposure to certain types of dust, such as those containing allergens, chemicals, or harmful pathogens, can cause a range of health problems, including respiratory issues like asthma, allergies, and lung diseases. Prolonged exposure to certain types of dust, such as silica or asbestos, can even lead to serious conditions like silicosis or mesothelioma.

Therefore, it is important for individuals who work in environments with high levels of dust to take appropriate precautions, such as wearing masks and respirators, to minimize their exposure and reduce the risk of health problems.

Nanotechnology is not a medical term per se, but it is a field of study with potential applications in medicine. According to the National Nanotechnology Initiative, nanotechnology is defined as "the understanding and control of matter at the nanoscale, at dimensions between approximately 1 and 100 nanometers, where unique phenomena enable novel applications."

In the context of medicine, nanotechnology has the potential to revolutionize the way we diagnose, treat, and prevent diseases. Nanomedicine involves the use of nanoscale materials, devices, or systems for medical applications. These can include drug delivery systems that target specific cells or tissues, diagnostic tools that detect biomarkers at the molecular level, and tissue engineering strategies that promote regeneration and repair.

While nanotechnology holds great promise for medicine, it is still a relatively new field with many challenges to overcome, including issues related to safety, regulation, and scalability.

"Inhalation administration" is a medical term that refers to the method of delivering medications or therapeutic agents directly into the lungs by inhaling them through the airways. This route of administration is commonly used for treating respiratory conditions such as asthma, COPD (chronic obstructive pulmonary disease), and cystic fibrosis.

Inhalation administration can be achieved using various devices, including metered-dose inhalers (MDIs), dry powder inhalers (DPIs), nebulizers, and soft-mist inhalers. Each device has its unique mechanism of delivering the medication into the lungs, but they all aim to provide a high concentration of the drug directly to the site of action while minimizing systemic exposure and side effects.

The advantages of inhalation administration include rapid onset of action, increased local drug concentration, reduced systemic side effects, and improved patient compliance due to the ease of use and non-invasive nature of the delivery method. However, proper technique and device usage are crucial for effective therapy, as incorrect usage may result in suboptimal drug deposition and therapeutic outcomes.

Triglycerides are the most common type of fat in the body, and they're found in the food we eat. They're carried in the bloodstream to provide energy to the cells in our body. High levels of triglycerides in the blood can increase the risk of heart disease, especially in combination with other risk factors such as high LDL (bad) cholesterol, low HDL (good) cholesterol, and high blood pressure.

It's important to note that while triglycerides are a type of fat, they should not be confused with cholesterol, which is a waxy substance found in the cells of our body. Both triglycerides and cholesterol are important for maintaining good health, but high levels of either can increase the risk of heart disease.

Triglyceride levels are measured through a blood test called a lipid panel or lipid profile. A normal triglyceride level is less than 150 mg/dL. Borderline-high levels range from 150 to 199 mg/dL, high levels range from 200 to 499 mg/dL, and very high levels are 500 mg/dL or higher.

Elevated triglycerides can be caused by various factors such as obesity, physical inactivity, excessive alcohol consumption, smoking, and certain medical conditions like diabetes, hypothyroidism, and kidney disease. Medications such as beta-blockers, steroids, and diuretics can also raise triglyceride levels.

Lifestyle changes such as losing weight, exercising regularly, eating a healthy diet low in saturated and trans fats, avoiding excessive alcohol consumption, and quitting smoking can help lower triglyceride levels. In some cases, medication may be necessary to reduce triglycerides to recommended levels.

Environmental monitoring is the systematic and ongoing surveillance, measurement, and assessment of environmental parameters, pollutants, or other stressors in order to evaluate potential impacts on human health, ecological systems, or compliance with regulatory standards. This process typically involves collecting and analyzing data from various sources, such as air, water, soil, and biota, and using this information to inform decisions related to public health, environmental protection, and resource management.

In medical terms, environmental monitoring may refer specifically to the assessment of environmental factors that can impact human health, such as air quality, water contamination, or exposure to hazardous substances. This type of monitoring is often conducted in occupational settings, where workers may be exposed to potential health hazards, as well as in community-based settings, where environmental factors may contribute to public health issues. The goal of environmental monitoring in a medical context is to identify and mitigate potential health risks associated with environmental exposures, and to promote healthy and safe environments for individuals and communities.

In the context of medical terminology, tablets refer to pharmaceutical dosage forms that contain various active ingredients. They are often manufactured in a solid, compressed form and can be administered orally. Tablets may come in different shapes, sizes, colors, and flavors, depending on their intended use and the manufacturer's specifications.

Some tablets are designed to disintegrate or dissolve quickly in the mouth, making them easier to swallow, while others are formulated to release their active ingredients slowly over time, allowing for extended drug delivery. These types of tablets are known as sustained-release or controlled-release tablets.

Tablets may contain a single active ingredient or a combination of several ingredients, depending on the intended therapeutic effect. They are typically manufactured using a variety of excipients, such as binders, fillers, and disintegrants, which help to hold the tablet together and ensure that it breaks down properly when ingested.

Overall, tablets are a convenient and widely used dosage form for administering medications, offering patients an easy-to-use and often palatable option for receiving their prescribed treatments.

A dosage form refers to the physical or pharmaceutical preparation of a drug that determines how it is administered and taken by the patient. The dosage form influences the rate and extent of drug absorption, distribution, metabolism, and excretion in the body, which ultimately affects the drug's therapeutic effectiveness and safety profile.

There are various types of dosage forms available, including:

1. Solid dosage forms: These include tablets, capsules, caplets, and powders that are intended to be swallowed or chewed. They may contain a single active ingredient or multiple ingredients in a fixed-dose combination.
2. Liquid dosage forms: These include solutions, suspensions, emulsions, and syrups that are intended to be taken orally or administered parenterally (e.g., intravenously, intramuscularly, subcutaneously).
3. Semi-solid dosage forms: These include creams, ointments, gels, pastes, and suppositories that are intended to be applied topically or administered rectally.
4. Inhalation dosage forms: These include metered-dose inhalers (MDIs), dry powder inhalers (DPIs), and nebulizers that are used to deliver drugs directly to the lungs.
5. Transdermal dosage forms: These include patches, films, and sprays that are applied to the skin to deliver drugs through the skin into the systemic circulation.
6. Implantable dosage forms: These include surgically implanted devices or pellets that release drugs slowly over an extended period.

The choice of dosage form depends on various factors, such as the drug's physicochemical properties, pharmacokinetics, therapeutic indication, patient population, and route of administration. The goal is to optimize the drug's efficacy and safety while ensuring patient compliance and convenience.

Air pollutants are substances or mixtures of substances present in the air that can have negative effects on human health, the environment, and climate. These pollutants can come from a variety of sources, including industrial processes, transportation, residential heating and cooking, agricultural activities, and natural events. Some common examples of air pollutants include particulate matter, nitrogen dioxide, sulfur dioxide, ozone, carbon monoxide, and volatile organic compounds (VOCs).

Air pollutants can cause a range of health effects, from respiratory irritation and coughing to more serious conditions such as bronchitis, asthma, and cancer. They can also contribute to climate change by reacting with other chemicals in the atmosphere to form harmful ground-level ozone and by directly absorbing or scattering sunlight, which can affect temperature and precipitation patterns.

Air quality standards and regulations have been established to limit the amount of air pollutants that can be released into the environment, and efforts are ongoing to reduce emissions and improve air quality worldwide.

Liposomes are artificially prepared, small, spherical vesicles composed of one or more lipid bilayers that enclose an aqueous compartment. They can encapsulate both hydrophilic and hydrophobic drugs, making them useful for drug delivery applications in the medical field. The lipid bilayer structure of liposomes is similar to that of biological membranes, which allows them to merge with and deliver their contents into cells. This property makes liposomes a valuable tool in delivering drugs directly to targeted sites within the body, improving drug efficacy while minimizing side effects.

Povidone, also known as PVP or polyvinylpyrrolidone, is not a medication itself but rather a pharmaceutical ingredient used in various medical and healthcare products. It is a water-soluble synthetic polymer that has the ability to bind to and carry other substances, such as drugs or iodine.

In medical applications, povidone is often used as a binder or coating agent in pharmaceutical tablets and capsules. It can also be found in some topical antiseptic solutions, such as those containing iodine, where it helps to stabilize and control the release of the active ingredient.

It's important to note that while povidone is a widely used pharmaceutical ingredient, it is not typically considered a medication on its own.

In a medical context, "latex" refers to the natural rubber milk-like substance that is tapped from the incisions made in the bark of the rubber tree (Hevea brasiliensis). This sap is then processed to create various products such as gloves, catheters, and balloons. It's important to note that some people may have a latex allergy, which can cause mild to severe reactions when they come into contact with latex products.

Titanium is not a medical term, but rather a chemical element (symbol Ti, atomic number 22) that is widely used in the medical field due to its unique properties. Medically, it is often referred to as a biocompatible material used in various medical applications such as:

1. Orthopedic implants: Titanium and its alloys are used for making joint replacements (hips, knees, shoulders), bone plates, screws, and rods due to their high strength-to-weight ratio, excellent corrosion resistance, and biocompatibility.
2. Dental implants: Titanium is also commonly used in dental applications like implants, crowns, and bridges because of its ability to osseointegrate, or fuse directly with bone tissue, providing a stable foundation for replacement teeth.
3. Cardiovascular devices: Titanium alloys are used in the construction of heart valves, pacemakers, and other cardiovascular implants due to their non-magnetic properties, which prevent interference with magnetic resonance imaging (MRI) scans.
4. Medical instruments: Due to its resistance to corrosion and high strength, titanium is used in the manufacturing of various medical instruments such as surgical tools, needles, and catheters.

In summary, Titanium is a chemical element with unique properties that make it an ideal material for various medical applications, including orthopedic and dental implants, cardiovascular devices, and medical instruments.

HDL (High-Density Lipoprotein) cholesterol is often referred to as "good" cholesterol. It is a type of lipoprotein that helps remove excess cholesterol from cells and carry it back to the liver, where it can be broken down and removed from the body. High levels of HDL cholesterol have been associated with a lower risk of heart disease and stroke.

X-ray diffraction (XRD) is not strictly a medical definition, but it is a technique commonly used in the field of medical research and diagnostics. XRD is a form of analytical spectroscopy that uses the phenomenon of X-ray diffraction to investigate the crystallographic structure of materials. When a beam of X-rays strikes a crystal, it is scattered in specific directions and with specific intensities that are determined by the arrangement of atoms within the crystal. By measuring these diffraction patterns, researchers can determine the crystal structures of various materials, including biological macromolecules such as proteins and viruses.

In the medical field, XRD is often used to study the structure of drugs and drug candidates, as well as to analyze the composition and structure of tissues and other biological samples. For example, XRD can be used to investigate the crystal structures of calcium phosphate minerals in bone tissue, which can provide insights into the mechanisms of bone formation and disease. Additionally, XRD is sometimes used in the development of new medical imaging techniques, such as phase-contrast X-ray imaging, which has the potential to improve the resolution and contrast of traditional X-ray images.

Mastication is the medical term for the process of chewing food. It's the first step in digestion, where food is broken down into smaller pieces by the teeth, making it easier to swallow and further digest. The act of mastication involves not only the physical grinding and tearing of food by the teeth but also the mixing of the food with saliva, which contains enzymes that begin to break down carbohydrates. This process helps to enhance the efficiency of digestion and nutrient absorption in the subsequent stages of the digestive process.

Virus assembly, also known as virion assembly, is the final stage in the virus life cycle where individual viral components come together to form a complete viral particle or virion. This process typically involves the self-assembly of viral capsid proteins around the viral genome (DNA or RNA) and, in enveloped viruses, the acquisition of a lipid bilayer membrane containing viral glycoproteins. The specific mechanisms and regulation of virus assembly vary among different viral families, but it is often directed by interactions between viral structural proteins and genomic nucleic acid.

Poaceae is not a medical term but a taxonomic category, specifically the family name for grasses. In a broader sense, you might be asking for a medical context where knowledge of this plant family could be relevant. For instance, certain members of the Poaceae family can cause allergies or negative reactions in some people.

In a medical definition, Poaceae would be defined as:

The family of monocotyledonous plants that includes grasses, bamboo, and sedges. These plants are characterized by narrow leaves with parallel veins, jointed stems (called "nodes" and "internodes"), and flowers arranged in spikelets. Some members of this family are important food sources for humans and animals, such as rice, wheat, corn, barley, oats, and sorghum. Other members can cause negative reactions, like skin irritation or allergies, due to their silica-based defense structures called phytoliths.

A Metered Dose Inhaler (MDI) is a medical device used to administer a specific amount or "metered dose" of medication, usually in the form of an aerosol, directly into the lungs of a patient. The MDI consists of a pressurized canister that contains the medication mixed with a propellant, a metering valve that releases a precise quantity of the medication, and a mouthpiece or mask for the patient to inhale the medication.

MDIs are commonly used to treat respiratory conditions such as asthma, chronic obstructive pulmonary disease (COPD), and bronchitis. They are also used to deliver other medications such as corticosteroids, anticholinergics, and beta-agonists. Proper use of an MDI requires coordination between the pressing of the canister and inhalation of the medication, which may be challenging for some patients. Therefore, it is essential to receive proper training on how to use an MDI effectively.

Freeze fracturing is not a medical term itself, but it is a technique used in the field of electron microscopy, which is a type of imaging commonly used in scientific research and medical fields to visualize structures at a very small scale, such as cells and cellular components.

In freeze fracturing, a sample is rapidly frozen to preserve its structure and then fractured or split along a plane of weakness, often along the membrane of a cell. The freshly exposed surface is then shadowed with a thin layer of metal, such as platinum or gold, to create a replica of the surface. This replica can then be examined using an electron microscope to reveal details about the structure and organization of the sample at the molecular level.

Freeze fracturing is particularly useful for studying membrane structures, such as lipid bilayers and protein complexes, because it allows researchers to visualize these structures in their native state, without the need for staining or other chemical treatments that can alter or damage the samples.

Methylcellulose is a semisynthetic, inert, viscous, and tasteless white powder that is soluble in cold water but not in hot water. It is derived from cellulose through the process of methylation. In medical contexts, it is commonly used as a bulk-forming laxative to treat constipation, as well as a lubricant in ophthalmic solutions and a suspending agent in pharmaceuticals.

When mixed with water, methylcellulose forms a gel-like substance that can increase stool volume and promote bowel movements. It is generally considered safe for most individuals, but like any medication or supplement, it should be used under the guidance of a healthcare provider.

"Air movements" is not a medical term or concept. It generally refers to the movement or circulation of air, which can occur naturally (such as through wind) or mechanically (such as through fans or ventilation systems). In some contexts, it may refer specifically to the movement of air in operating rooms or other controlled environments for medical purposes. However, without more specific context, it is difficult to provide a precise definition or medical interpretation of "air movements."

VLDL (Very Low-Density Lipoproteins) are a type of lipoprotein that play a crucial role in the transport and metabolism of fat molecules, known as triglycerides, in the body. They are produced by the liver and consist of a core of triglycerides surrounded by a shell of proteins called apolipoproteins, phospholipids, and cholesterol.

VLDL particles are responsible for delivering fat molecules from the liver to peripheral tissues throughout the body, where they can be used as an energy source or stored for later use. During this process, VLDL particles lose triglycerides and acquire more cholesterol, transforming into intermediate-density lipoproteins (IDL) and eventually low-density lipoproteins (LDL), which are also known as "bad" cholesterol.

Elevated levels of VLDL in the blood can contribute to the development of cardiovascular disease due to their association with increased levels of triglycerides and LDL cholesterol, as well as decreased levels of high-density lipoproteins (HDL), which are considered "good" cholesterol.

Centrifugation, Density Gradient is a medical laboratory technique used to separate and purify different components of a mixture based on their size, density, and shape. This method involves the use of a centrifuge and a density gradient medium, such as sucrose or cesium chloride, to create a stable density gradient within a column or tube.

The sample is carefully layered onto the top of the gradient and then subjected to high-speed centrifugation. During centrifugation, the particles in the sample move through the gradient based on their size, density, and shape, with heavier particles migrating faster and further than lighter ones. This results in the separation of different components of the mixture into distinct bands or zones within the gradient.

This technique is commonly used to purify and concentrate various types of biological materials, such as viruses, organelles, ribosomes, and subcellular fractions, from complex mixtures. It allows for the isolation of pure and intact particles, which can then be collected and analyzed for further study or use in downstream applications.

In summary, Centrifugation, Density Gradient is a medical laboratory technique used to separate and purify different components of a mixture based on their size, density, and shape using a centrifuge and a density gradient medium.

Cellulose is a complex carbohydrate that is the main structural component of the cell walls of green plants, many algae, and some fungi. It is a polysaccharide consisting of long chains of beta-glucose molecules linked together by beta-1,4 glycosidic bonds. Cellulose is insoluble in water and most organic solvents, and it is resistant to digestion by humans and non-ruminant animals due to the lack of cellulase enzymes in their digestive systems. However, ruminants such as cows and sheep can digest cellulose with the help of microbes in their rumen that produce cellulase.

Cellulose has many industrial applications, including the production of paper, textiles, and building materials. It is also used as a source of dietary fiber in human food and animal feed. Cellulose-based materials are being explored for use in biomedical applications such as tissue engineering and drug delivery due to their biocompatibility and mechanical properties.

Ophthalmic administration refers to the application or delivery of medications directly into the eye or on the surface of the eye. This route is commonly used for treating various eye conditions such as infections, inflammation, or glaucoma. The medication can be administered in several ways, including:

1. Eye drops: A liquid solution that is instilled into the lower conjunctival sac (the space between the eyeball and the lower eyelid) using a dropper. The patient should be advised to tilt their head back, look up, and pull down the lower eyelid to create a pocket for the drop.
2. Eye ointment: A semi-solid preparation that is applied to the lower conjunctival sac or the edge of the eyelid using a small tube or applicator. Ointments provide a longer contact time with the eye surface compared to eye drops, making them suitable for nighttime use or treating conditions that require prolonged medication exposure.
3. Eye inserts or pellets: Slow-release devices that contain medications and are placed either in the conjunctival sac or on the surface of the eye. These inserts gradually dissolve, releasing the active ingredient over an extended period.
4. Eye patches or bandages: In some cases, medication may be applied to an eye patch or bandage, which is then placed over the affected eye. This method is less common and typically used when other forms of administration are not feasible.

When administering ophthalmic medications, it's essential to follow proper techniques to ensure the correct dosage reaches the target area and minimize systemic absorption. Patients should also be advised about potential side effects, precautions, and storage requirements for their specific medication.

A cell line is a culture of cells that are grown in a laboratory for use in research. These cells are usually taken from a single cell or group of cells, and they are able to divide and grow continuously in the lab. Cell lines can come from many different sources, including animals, plants, and humans. They are often used in scientific research to study cellular processes, disease mechanisms, and to test new drugs or treatments. Some common types of human cell lines include HeLa cells (which come from a cancer patient named Henrietta Lacks), HEK293 cells (which come from embryonic kidney cells), and HUVEC cells (which come from umbilical vein endothelial cells). It is important to note that cell lines are not the same as primary cells, which are cells that are taken directly from a living organism and have not been grown in the lab.

Respiratory Protective Devices (RPDs) are personal protective equipment items designed to protect the user from inhalation of hazardous substances or harmful levels of airborne contaminants in the environment. These devices create a physical barrier between the user's respiratory system and the surrounding air, filtering out or purifying the air before it is breathed in.

RPDs can be categorized into two main types:

1. **Air-purifying Respirators (APRs):** These devices use filters, cartridges, or canisters to remove contaminants from the surrounding air. They are further divided into several subcategories, including filtering facepiece respirators, half-mask elastomeric respirators, full-facepiece elastomeric respirators, and powered air-purifying respirators (PAPRs).
2. **Supplied-Air Respirators (SARs):** These devices deliver clean breathing air from an external source, either through a compressor or compressed air cylinder. They are further divided into two subcategories: self-contained breathing apparatuses (SCBAs) and supplied-air respirators with escape provisions.

The choice of RPD depends on the nature and concentration of the airborne contaminants, the user's physiological and psychological capabilities, and the work environment. Proper selection, fitting, use, maintenance, and training are crucial to ensure the effectiveness and safety of Respiratory Protective Devices.

Medical definitions of water generally describe it as a colorless, odorless, tasteless liquid that is essential for all forms of life. It is a universal solvent, making it an excellent medium for transporting nutrients and waste products within the body. Water constitutes about 50-70% of an individual's body weight, depending on factors such as age, sex, and muscle mass.

In medical terms, water has several important functions in the human body:

1. Regulation of body temperature through perspiration and respiration.
2. Acting as a lubricant for joints and tissues.
3. Facilitating digestion by helping to break down food particles.
4. Transporting nutrients, oxygen, and waste products throughout the body.
5. Helping to maintain healthy skin and mucous membranes.
6. Assisting in the regulation of various bodily functions, such as blood pressure and heart rate.

Dehydration can occur when an individual does not consume enough water or loses too much fluid due to illness, exercise, or other factors. This can lead to a variety of symptoms, including dry mouth, fatigue, dizziness, and confusion. Severe dehydration can be life-threatening if left untreated.

Surfactants, also known as surface-active agents, are amphiphilic compounds that reduce the surface tension between two liquids or between a liquid and a solid. They contain both hydrophilic (water-soluble) and hydrophobic (water-insoluble) components in their molecular structure. This unique property allows them to interact with and stabilize interfaces, making them useful in various medical and healthcare applications.

In the medical field, surfactants are commonly used in pulmonary medicine, particularly for treating respiratory distress syndrome (RDS) in premature infants. The lungs of premature infants often lack sufficient amounts of natural lung surfactant, which can lead to RDS and other complications. Exogenous surfactants, derived from animal sources or synthetically produced, are administered to replace the missing or dysfunctional lung surfactant, improving lung compliance and gas exchange.

Surfactants also have applications in topical formulations for dermatology, as they can enhance drug penetration into the skin, reduce irritation, and improve the spreadability of creams and ointments. Additionally, they are used in diagnostic imaging to enhance contrast between tissues and improve visualization during procedures such as ultrasound and X-ray examinations.

Diffusion, in the context of medicine and physiology, refers to the process by which molecules move from an area of high concentration to an area of low concentration until they are evenly distributed throughout a space or solution. This passive transport mechanism does not require energy and relies solely on the random motion of particles. Diffusion is a vital process in many biological systems, including the exchange of gases in the lungs, the movement of nutrients and waste products across cell membranes, and the spread of drugs and other substances throughout tissues.

Air microbiology is the study of microorganisms, such as bacteria, fungi, and viruses, that are present in the air. These microorganisms can be suspended in the air as particles or carried within droplets of liquid, such as those produced when a person coughs or sneezes.

Air microbiology is an important field of study because it helps us understand how these microorganisms are transmitted and how they may affect human health. For example, certain airborne bacteria and fungi can cause respiratory infections, while airborne viruses can cause diseases such as the common cold and influenza.

Air microbiology involves various techniques for collecting and analyzing air samples, including culturing microorganisms on growth media, using molecular biology methods to identify specific types of microorganisms, and measuring the concentration of microorganisms in the air. This information can be used to develop strategies for controlling the spread of airborne pathogens and protecting public health.

Virus-like particles (VLPs) are nanostructures that mimic the organization and conformation of authentic viruses but lack the genetic material required for replication. VLPs can be produced from one or more viral proteins, which can be derived from various expression systems including bacteria, yeast, insect, or mammalian cells.

VLP-based vaccines are a type of vaccine that uses these virus-like particles to induce an immune response in the body. These vaccines can be designed to target specific viruses or other pathogens and have been shown to be safe and effective in inducing both humoral and cellular immunity.

VLPs resemble authentic viruses in their structure, size, and antigenic properties, making them highly immunogenic. They can be designed to present specific epitopes or antigens from a pathogen, which can stimulate the immune system to produce antibodies and activate T-cells that recognize and attack the pathogen.

VLP vaccines have been developed for several viruses, including human papillomavirus (HPV), hepatitis B virus (HBV), and respiratory syncytial virus (RSV). They offer several advantages over traditional vaccines, such as a strong immune response, safety, and stability.

Equipment design, in the medical context, refers to the process of creating and developing medical equipment and devices, such as surgical instruments, diagnostic machines, or assistive technologies. This process involves several stages, including:

1. Identifying user needs and requirements
2. Concept development and brainstorming
3. Prototyping and testing
4. Design for manufacturing and assembly
5. Safety and regulatory compliance
6. Verification and validation
7. Training and support

The goal of equipment design is to create safe, effective, and efficient medical devices that meet the needs of healthcare providers and patients while complying with relevant regulations and standards. The design process typically involves a multidisciplinary team of engineers, clinicians, designers, and researchers who work together to develop innovative solutions that improve patient care and outcomes.

Fourier Transform Infrared (FTIR) spectroscopy is a type of infrared spectroscopy that uses the Fourier transform mathematical technique to convert the raw data obtained from an interferometer into a more interpretable spectrum. This technique allows for the simultaneous collection of a wide range of wavelengths, resulting in increased sensitivity and speed compared to traditional dispersive infrared spectroscopy.

FTIR spectroscopy measures the absorption or transmission of infrared radiation by a sample as a function of frequency, providing information about the vibrational modes of the molecules present in the sample. This can be used for identification and quantification of chemical compounds, analysis of molecular structure, and investigation of chemical interactions and reactions.

In summary, FTIR spectroscopy is a powerful analytical technique that uses infrared radiation to study the vibrational properties of molecules, with increased sensitivity and speed due to the use of Fourier transform mathematical techniques and an interferometer.

Biological availability is a term used in pharmacology and toxicology that refers to the degree and rate at which a drug or other substance is absorbed into the bloodstream and becomes available at the site of action in the body. It is a measure of the amount of the substance that reaches the systemic circulation unchanged, after administration by any route (such as oral, intravenous, etc.).

The biological availability (F) of a drug can be calculated using the area under the curve (AUC) of the plasma concentration-time profile after extravascular and intravenous dosing, according to the following formula:

F = (AUCex/AUCiv) x (Doseiv/Doseex)

where AUCex is the AUC after extravascular dosing, AUCiv is the AUC after intravenous dosing, Doseiv is the intravenous dose, and Doseex is the extravascular dose.

Biological availability is an important consideration in drug development and therapy, as it can affect the drug's efficacy, safety, and dosage regimen. Drugs with low biological availability may require higher doses to achieve the desired therapeutic effect, while drugs with high biological availability may have a more rapid onset of action and require lower doses to avoid toxicity.

Emulsifying agents, also known as emulsifiers, are substances that help to mix two immiscible liquids, such as oil and water, to form a stable emulsion. Emulsifiers work by reducing the surface tension between the two liquids, allowing them to mix together and remain mixed. They are often used in food production, cosmetics, and pharmaceuticals to create smooth and consistent products. Examples of emulsifying agents include lecithin, egg yolk, and various synthetic compounds.

I'm sorry for any confusion, but "Polyvinyl Alcohol" is not a medical term. It is a chemical compound used in various industrial and commercial applications, including the production of adhesives, paints, and medical devices. Polyvinyl Alcohol is a type of synthetic polymer made from the polymerization of vinyl acetate monomer, followed by alcoholysis to replace the acetate groups with hydroxyl groups.

In a medical context, Polyvinyl Alcohol might be used in certain medical devices or applications, such as contact lenses, eye drops, and drug delivery systems, due to its biocompatibility and resistance to protein absorption. However, it is not a term commonly used to describe a medical condition or treatment.

Chromatography, supercritical fluid (SFC) is a type of chromatographic technique that uses supercritical fluids as the mobile phase to separate and analyze components of a mixture. A supercritical fluid is a substance that is maintained at temperatures and pressures above its critical point, where it exhibits properties of both a gas and a liquid, making it an ideal medium for separations due to its low viscosity, high diffusivity, and tuneable solvating strength.

In SFC, the supercritical fluid, typically carbon dioxide (CO2) due to its mild critical point conditions, is used to elute analytes from a stationary phase, such as a silica or polymer-based column. The interactions between the analytes and the stationary phase, along with the properties of the supercritical fluid, determine the separation efficiency and resolution of the technique.

SFC has several advantages over traditional liquid chromatography (LC) techniques, including faster analysis times, lower solvent consumption, and the ability to analyze a wider range of polar and nonpolar compounds. SFC is commonly used in the pharmaceutical industry for drug discovery and development, as well as in environmental, food, and chemical analyses.

Apolipoprotein B (ApoB) is a type of protein that plays a crucial role in the metabolism of lipids, particularly low-density lipoprotein (LDL) or "bad" cholesterol. ApoB is a component of LDL particles and serves as a ligand for the LDL receptor, which is responsible for the clearance of LDL from the bloodstream.

There are two main forms of ApoB: ApoB-100 and ApoB-48. ApoB-100 is found in LDL particles, very low-density lipoprotein (VLDL) particles, and chylomicrons, while ApoB-48 is only found in chylomicrons, which are produced in the intestines and responsible for transporting dietary lipids.

Elevated levels of ApoB are associated with an increased risk of cardiovascular disease (CVD), as they indicate a higher concentration of LDL particles in the bloodstream. Therefore, measuring ApoB levels can provide additional information about CVD risk beyond traditional lipid profile tests that only measure total cholesterol, LDL cholesterol, HDL cholesterol, and triglycerides.

"Food handling" is not a term that has a specific medical definition. However, in the context of public health and food safety, it generally refers to the activities involved in the storage, preparation, and serving of food in a way that minimizes the risk of contamination and foodborne illnesses. This includes proper hygiene practices, such as handwashing and wearing gloves, separating raw and cooked foods, cooking food to the correct temperature, and refrigerating or freezing food promptly. Proper food handling is essential for ensuring the safety and quality of food in various settings, including restaurants, hospitals, schools, and homes.

Submitochondrial particles, also known as "submitochondrial vesicles" or "inner membrane fragments," are small particles that consist of the inner mitochondrial membrane and the associated components. They are obtained through sonication or other methods of disrupting mitochondria, which results in breaking down the outer membrane while leaving the inner membrane intact. These particles can be used in various biochemical studies to investigate the structure, function, and composition of the inner mitochondrial membrane and its components, such as the electron transport chain and ATP synthase complexes.

Medical definitions of "lubricants" refer to substances that are used to reduce friction between two surfaces in medical procedures or devices. They can be used during various medical examinations, surgeries, or when inserting medical equipment, such as catheters, to make the process smoother and more comfortable for the patient.

Lubricants used in medical settings may include water-based gels, oil-based jellies, or silicone-based lubricants. It's important to choose a lubricant that is safe and suitable for the specific medical procedure or device being used. For example, some lubricants may not be compatible with certain medical materials or may need to be sterile.

It's worth noting that while lubricants are commonly used in medical settings, they should not be used as a substitute for proper medical care or treatment. If you have any concerns about your health or medical condition, it's important to consult with a qualified healthcare professional.

Dry powder inhalers (DPIs) are medical devices used to administer medication in the form of a dry powder to the lungs. They are commonly used for treating respiratory conditions such as asthma and chronic obstructive pulmonary disease (COPD).

To use a DPI, the patient places a pre-measured dose of medication into the device and then inhales deeply through the mouthpiece. The force of the inhalation causes the powder to become airborne and disperse into small particles that can be easily inhaled into the lungs.

DPIs offer several advantages over other types of inhalers, such as metered-dose inhalers (MDIs). For example, DPIs do not require the use of a propellant to deliver the medication, which can make them more environmentally friendly and cost-effective. Additionally, because the medication is in powder form, it is less likely to deposit in the mouth and throat, reducing the risk of oral thrush and other side effects.

However, DPIs can be more difficult to use than MDIs, as they require a strong and sustained inhalation to properly disperse the medication. Patients may need to practice using their DPI regularly to ensure that they are able to use it effectively.

Apolipoprotein A-II (ApoA-II) is a protein component of high-density lipoproteins (HDL), often referred to as "good cholesterol." It is one of the major apolipoproteins in HDL and plays a role in the structure, metabolism, and function of HDL particles. ApoA-II is produced primarily in the liver and intestine and helps facilitate the transport of cholesterol from tissues to the liver for excretion. Additionally, ApoA-II has been shown to have anti-inflammatory properties and may play a role in the regulation of the immune response.

Calcium phosphates are a group of minerals that are important components of bones and teeth. They are also found in some foods and are used in dietary supplements and medical applications. Chemically, calcium phosphates are salts of calcium and phosphoric acid, and they exist in various forms, including hydroxyapatite, which is the primary mineral component of bone tissue. Other forms of calcium phosphates include monocalcium phosphate, dicalcium phosphate, and tricalcium phosphate, which are used as food additives and dietary supplements. Calcium phosphates are important for maintaining strong bones and teeth, and they also play a role in various physiological processes, such as nerve impulse transmission and muscle contraction.

Cholesterol is a type of lipid (fat) molecule that is an essential component of cell membranes and is also used to make certain hormones and vitamins in the body. It is produced by the liver and is also obtained from animal-derived foods such as meat, dairy products, and eggs.

Cholesterol does not mix with blood, so it is transported through the bloodstream by lipoproteins, which are particles made up of both lipids and proteins. There are two main types of lipoproteins that carry cholesterol: low-density lipoproteins (LDL), also known as "bad" cholesterol, and high-density lipoproteins (HDL), also known as "good" cholesterol.

High levels of LDL cholesterol in the blood can lead to a buildup of cholesterol in the walls of the arteries, increasing the risk of heart disease and stroke. On the other hand, high levels of HDL cholesterol are associated with a lower risk of these conditions because HDL helps remove LDL cholesterol from the bloodstream and transport it back to the liver for disposal.

It is important to maintain healthy levels of cholesterol through a balanced diet, regular exercise, and sometimes medication if necessary. Regular screening is also recommended to monitor cholesterol levels and prevent health complications.

LDL, or low-density lipoprotein, is often referred to as "bad" cholesterol. It is one of the lipoproteins that helps carry cholesterol throughout your body. High levels of LDL cholesterol can lead to a buildup of cholesterol in your arteries, which can increase the risk of heart disease and stroke.

Cholesterol is a type of fat (lipid) that is found in the cells of your body. Your body needs some cholesterol to function properly, but having too much can lead to health problems. LDL cholesterol is one of the two main types of cholesterol; the other is high-density lipoprotein (HDL), or "good" cholesterol.

It's important to keep your LDL cholesterol levels in a healthy range to reduce your risk of developing heart disease and stroke. A healthcare professional can help you determine what your target LDL cholesterol level should be based on your individual health status and risk factors.

Acrylic resins are a type of synthetic polymer made from methacrylate monomers. They are widely used in various industrial, commercial, and medical applications due to their unique properties such as transparency, durability, resistance to breakage, and ease of coloring or molding. In the medical field, acrylic resins are often used to make dental restorations like false teeth and fillings, medical devices like intraocular lenses, and surgical instruments. They can also be found in orthopedic implants, bone cement, and other medical-grade plastics. Acrylic resins are biocompatible, meaning they do not typically cause adverse reactions when in contact with living tissue. However, they may release small amounts of potentially toxic chemicals over time, so their long-term safety in certain applications is still a subject of ongoing research.

Magnetite nanoparticles are defined as extremely small particles, usually with a diameter less than 100 nanometers, of the mineral magnetite (Fe3O4). These particles have unique magnetic properties and can be manipulated using magnetic fields. They have been studied for various biomedical applications such as drug delivery, magnetic resonance imaging (MRI) contrast agents, hyperthermia treatment for cancer, and tissue engineering due to their ability to generate heat when exposed to alternating magnetic fields. However, the potential toxicity of magnetite nanoparticles is a concern that needs further investigation before widespread clinical use.

Lactic acid, also known as 2-hydroxypropanoic acid, is a chemical compound that plays a significant role in various biological processes. In the context of medicine and biochemistry, lactic acid is primarily discussed in relation to muscle metabolism and cellular energy production. Here's a medical definition for lactic acid:

Lactic acid (LA): A carboxylic acid with the molecular formula C3H6O3 that plays a crucial role in anaerobic respiration, particularly during strenuous exercise or conditions of reduced oxygen availability. It is formed through the conversion of pyruvate, catalyzed by the enzyme lactate dehydrogenase (LDH), when there is insufficient oxygen to complete the final step of cellular respiration in the Krebs cycle. The accumulation of lactic acid can lead to acidosis and muscle fatigue. Additionally, lactic acid serves as a vital intermediary in various metabolic pathways and is involved in the production of glucose through gluconeogenesis in the liver.

I believe there may be some confusion in your question. Gold is typically a chemical element with the symbol Au and atomic number 79. It is a dense, soft, malleable, and ductile metal. It is one of the least reactive chemical elements and is solid under standard conditions.

However, if you are referring to "Gold" in the context of medical terminology, it may refer to:

1. Gold salts: These are a group of compounds that contain gold and are used in medicine for their anti-inflammatory properties. They have been used in the treatment of rheumatoid arthritis, although they have largely been replaced by newer drugs with fewer side effects.
2. Gold implants: In some cases, a small amount of gold may be surgically implanted into the eye to treat conditions such as age-related macular degeneration or diabetic retinopathy. The gold helps to hold the retina in place and can improve vision in some patients.
3. Gold thread embedment: This is an alternative therapy used in traditional Chinese medicine, where gold threads are embedded into the skin or acupuncture points for therapeutic purposes. However, there is limited scientific evidence to support its effectiveness.

I hope this information helps! If you have any further questions, please let me know.

Viscosity is a physical property of a fluid that describes its resistance to flow. In medical terms, viscosity is often discussed in relation to bodily fluids such as blood or synovial fluid (found in joints). The unit of measurement for viscosity is the poise, although it is more commonly expressed in millipascals-second (mPa.s) in SI units. Highly viscous fluids flow more slowly than less viscous fluids. Changes in the viscosity of bodily fluids can have significant implications for health and disease; for example, increased blood viscosity has been associated with cardiovascular diseases, while decreased synovial fluid viscosity can contribute to joint pain and inflammation in conditions like osteoarthritis.

Fluorinated hydrocarbons are organic compounds that contain fluorine and carbon atoms. These compounds can be classified into two main groups: fluorocarbons (which consist only of fluorine and carbon) and fluorinated aliphatic or aromatic hydrocarbons (which contain hydrogen in addition to fluorine and carbon).

Fluorocarbons are further divided into three categories: fully fluorinated compounds (perfluorocarbons, PFCs), partially fluorinated compounds (hydrochlorofluorocarbons, HCFCs, and hydrofluorocarbons, HFCs), and chlorofluorocarbons (CFCs). These compounds have been widely used as refrigerants, aerosol propellants, fire extinguishing agents, and cleaning solvents due to their chemical stability, low toxicity, and non-flammability.

Fluorinated aliphatic or aromatic hydrocarbons are organic compounds that contain fluorine, carbon, and hydrogen atoms. Examples include fluorinated alcohols, ethers, amines, and halogenated compounds. These compounds have a wide range of applications in industry, medicine, and research due to their unique chemical properties.

It is important to note that some fluorinated hydrocarbons can contribute to the depletion of the ozone layer and global warming, making it essential to regulate their use and production.

Familial Combined Hyperlipidemia (FCH) is a genetic disorder characterized by high levels of cholesterol and/or fats (lipids) in the blood. It is one of the most common inherited lipid disorders, affecting approximately 1 in 200 to 1 in 500 people.

FCH is caused by mutations in several genes involved in lipid metabolism, including the APOB, LDLR, and PCSK9 genes. These genetic defects lead to increased levels of low-density lipoprotein (LDL) cholesterol, triglycerides, or both in the blood.

Individuals with FCH may have elevated levels of total cholesterol, LDL cholesterol, and/or triglycerides, which can increase their risk for premature atherosclerosis and cardiovascular disease. The condition often presents in early adulthood and may manifest as mixed hyperlipidemia (high levels of both LDL cholesterol and triglycerides) or isolated hypercholesterolemia (high levels of LDL cholesterol only).

Familial combined hyperlipidemia is typically managed with lifestyle modifications, such as a heart-healthy diet, regular exercise, and weight management. Medications, such as statins, may also be prescribed to lower lipid levels and reduce the risk of cardiovascular disease. Regular monitoring of lipid levels is essential for effective management and prevention of complications associated with FCH.

Temperature, in a medical context, is a measure of the degree of hotness or coldness of a body or environment. It is usually measured using a thermometer and reported in degrees Celsius (°C), degrees Fahrenheit (°F), or kelvin (K). In the human body, normal core temperature ranges from about 36.5-37.5°C (97.7-99.5°F) when measured rectally, and can vary slightly depending on factors such as time of day, physical activity, and menstrual cycle. Elevated body temperature is a common sign of infection or inflammation, while abnormally low body temperature can indicate hypothermia or other medical conditions.

'Vehicle Emissions' is not a term typically used in medical definitions. However, in a broader context, it refers to the gases and particles released into the atmosphere by vehicles such as cars, trucks, buses, and airplanes. The main pollutants found in vehicle emissions include carbon monoxide (CO), nitrogen oxides (NOx), particulate matter (PM), and volatile organic compounds (VOCs). Exposure to these pollutants can have negative health effects, including respiratory symptoms, cardiovascular disease, and cancer. Therefore, vehicle emissions are a significant public health concern.

Radiation scattering is a physical process in which radiation particles or waves deviate from their original direction due to interaction with matter. This phenomenon can occur through various mechanisms such as:

1. Elastic Scattering: Also known as Thomson scattering or Rayleigh scattering, it occurs when the energy of the scattered particle or wave remains unchanged after the collision. In the case of electromagnetic radiation (e.g., light), this results in a change of direction without any loss of energy.
2. Inelastic Scattering: This type of scattering involves an exchange of energy between the scattered particle and the target medium, leading to a change in both direction and energy of the scattered particle or wave. An example is Compton scattering, where high-energy photons (e.g., X-rays or gamma rays) interact with charged particles (usually electrons), resulting in a decrease in photon energy and an increase in electron kinetic energy.
3. Coherent Scattering: In this process, the scattered radiation maintains its phase relationship with the incident radiation, leading to constructive and destructive interference patterns. An example is Bragg scattering, which occurs when X-rays interact with a crystal lattice, resulting in diffraction patterns that reveal information about the crystal structure.

In medical contexts, radiation scattering can have both beneficial and harmful effects. For instance, in diagnostic imaging techniques like computed tomography (CT) scans, radiation scattering contributes to image noise and reduces contrast resolution. However, in radiation therapy for cancer treatment, controlled scattering of therapeutic radiation beams can help ensure that the tumor receives a uniform dose while minimizing exposure to healthy tissues.

I'm sorry for any confusion, but "nanocomposites" is not a term that has a specific medical definition. It is a term used in materials science and engineering to refer to a type of composite material where at least one of the phases has dimensions in the nanoscale (typically less than 100 nanometers). Nanocomposites can have unique properties that make them useful for various applications, including biomedical applications such as drug delivery systems or tissue engineering scaffolds. However, the term itself is not a medical definition.

IDL, or intermediate-density lipoproteins, are a type of lipoprotein that is denser than low-density lipoproteins (LDL) but less dense than high-density lipoproteins (HDL). They are formed during the catabolism (breakdown) of VLDL (very low-density lipoproteins), another type of lipoprotein, by lipoprotein lipase, an enzyme that breaks down triglycerides in lipoproteins.

IDLs contain a higher proportion of cholesterol and apolipoprotein E (apoE) compared to VLDLs and LDLs. Some IDLs are taken up by the liver, while others are converted into LDL particles through the action of cholesteryl ester transfer protein (CETP), which exchanges triglycerides in LDL for cholesterol esters in IDL.

Elevated levels of IDLs in the blood may be a risk factor for cardiovascular disease, as they can contribute to the formation and accumulation of plaque in the arteries. However, IDLs are not typically measured in routine clinical testing, and their role in disease is not as well understood as that of LDL or HDL.

Micelles are structures formed in a solution when certain substances, such as surfactants, reach a critical concentration called the critical micelle concentration (CMC). At this concentration, these molecules, which have both hydrophilic (water-attracting) and hydrophobic (water-repelling) components, arrange themselves in a spherical shape with the hydrophilic parts facing outward and the hydrophobic parts clustered inside. This formation allows the hydrophobic components to avoid contact with water while the hydrophilic components interact with it. Micelles are important in various biological and industrial processes, such as drug delivery, soil remediation, and the formation of emulsions.

Aerosol propellants are substances used to expel aerosolized particles from a container. They are typically gases that are stored under pressure in a container and, when the container is opened or activated, the gas expands and forces the contents out through a small opening. The most commonly used aerosol propellants are hydrocarbons such as butane and propane, although fluorinated hydrocarbons such as difluoroethane and tetrafluoroethane are also used. Aerosol propellants can be found in various products including medical inhalers, cosmetics, and food products. It is important to handle aerosol propellants with care, as they can be flammable or harmful if inhaled or ingested.

Apolipoprotein A (apoA) is a type of apolipoprotein that is primarily associated with high-density lipoproteins (HDL), often referred to as "good cholesterol." There are several subtypes of apoA, including apoA-I, apoA-II, and apoA-IV.

ApoA-I is the major protein component of HDL particles and plays a crucial role in reverse cholesterol transport, which is the process by which excess cholesterol is removed from tissues and delivered to the liver for excretion. Low levels of apoA-I have been linked to an increased risk of cardiovascular disease.

ApoA-II is another protein component of HDL particles, although its function is less well understood than that of apoA-I. Some studies suggest that apoA-II may play a role in regulating the metabolism of HDL particles.

ApoA-IV is found in both HDL and chylomicrons, which are lipoprotein particles that transport dietary lipids from the intestine to the liver. The function of apoA-IV is not well understood, but it may play a role in regulating appetite and energy metabolism.

Overall, apolipoproteins A are important components of HDL particles and play a critical role in maintaining healthy lipid metabolism and reducing the risk of cardiovascular disease.

Ultracentrifugation is a medical and laboratory technique used for the separation of particles of different sizes, densities, or shapes from a mixture based on their sedimentation rates. This process involves the use of a specialized piece of equipment called an ultracentrifuge, which can generate very high centrifugal forces, much greater than those produced by a regular centrifuge.

In ultracentrifugation, a sample is placed in a special tube and spun at extremely high speeds, causing the particles within the sample to separate based on their size, shape, and density. The larger or denser particles will sediment faster and accumulate at the bottom of the tube, while smaller or less dense particles will remain suspended in the solution or sediment more slowly.

Ultracentrifugation is a valuable tool in various fields, including biochemistry, molecular biology, and virology. It can be used to purify and concentrate viruses, subcellular organelles, membrane fractions, ribosomes, DNA, and other macromolecules from complex mixtures. The technique can also provide information about the size, shape, and density of these particles, making it a crucial method for characterizing and studying their properties.

Hydrogen-ion concentration, also known as pH, is a measure of the acidity or basicity of a solution. It is defined as the negative logarithm (to the base 10) of the hydrogen ion activity in a solution. The standard unit of measurement is the pH unit. A pH of 7 is neutral, less than 7 is acidic, and greater than 7 is basic.

In medical terms, hydrogen-ion concentration is important for maintaining homeostasis within the body. For example, in the stomach, a high hydrogen-ion concentration (low pH) is necessary for the digestion of food. However, in other parts of the body such as blood, a high hydrogen-ion concentration can be harmful and lead to acidosis. Conversely, a low hydrogen-ion concentration (high pH) in the blood can lead to alkalosis. Both acidosis and alkalosis can have serious consequences on various organ systems if not corrected.

Rheology is not a term that is specific to medicine, but rather it is a term used in the field of physics to describe the flow and deformation of matter. It specifically refers to the study of how materials flow or deform under various stresses or strains. This concept can be applied to various medical fields such as studying the flow properties of blood (hematology), understanding the movement of tissues and organs during surgical procedures, or analyzing the mechanical behavior of biological materials like bones and cartilages.

Nanoconjugates are nanoparticles that have been joined or bonded with one or more molecules, such as proteins, drugs, or imaging agents. The process of creating nanoconjugates is called functionalization. This can alter the properties of the nanoparticle, allowing it to perform specific functions, such as targeting certain cells in the body or delivering drugs directly to those cells. Nanoconjugates have potential applications in a variety of fields, including medicine, where they may be used for drug delivery, diagnostic imaging, and sensing.

Adsorption is a process in which atoms, ions, or molecules from a gas, liquid, or dissolved solid accumulate on the surface of a material. This occurs because the particles in the adsorbate (the substance being adsorbed) have forces that attract them to the surface of the adsorbent (the material that the adsorbate is adhering to).

In medical terms, adsorption can refer to the use of materials with adsorptive properties to remove harmful substances from the body. For example, activated charcoal is sometimes used in the treatment of poisoning because it can adsorb a variety of toxic substances and prevent them from being absorbed into the bloodstream.

It's important to note that adsorption is different from absorption, which refers to the process by which a substance is taken up and distributed throughout a material or tissue.

A capsid is the protein shell that encloses and protects the genetic material of a virus. It is composed of multiple copies of one or more proteins that are arranged in a specific structure, which can vary in shape and symmetry depending on the type of virus. The capsid plays a crucial role in the viral life cycle, including protecting the viral genome from host cell defenses, mediating attachment to and entry into host cells, and assisting with the assembly of new virus particles during replication.

"Physicochemical phenomena" is not a term that has a specific medical definition. However, in general terms, physicochemical phenomena refer to the physical and chemical interactions and processes that occur within living organisms or biological systems. These phenomena can include various properties and reactions such as pH levels, osmotic pressure, enzyme kinetics, and thermodynamics, among others.

In a broader context, physicochemical phenomena play an essential role in understanding the mechanisms of drug action, pharmacokinetics, and toxicity. For instance, the solubility, permeability, and stability of drugs are all physicochemical properties that can affect their absorption, distribution, metabolism, and excretion (ADME) within the body.

Therefore, while not a medical definition per se, an understanding of physicochemical phenomena is crucial to the study and practice of pharmacology, toxicology, and other related medical fields.

A capsule is a type of solid pharmaceutical dosage form in which the drug is enclosed in a small shell or container, usually composed of gelatin or other suitable material. The shell serves to protect the drug from degradation, improve its stability and shelf life, and facilitate swallowing by making it easier to consume. Capsules come in various sizes and colors and can contain one or more drugs in powder, liquid, or solid form. They are typically administered orally but can also be used for other routes of administration, such as rectal or vaginal.

Zinc oxide is an inorganic compound with the formula ZnO. It exists as a white, odorless, and crystalline powder. In medicine, zinc oxide is used primarily as a topical agent for the treatment of various skin conditions, including diaper rash, minor burns, and irritations caused by eczema or psoriasis.

Zinc oxide has several properties that make it useful in medical applications:

1. Antimicrobial activity: Zinc oxide exhibits antimicrobial properties against bacteria, viruses, and fungi, which can help prevent infection and promote wound healing.
2. Skin protectant: It forms a physical barrier on the skin, protecting it from external irritants, friction, and moisture. This property is particularly useful in products like diaper rash creams and sunscreens.
3. Astringent properties: Zinc oxide can help constrict and tighten tissues, which may reduce inflammation and promote healing.
4. Mineral sunscreen agent: Zinc oxide is a common active ingredient in physical (mineral) sunscreens due to its ability to reflect and scatter UV light, protecting the skin from both UVA and UVB radiation.

Zinc oxide can be found in various medical and skincare products, such as creams, ointments, pastes, lotions, and powders. It is generally considered safe for topical use, but it may cause skin irritation or allergic reactions in some individuals.

Chromium compounds refer to combinations of the metallic element chromium with other chemical elements. Chromium is a transition metal that can form compounds in various oxidation states, but the most common ones are +3 (trivalent) and +6 (hexavalent).

Trivalent chromium compounds, such as chromium(III) chloride or chromium(III) sulfate, are essential micronutrients for human health, playing a role in insulin function and glucose metabolism. They are generally considered to be less toxic than hexavalent chromium compounds.

Hexavalent chromium compounds, such as chromium(VI) oxide or sodium dichromate, are much more toxic and carcinogenic than trivalent chromium compounds. They can cause damage to the respiratory system, skin, and eyes, and prolonged exposure has been linked to an increased risk of lung cancer.

It is important to note that while some chromium compounds have beneficial effects on human health, others can be highly toxic and should be handled with care. Exposure to hexavalent chromium compounds, in particular, should be minimized or avoided whenever possible.

In the field of medicine, "time factors" refer to the duration of symptoms or time elapsed since the onset of a medical condition, which can have significant implications for diagnosis and treatment. Understanding time factors is crucial in determining the progression of a disease, evaluating the effectiveness of treatments, and making critical decisions regarding patient care.

For example, in stroke management, "time is brain," meaning that rapid intervention within a specific time frame (usually within 4.5 hours) is essential to administering tissue plasminogen activator (tPA), a clot-busting drug that can minimize brain damage and improve patient outcomes. Similarly, in trauma care, the "golden hour" concept emphasizes the importance of providing definitive care within the first 60 minutes after injury to increase survival rates and reduce morbidity.

Time factors also play a role in monitoring the progression of chronic conditions like diabetes or heart disease, where regular follow-ups and assessments help determine appropriate treatment adjustments and prevent complications. In infectious diseases, time factors are crucial for initiating antibiotic therapy and identifying potential outbreaks to control their spread.

Overall, "time factors" encompass the significance of recognizing and acting promptly in various medical scenarios to optimize patient outcomes and provide effective care.

Ferric compounds are inorganic compounds that contain the iron(III) cation, Fe3+. Iron(III) is a transition metal and can form stable compounds with various anions. Ferric compounds are often colored due to the d-d transitions of the iron ion. Examples of ferric compounds include ferric chloride (FeCl3), ferric sulfate (Fe2(SO4)3), and ferric oxide (Fe2O3). Ferric compounds have a variety of uses, including as catalysts, in dye production, and in medical applications.

Alpha particles are a type of radiation that consist of two protons and two neutrons. They are essentially the nuclei of helium atoms and are produced during the decay of radioactive isotopes, such as uranium or radon. When an alpha particle is emitted from a radioactive atom, it carries away energy and causes the atom to transform into a different element with a lower atomic number and mass number.

Alpha particles have a positive charge and are relatively massive compared to other types of radiation, such as beta particles (which are high-energy electrons) or gamma rays (which are high-energy photons). Because of their charge and mass, alpha particles can cause significant ionization and damage to biological tissue. However, they have a limited range in air and cannot penetrate the outer layers of human skin, making them generally less hazardous than other forms of radiation if exposure is external.

Internal exposure to alpha-emitting radionuclides, however, can be much more dangerous because alpha particles can cause significant damage to cells and DNA when they are emitted inside the body. This is why inhaling or ingesting radioactive materials that emit alpha particles can pose a serious health risk.

Aluminum oxide is a chemical compound with the formula Al2O3. It is also known as alumina and it is a white solid that is widely used in various industries due to its unique properties. Aluminum oxide is highly resistant to corrosion, has a high melting point, and is an electrical insulator.

In the medical field, aluminum oxide is used in a variety of applications such as:

1. Dental crowns and implants: Aluminum oxide is used in the production of dental crowns and implants due to its strength and durability.
2. Orthopedic implants: Aluminum oxide is used in some types of orthopedic implants, such as knee and hip replacements, because of its biocompatibility and resistance to wear.
3. Medical ceramics: Aluminum oxide is used in the production of medical ceramics, which are used in various medical devices such as pacemakers and hearing aids.
4. Pharmaceuticals: Aluminum oxide is used as an excipient in some pharmaceutical products, such as tablets and capsules, to improve their stability and shelf life.
5. Medical research: Aluminum oxide is used in medical research, for example, as a substrate material for growing cells or as a coating material for medical devices.

It's important to note that while aluminum oxide has many useful applications in the medical field, exposure to high levels of aluminum can be harmful to human health. Therefore, it is important to use aluminum oxide and other aluminum-containing materials safely and according to established guidelines.

Crystallization is a process in which a substance transitions from a liquid or dissolved state to a solid state, forming a crystal lattice. In the medical context, crystallization can refer to the formation of crystals within the body, which can occur under certain conditions such as changes in pH, temperature, or concentration of solutes. These crystals can deposit in various tissues and organs, leading to the formation of crystal-induced diseases or disorders.

For example, in patients with gout, uric acid crystals can accumulate in joints, causing inflammation, pain, and swelling. Similarly, in nephrolithiasis (kidney stones), minerals in the urine can crystallize and form stones that can obstruct the urinary tract. Crystallization can also occur in other medical contexts, such as in the formation of dental calculus or plaque, and in the development of cataracts in the eye.

I'm sorry for any confusion, but "Polyesters" is not a medical term. It is a term used in materials science and textile industry to describe a type of synthetic fiber made from polymers characterized by the presence of ester groups in their main chain. If you have any questions related to medical terminology or concepts, I'd be happy to help with those instead!

In the context of medicine, particularly in physical therapy and rehabilitation, "pliability" refers to the quality or state of being flexible or supple. It describes the ability of tissues, such as muscles or fascia (connective tissue), to stretch, deform, and adapt to forces applied upon them without resistance or injury. Improving pliability can help enhance range of motion, reduce muscle stiffness, promote circulation, and alleviate pain. Techniques like soft tissue mobilization, myofascial release, and stretching are often used to increase pliability in clinical settings.

Indoor air pollution refers to the contamination of air within buildings and structures due to presence of particles, gases, or biological materials that can harmfully affect the health of occupants. These pollutants can originate from various sources including cooking stoves, heating systems, building materials, furniture, tobacco products, outdoor air, and microbial growth. Some common indoor air pollutants include particulate matter, carbon monoxide, nitrogen dioxide, sulfur dioxide, volatile organic compounds (VOCs), and mold. Prolonged exposure to these pollutants can cause a range of health issues, from respiratory problems to cancer, depending on the type and level of exposure. Effective ventilation, air filtration, and source control are some of the strategies used to reduce indoor air pollution.

Physical chemistry is a branch of chemistry that deals with the fundamental principles and laws governing the behavior of matter and energy at the molecular and atomic levels. It combines elements of physics, chemistry, mathematics, and engineering to study the properties, composition, structure, and transformation of matter. Key areas of focus in physical chemistry include thermodynamics, kinetics, quantum mechanics, statistical mechanics, electrochemistry, and spectroscopy.

In essence, physical chemists aim to understand how and why chemical reactions occur, what drives them, and how they can be controlled or predicted. This knowledge is crucial for developing new materials, medicines, energy technologies, and other applications that benefit society.

A nasal spray is a medication delivery device that delivers a liquid formulation directly into the nostrils, where it can then be absorbed through the nasal mucosa and into the bloodstream. Nasal sprays are commonly used to administer medications for local effects in the nose, such as decongestants, corticosteroids, and antihistamines, as well as for systemic absorption of drugs like vaccines and pain relievers.

The medication is typically contained in a small bottle or container that is pressurized or uses a pump mechanism to create a fine mist or spray. This allows the medication to be easily and precisely administered in a controlled dose, reducing the risk of overdose or incorrect dosing. Nasal sprays are generally easy to use, non-invasive, and can provide rapid onset of action for certain medications.

Pharmaceutical preparations refer to the various forms of medicines that are produced by pharmaceutical companies, which are intended for therapeutic or prophylactic use. These preparations consist of an active ingredient (the drug) combined with excipients (inactive ingredients) in a specific formulation and dosage form.

The active ingredient is the substance that has a therapeutic effect on the body, while the excipients are added to improve the stability, palatability, bioavailability, or administration of the drug. Examples of pharmaceutical preparations include tablets, capsules, solutions, suspensions, emulsions, ointments, creams, and injections.

The production of pharmaceutical preparations involves a series of steps that ensure the quality, safety, and efficacy of the final product. These steps include the selection and testing of raw materials, formulation development, manufacturing, packaging, labeling, and storage. Each step is governed by strict regulations and guidelines to ensure that the final product meets the required standards for use in medical practice.

Electrophoresis, polyacrylamide gel (EPG) is a laboratory technique used to separate and analyze complex mixtures of proteins or nucleic acids (DNA or RNA) based on their size and electrical charge. This technique utilizes a matrix made of cross-linked polyacrylamide, a type of gel, which provides a stable and uniform environment for the separation of molecules.

In this process:

1. The polyacrylamide gel is prepared by mixing acrylamide monomers with a cross-linking agent (bis-acrylamide) and a catalyst (ammonium persulfate) in the presence of a buffer solution.
2. The gel is then poured into a mold and allowed to polymerize, forming a solid matrix with uniform pore sizes that depend on the concentration of acrylamide used. Higher concentrations result in smaller pores, providing better resolution for separating smaller molecules.
3. Once the gel has set, it is placed in an electrophoresis apparatus containing a buffer solution. Samples containing the mixture of proteins or nucleic acids are loaded into wells on the top of the gel.
4. An electric field is applied across the gel, causing the negatively charged molecules to migrate towards the positive electrode (anode) while positively charged molecules move toward the negative electrode (cathode). The rate of migration depends on the size, charge, and shape of the molecules.
5. Smaller molecules move faster through the gel matrix and will migrate farther from the origin compared to larger molecules, resulting in separation based on size. Proteins and nucleic acids can be selectively stained after electrophoresis to visualize the separated bands.

EPG is widely used in various research fields, including molecular biology, genetics, proteomics, and forensic science, for applications such as protein characterization, DNA fragment analysis, cloning, mutation detection, and quality control of nucleic acid or protein samples.

Food coloring agents, also known as food dyes, are substances that are added to foods and beverages to improve or modify their color. They are typically made from synthetic chemicals, although some are derived from natural sources. Food coloring agents are subject to regulation by the U.S. Food and Drug Administration (FDA) and other regulatory bodies to ensure their safety.

Food coloring agents are used for a variety of reasons, including:

* Making foods look more appealing or attractive
* Restoring the natural color of foods that has been lost during processing
* Helping consumers identify products, such as flavors or varieties of candy
* Ensuring consistency in the color of a product from batch to batch

Some common food coloring agents include:

* Blue 1 (Brilliant Blue)
* Blue 2 (Indigo Carmine)
* Green 3 (Fast Green FCF)
* Red 3 (Erythrosine)
* Red 40 (Allura Red)
* Yellow 5 (Tartrazine)
* Yellow 6 (Sunset Yellow)

It is important to note that some people may be sensitive or allergic to certain food coloring agents and may experience adverse reactions after consuming them. Additionally, there has been some concern about the potential health effects of artificial food dyes, although current research does not support a strong link between their consumption and negative health outcomes in the general population.

Capsid proteins are the structural proteins that make up the capsid, which is the protective shell of a virus. The capsid encloses the viral genome and helps to protect it from degradation and detection by the host's immune system. Capsid proteins are typically arranged in a symmetrical pattern and can self-assemble into the capsid structure when exposed to the viral genome.

The specific arrangement and composition of capsid proteins vary between different types of viruses, and they play important roles in the virus's life cycle, including recognition and binding to host cells, entry into the cell, and release of the viral genome into the host cytoplasm. Capsid proteins can also serve as targets for antiviral therapies and vaccines.

Skin absorption, also known as percutaneous absorption, refers to the process by which substances are taken up by the skin and pass into the systemic circulation. This occurs when a substance is applied topically to the skin and penetrates through the various layers of the epidermis and dermis until it reaches the capillaries, where it can be transported to other parts of the body.

The rate and extent of skin absorption depend on several factors, including the physicochemical properties of the substance (such as its molecular weight, lipophilicity, and charge), the concentration and formulation of the product, the site of application, and the integrity and condition of the skin.

Skin absorption is an important route of exposure for many chemicals, drugs, and cosmetic ingredients, and it can have both therapeutic and toxicological consequences. Therefore, understanding the mechanisms and factors that influence skin absorption is crucial for assessing the safety and efficacy of topical products and for developing strategies to enhance or reduce their absorption as needed.

Lactose is a disaccharide, a type of sugar, that is naturally found in milk and dairy products. It is made up of two simple sugars, glucose and galactose, linked together. In order for the body to absorb and use lactose, it must be broken down into these simpler sugars by an enzyme called lactase, which is produced in the lining of the small intestine.

People who have a deficiency of lactase are unable to fully digest lactose, leading to symptoms such as bloating, diarrhea, and abdominal cramps, a condition known as lactose intolerance.

Cryo-electron microscopy (Cryo-EM) is a type of electron microscopy where the sample is studied at cryogenic temperatures, typically liquid nitrogen temperatures. This technique is used to investigate the structure and shape of biological molecules and complexes, viruses, and other nanoscale particles.

In Cryo-EM, the sample is rapidly frozen to preserve its natural structure and then imaged using a beam of electrons. The images are collected at different angles and then computationally combined to generate a 3D reconstruction of the sample. This technique allows researchers to visualize biological structures in their native environment with near-atomic resolution, providing valuable insights into their function and behavior.

Cryo-EM has become an increasingly popular tool in structural biology due to its ability to image large and complex structures that are difficult or impossible to crystallize for X-ray crystallography. It has been used to determine the structures of many important biological molecules, including membrane proteins, ribosomes, viruses, and protein complexes involved in various cellular processes.

Solvents, in a medical context, are substances that are capable of dissolving or dispersing other materials, often used in the preparation of medications and solutions. They are commonly organic chemicals that can liquefy various substances, making it possible to administer them in different forms, such as oral solutions, topical creams, or injectable drugs.

However, it is essential to recognize that solvents may pose health risks if mishandled or misused, particularly when they contain volatile organic compounds (VOCs). Prolonged exposure to these VOCs can lead to adverse health effects, including respiratory issues, neurological damage, and even cancer. Therefore, it is crucial to handle solvents with care and follow safety guidelines to minimize potential health hazards.

Defective viruses are viruses that have lost the ability to complete a full replication cycle and produce progeny virions independently. These viruses require the assistance of a helper virus, which provides the necessary functions for replication. Defective viruses can arise due to mutations, deletions, or other genetic changes that result in the loss of essential genes. They are often non-infectious and cannot cause disease on their own, but they may interfere with the replication of the helper virus and modulate the course of infection. Defective viruses can be found in various types of viruses, including retroviruses, bacteriophages, and DNA viruses.

I'm happy to help! However, it seems there might be a bit of confusion here. Starch is not typically considered a medical term, but rather a nutritional and biochemical concept. Here's a brief explanation:

Starch is a complex carbohydrate that serves as the primary form of energy storage in plants. It is made up of long chains of glucose molecules and can be found in various foods such as grains, legumes, fruits, and vegetables. Amylase, an enzyme present in our saliva and digestive system, helps break down starch into simpler sugars during the digestion process so that our bodies can absorb them for energy.

I hope this clarifies any confusion! If you have any other questions or need further information on a medical topic, please don't hesitate to ask.

I'm sorry for any confusion, but "magnetics" is not a term that is commonly used in medical definitions. It is a term more frequently used in physics and engineering to refer to things related to magnets or magnetic fields. If you have any questions about medical terminology or concepts, I would be happy to try to help with those!

Inclusion bodies, viral are typically described as intracellular inclusions that appear as a result of viral infections. These inclusion bodies consist of aggregates of virus-specific proteins, viral particles, or both, which accumulate inside the host cell's cytoplasm or nucleus during the replication cycle of certain viruses.

The presence of inclusion bodies can sometimes be observed through histological or cytological examination using various staining techniques. Different types of viruses may exhibit distinct morphologies and locations of these inclusion bodies, which can aid in the identification and diagnosis of specific viral infections. However, it is important to note that not all viral infections result in the formation of inclusion bodies, and their presence does not necessarily indicate active viral replication or infection.

Humidity, in a medical context, is not typically defined on its own but is related to environmental conditions that can affect health. Humidity refers to the amount of water vapor present in the air. It is often discussed in terms of absolute humidity (the mass of water per unit volume of air) or relative humidity (the ratio of the current absolute humidity to the maximum possible absolute humidity, expressed as a percentage). High humidity can contribute to feelings of discomfort, difficulty sleeping, and exacerbation of respiratory conditions such as asthma.

Molecular sequence data refers to the specific arrangement of molecules, most commonly nucleotides in DNA or RNA, or amino acids in proteins, that make up a biological macromolecule. This data is generated through laboratory techniques such as sequencing, and provides information about the exact order of the constituent molecules. This data is crucial in various fields of biology, including genetics, evolution, and molecular biology, allowing for comparisons between different organisms, identification of genetic variations, and studies of gene function and regulation.

"Cattle" is a term used in the agricultural and veterinary fields to refer to domesticated animals of the genus *Bos*, primarily *Bos taurus* (European cattle) and *Bos indicus* (Zebu). These animals are often raised for meat, milk, leather, and labor. They are also known as bovines or cows (for females), bulls (intact males), and steers/bullocks (castrated males). However, in a strict medical definition, "cattle" does not apply to humans or other animals.

High-performance liquid chromatography (HPLC) is a type of chromatography that separates and analyzes compounds based on their interactions with a stationary phase and a mobile phase under high pressure. The mobile phase, which can be a gas or liquid, carries the sample mixture through a column containing the stationary phase.

In HPLC, the mobile phase is a liquid, and it is pumped through the column at high pressures (up to several hundred atmospheres) to achieve faster separation times and better resolution than other types of liquid chromatography. The stationary phase can be a solid or a liquid supported on a solid, and it interacts differently with each component in the sample mixture, causing them to separate as they travel through the column.

HPLC is widely used in analytical chemistry, pharmaceuticals, biotechnology, and other fields to separate, identify, and quantify compounds present in complex mixtures. It can be used to analyze a wide range of substances, including drugs, hormones, vitamins, pigments, flavors, and pollutants. HPLC is also used in the preparation of pure samples for further study or use.

Tissue distribution, in the context of pharmacology and toxicology, refers to the way that a drug or xenobiotic (a chemical substance found within an organism that is not naturally produced by or expected to be present within that organism) is distributed throughout the body's tissues after administration. It describes how much of the drug or xenobiotic can be found in various tissues and organs, and is influenced by factors such as blood flow, lipid solubility, protein binding, and the permeability of cell membranes. Understanding tissue distribution is important for predicting the potential effects of a drug or toxin on different parts of the body, and for designing drugs with improved safety and efficacy profiles.

Biocompatible materials are non-toxic and non-reacting substances that can be used in medical devices, tissue engineering, and drug delivery systems without causing harm or adverse reactions to living tissues or organs. These materials are designed to mimic the properties of natural tissues and are able to integrate with biological systems without being rejected by the body's immune system.

Biocompatible materials can be made from a variety of substances, including metals, ceramics, polymers, and composites. The specific properties of these materials, such as their mechanical strength, flexibility, and biodegradability, are carefully selected to meet the requirements of their intended medical application.

Examples of biocompatible materials include titanium used in dental implants and joint replacements, polyethylene used in artificial hips, and hydrogels used in contact lenses and drug delivery systems. The use of biocompatible materials has revolutionized modern medicine by enabling the development of advanced medical technologies that can improve patient outcomes and quality of life.

A manikin is commonly referred to as a full-size model of the human body used for training in various medical and healthcare fields. Medical manikins are often made from materials that simulate human skin and tissues, allowing for realistic practice in procedures such as physical examinations, resuscitation, and surgical techniques.

These manikins can be highly advanced, with built-in mechanisms to simulate physiological responses, such as breathing, heartbeats, and pupil dilation. They may also have interchangeable parts, allowing for the simulation of various medical conditions and scenarios. Medical manikins are essential tools in healthcare education, enabling learners to develop their skills and confidence in a controlled, safe environment before working with real patients.

In the context of medicine and pharmacology, "kinetics" refers to the study of how a drug moves throughout the body, including its absorption, distribution, metabolism, and excretion (often abbreviated as ADME). This field is called "pharmacokinetics."

1. Absorption: This is the process of a drug moving from its site of administration into the bloodstream. Factors such as the route of administration (e.g., oral, intravenous, etc.), formulation, and individual physiological differences can affect absorption.

2. Distribution: Once a drug is in the bloodstream, it gets distributed throughout the body to various tissues and organs. This process is influenced by factors like blood flow, protein binding, and lipid solubility of the drug.

3. Metabolism: Drugs are often chemically modified in the body, typically in the liver, through processes known as metabolism. These changes can lead to the formation of active or inactive metabolites, which may then be further distributed, excreted, or undergo additional metabolic transformations.

4. Excretion: This is the process by which drugs and their metabolites are eliminated from the body, primarily through the kidneys (urine) and the liver (bile).

Understanding the kinetics of a drug is crucial for determining its optimal dosing regimen, potential interactions with other medications or foods, and any necessary adjustments for special populations like pediatric or geriatric patients, or those with impaired renal or hepatic function.

A lung is a pair of spongy, elastic organs in the chest that work together to enable breathing. They are responsible for taking in oxygen and expelling carbon dioxide through the process of respiration. The left lung has two lobes, while the right lung has three lobes. The lungs are protected by the ribcage and are covered by a double-layered membrane called the pleura. The trachea divides into two bronchi, which further divide into smaller bronchioles, leading to millions of tiny air sacs called alveoli, where the exchange of gases occurs.

The rumen is the largest compartment of the stomach in ruminant animals, such as cows, goats, and sheep. It is a specialized fermentation chamber where microbes break down tough plant material into nutrients that the animal can absorb and use for energy and growth. The rumen contains billions of microorganisms, including bacteria, protozoa, and fungi, which help to break down cellulose and other complex carbohydrates in the plant material through fermentation.

The rumen is characterized by its large size, muscular walls, and the presence of a thick mat of partially digested food and microbes called the rumen mat or cud. The animal regurgitates the rumen contents periodically to chew it again, which helps to break down the plant material further and mix it with saliva, creating a more favorable environment for fermentation.

The rumen plays an essential role in the digestion and nutrition of ruminant animals, allowing them to thrive on a diet of low-quality plant material that would be difficult for other animals to digest.

Thermogravimetry (TG) is a technique used in materials science and analytical chemistry to measure the mass of a substance as a function of temperature while it is subjected to a controlled heating or cooling rate in a carefully controlled atmosphere. The sample is placed in a pan which is suspended from a balance and heated at a constant rate. As the temperature increases, various components of the sample may decompose, lose water, or evolve gases, resulting in a decrease in mass, which is recorded by the balance.

TG can be used to determine the weight loss due to decomposition, desorption, or volatilization, and to calculate the amount of various components present in a sample. It is often used in conjunction with other techniques such as differential thermal analysis (DTA) or differential scanning calorimetry (DSC) to provide additional information about the thermal behavior of materials.

In summary, thermogravimetry is a method for measuring the mass changes of a material as it is heated or cooled, which can be used to analyze its composition and thermal stability.

Cholesteryl esters are formed when cholesterol, a type of lipid (fat) that is important for the normal functioning of the body, becomes combined with fatty acids through a process called esterification. This results in a compound that is more hydrophobic (water-repelling) than cholesterol itself, which allows it to be stored more efficiently in the body.

Cholesteryl esters are found naturally in foods such as animal fats and oils, and they are also produced by the liver and other cells in the body. They play an important role in the structure and function of cell membranes, and they are also precursors to the synthesis of steroid hormones, bile acids, and vitamin D.

However, high levels of cholesteryl esters in the blood can contribute to the development of atherosclerosis, a condition characterized by the buildup of plaque in the arteries, which can increase the risk of heart disease and stroke. Cholesteryl esters are typically measured as part of a lipid profile, along with other markers such as total cholesterol, HDL cholesterol, and triglycerides.

Molecular weight, also known as molecular mass, is the mass of a molecule. It is expressed in units of atomic mass units (amu) or daltons (Da). Molecular weight is calculated by adding up the atomic weights of each atom in a molecule. It is a useful property in chemistry and biology, as it can be used to determine the concentration of a substance in a solution, or to calculate the amount of a substance that will react with another in a chemical reaction.

Beclomethasone is a corticosteroid medication that is used to treat inflammation and allergies in the body. It works by reducing the activity of the immune system, which helps to prevent the release of substances that cause inflammation. Beclomethasone is available as an inhaler, nasal spray, and cream or ointment.

In its inhaled form, beclomethasone is used to treat asthma and other lung conditions such as chronic obstructive pulmonary disease (COPD). It helps to prevent symptoms such as wheezing and shortness of breath by reducing inflammation in the airways.

As a nasal spray, beclomethasone is used to treat allergies and inflammation in the nose, such as hay fever or rhinitis. It can help to relieve symptoms such as sneezing, runny or stuffy nose, and itching.

Beclomethasone cream or ointment is used to treat skin conditions such as eczema, dermatitis, and psoriasis. It works by reducing inflammation in the skin and relieving symptoms such as redness, swelling, itching, and irritation.

It's important to note that beclomethasone can have side effects, especially if used in high doses or for long periods of time. These may include thrush (a fungal infection in the mouth), coughing, hoarseness, sore throat, and easy bruising or thinning of the skin. It's important to follow your healthcare provider's instructions carefully when using beclomethasone to minimize the risk of side effects.

'Adhesiveness' is a term used in medicine and biology to describe the ability of two surfaces to stick or adhere to each other. In medical terms, it often refers to the property of tissues or cells to adhere to one another, as in the case of scar tissue formation where healing tissue adheres to adjacent structures.

In the context of microbiology, adhesiveness can refer to the ability of bacteria or other microorganisms to attach themselves to surfaces, such as medical devices or human tissues, which can lead to infection and other health problems. Adhesives used in medical devices, such as bandages or wound dressings, also have adhesiveness properties that allow them to stick to the skin or other surfaces.

Overall, adhesiveness is an important property in many areas of medicine and biology, with implications for wound healing, infection control, and the design and function of medical devices.

Propantheline is an anticholinergic drug, which means it blocks the action of acetylcholine, a neurotransmitter in the body. The specific action of propantheline is to inhibit the muscarinic receptors, leading to a decrease in glandular secretions and smooth muscle tone. It is primarily used as a treatment for peptic ulcers, as it reduces gastric acid secretion.

The medical definition of 'Propantheline' can be stated as:

A belladonna alkaloid with parasympatholytic effects, used as an antispasmodic and in the treatment of peptic ulcer to reduce gastric acid secretion. It inhibits the action of acetylcholine on muscarinic receptors, leading to decreased glandular secretions and smooth muscle tone. Common side effects include dry mouth, blurred vision, and constipation.

Respiratory system agents are substances that affect the respiratory system, which includes the nose, throat (pharynx), voice box (larynx), windpipe (trachea), bronchi, and lungs. These agents can be classified into different categories based on their effects:

1. Respiratory Stimulants: Agents that increase respiratory rate or depth by acting on the respiratory center in the brainstem.
2. Respiratory Depressants: Agents that decrease respiratory rate or depth, often as a side effect of their sedative or analgesic effects. Examples include opioids, benzodiazepines, and barbiturates.
3. Bronchodilators: Agents that widen the airways (bronchioles) in the lungs by relaxing the smooth muscle around them. They are used to treat asthma, chronic obstructive pulmonary disease (COPD), and other respiratory conditions. Examples include albuterol, ipratropium, and theophylline.
4. Anti-inflammatory Agents: Agents that reduce inflammation in the airways, which can help relieve symptoms of asthma, COPD, and other respiratory conditions. Examples include corticosteroids, leukotriene modifiers, and mast cell stabilizers.
5. Antitussives: Agents that suppress coughing, often by numbing the throat or acting on the cough center in the brainstem. Examples include dextromethorphan and codeine.
6. Expectorants: Agents that help thin and loosen mucus in the airways, making it easier to cough up and clear. Examples include guaifenesin and iodinated glycerol.
7. Decongestants: Agents that narrow blood vessels in the nose and throat, which can help relieve nasal congestion and sinus pressure. Examples include pseudoephedrine and phenylephrine.
8. Antimicrobial Agents: Agents that kill or inhibit the growth of microorganisms such as bacteria, viruses, and fungi that can cause respiratory infections. Examples include antibiotics, antiviral drugs, and antifungal agents.

Ribonucleoproteins (RNPs) are complexes composed of ribonucleic acid (RNA) and proteins. They play crucial roles in various cellular processes, including gene expression, RNA processing, transport, stability, and degradation. Different types of RNPs exist, such as ribosomes, spliceosomes, and signal recognition particles, each having specific functions in the cell.

Ribosomes are large RNP complexes responsible for protein synthesis, where messenger RNA (mRNA) is translated into proteins. They consist of two subunits: a smaller subunit containing ribosomal RNA (rRNA) and proteins that recognize the start codon on mRNA, and a larger subunit with rRNA and proteins that facilitate peptide bond formation during translation.

Spliceosomes are dynamic RNP complexes involved in pre-messenger RNA (pre-mRNA) splicing, where introns (non-coding sequences) are removed, and exons (coding sequences) are joined together to form mature mRNA. Spliceosomes consist of five small nuclear ribonucleoproteins (snRNPs), each containing a specific small nuclear RNA (snRNA) and several proteins, as well as numerous additional proteins.

Other RNP complexes include signal recognition particles (SRPs), which are responsible for targeting secretory and membrane proteins to the endoplasmic reticulum during translation, and telomerase, an enzyme that maintains the length of telomeres (the protective ends of chromosomes) by adding repetitive DNA sequences using its built-in RNA component.

In summary, ribonucleoproteins are essential complexes in the cell that participate in various aspects of RNA metabolism and protein synthesis.

In the context of medicine and pharmacology, oils are typically defined as lipid-based substances that are derived from plants or animals. They are made up of molecules called fatty acids, which can be either saturated or unsaturated. Oils are often used in medical treatments and therapies due to their ability to deliver active ingredients through the skin, as well as their moisturizing and soothing properties. Some oils, such as essential oils, are also used in aromatherapy for their potential therapeutic benefits. However, it's important to note that some oils can be toxic or irritating if ingested or applied to the skin in large amounts, so they should always be used with caution and under the guidance of a healthcare professional.

Specific gravity is a term used in medicine, particularly in the context of urinalysis and other bodily fluid analysis. It refers to the ratio of the density (mass of a substance per unit volume) of a sample to the density of a reference substance, usually water. At body temperature, this is expressed as:

Specific gravity = Density of sample / Density of water at 37 degrees Celsius

In urinalysis, specific gravity is used to help evaluate renal function and hydration status. It can indicate whether the kidneys are adequately concentrating or diluting the urine. A lower specific gravity (closer to 1) may suggest overhydration or dilute urine, while a higher specific gravity (greater than 1) could indicate dehydration or concentrated urine. However, specific gravity should be interpreted in conjunction with other urinalysis findings and clinical context for accurate assessment.

HDL3 (High-Density Lipoprotein 3) is a type of lipoprotein that plays a role in the transport and metabolism of cholesterol in the body. HDLs are commonly known as "good cholesterol" because they help remove excess cholesterol from cells and carry it back to the liver, where it can be broken down and removed from the body.

HDL3 is one of the subclasses of HDL based on its density and size. It is denser than HDL2 but less dense than HDL1. HDL3 is smaller in size and contains a higher proportion of protein to lipid compared to other HDL subclasses. It is also more efficient in reverse cholesterol transport, which is the process of removing cholesterol from tissues and delivering it to the liver for excretion.

It's worth noting that while high levels of HDL are generally associated with a lower risk of heart disease, recent research suggests that the relationship between HDL and cardiovascular health may be more complex than previously thought.

Chlorofluorocarbons (CFCs) are synthetic, volatile organic compounds that consist of carbon atoms, chlorine atoms, and fluorine atoms. They were widely used in various applications such as refrigerants, aerosol propellants, solvents, and fire extinguishing agents due to their non-toxicity, non-flammability, and chemical stability.

However, CFCs have been found to contribute significantly to the depletion of the Earth's ozone layer when released into the atmosphere. This is because they are stable enough to reach the upper atmosphere, where they react with ultraviolet radiation to release chlorine atoms that can destroy ozone molecules. As a result, the production and use of CFCs have been phased out under the Montreal Protocol, an international treaty aimed at protecting the ozone layer.

Phospholipids are a major class of lipids that consist of a hydrophilic (water-attracting) head and two hydrophobic (water-repelling) tails. The head is composed of a phosphate group, which is often bound to an organic molecule such as choline, ethanolamine, serine or inositol. The tails are made up of two fatty acid chains.

Phospholipids are a key component of cell membranes and play a crucial role in maintaining the structural integrity and function of the cell. They form a lipid bilayer, with the hydrophilic heads facing outwards and the hydrophobic tails facing inwards, creating a barrier that separates the interior of the cell from the outside environment.

Phospholipids are also involved in various cellular processes such as signal transduction, intracellular trafficking, and protein function regulation. Additionally, they serve as emulsifiers in the digestive system, helping to break down fats in the diet.

Phosphatidylcholine-Sterol O-Acyltransferase (PCOAT, also known as Sterol O-Acyltransferase 1 or SOAT1) is an enzyme that plays a crucial role in the regulation of cholesterol metabolism. It is located in the endoplasmic reticulum and is responsible for the transfer of acyl groups from phosphatidylcholine to cholesterol, forming cholesteryl esters. This enzymatic reaction results in the storage of excess cholesterol in lipid droplets, preventing its accumulation in the cell membrane and potentially contributing to the development of atherosclerosis if not properly regulated.

Defects or mutations in PCOAT can lead to disruptions in cholesterol homeostasis, which may contribute to various diseases such as cardiovascular disorders, metabolic syndrome, and neurodegenerative conditions. Therefore, understanding the function and regulation of this enzyme is essential for developing therapeutic strategies aimed at managing cholesterol-related disorders.

I believe there may be some confusion in your question as Polyethylenes are not a medical term, but rather a category of synthetic polymers commonly used in various industrial and medical applications. Here's a brief overview:

Polyethylene (PE) is a type of thermoplastic polymer made from the monomer ethylene. It is a versatile material with numerous applications due to its chemical resistance, durability, and flexibility. There are several types of polyethylenes, including:

1. Low-density polyethylene (LDPE): This type has a lower density and more branching in its molecular structure, which results in less crystallinity. LDPE is known for its flexibility and is often used in packaging films, bags, and containers.
2. High-density polyethylene (HDPE): HDPE has a higher density and less branching, resulting in greater crystallinity. It is more rigid than LDPE and is commonly used in applications such as bottles, pipes, and containers.
3. Linear low-density polyethylene (LLDPE): This type combines the flexibility of LDPE with some of the strength and rigidity of HDPE. LLDPE has fewer branches than LDPE but more than HDPE. It is often used in film applications, such as stretch wrap and agricultural films.
4. Ultra-high molecular weight polyethylene (UHMWPE): UHMWPE has an extremely high molecular weight, resulting in exceptional wear resistance, impact strength, and chemical resistance. It is commonly used in medical applications, such as orthopedic implants and joint replacements, due to its biocompatibility and low friction coefficient.

While polyethylenes are not a medical term per se, they do have significant medical applications, particularly UHMWPE in orthopedic devices.

'Zea mays' is the biological name for corn or maize, which is not typically considered a medical term. However, corn or maize can have medical relevance in certain contexts. For example, cornstarch is sometimes used as a diluent for medications and is also a component of some skin products. Corn oil may be found in topical ointments and creams. In addition, some people may have allergic reactions to corn or corn-derived products. But generally speaking, 'Zea mays' itself does not have a specific medical definition.

Virus replication is the process by which a virus produces copies or reproduces itself inside a host cell. This involves several steps:

1. Attachment: The virus attaches to a specific receptor on the surface of the host cell.
2. Penetration: The viral genetic material enters the host cell, either by invagination of the cell membrane or endocytosis.
3. Uncoating: The viral genetic material is released from its protective coat (capsid) inside the host cell.
4. Replication: The viral genetic material uses the host cell's machinery to produce new viral components, such as proteins and nucleic acids.
5. Assembly: The newly synthesized viral components are assembled into new virus particles.
6. Release: The newly formed viruses are released from the host cell, often through lysis (breaking) of the cell membrane or by budding off the cell membrane.

The specific mechanisms and details of virus replication can vary depending on the type of virus. Some viruses, such as DNA viruses, use the host cell's DNA polymerase to replicate their genetic material, while others, such as RNA viruses, use their own RNA-dependent RNA polymerase or reverse transcriptase enzymes. Understanding the process of virus replication is important for developing antiviral therapies and vaccines.

VLDL, or very low-density lipoproteins, are a type of lipoprotein that carries triglycerides and cholesterol from the liver to other parts of the body. Cholesterol is a fatty substance found in the blood, and VLDL contains both triglycerides and cholesterol.

Cholesterol itself cannot dissolve in the blood and needs to be transported around the body by lipoproteins, which are protein molecules that encapsulate and carry fat molecules, such as cholesterol and triglycerides, through the bloodstream. VLDL is one of several types of lipoproteins, including low-density lipoproteins (LDL) and high-density lipoproteins (HDL).

Elevated levels of VLDL in the blood can contribute to the development of atherosclerosis, a condition characterized by the buildup of plaque in the arteries, which can increase the risk of heart disease and stroke. Therefore, maintaining healthy levels of VLDL and other lipoproteins is an important part of overall cardiovascular health.

Sonication is a medical and laboratory term that refers to the use of ultrasound waves to agitate particles in a liquid. This process is often used in medical and scientific research to break down or disrupt cells, tissue, or other substances that are being studied. The high-frequency sound waves create standing waves that cause the particles in the liquid to vibrate, which can lead to cavitation (the formation and collapse of bubbles) and ultimately result in the disruption of the cell membranes or other structures. This technique is commonly used in procedures such as sonication of blood cultures to release microorganisms from clots, enhancing their growth in culture media and facilitating their identification.

Stearic acid is not typically considered a medical term, but rather a chemical compound. It is a saturated fatty acid with the chemical formula C18H36O2. Stearic acid is commonly found in various foods such as animal fats and vegetable oils, including cocoa butter and palm oil.

In a medical context, stearic acid might be mentioned in relation to nutrition or cosmetics. For example, it may be listed as an ingredient in some skincare products or medications where it is used as an emollient or thickening agent. It's also worth noting that while stearic acid is a saturated fat, some studies suggest that it may have a more neutral effect on blood cholesterol levels compared to other saturated fats. However, this is still a topic of ongoing research and debate in the medical community.

"Drug storage" refers to the proper handling, maintenance, and preservation of medications in a safe and suitable environment to ensure their effectiveness and safety until they are used. Proper drug storage includes:

1. Protecting drugs from light, heat, and moisture: Exposure to these elements can degrade the quality and potency of medications. Therefore, it is recommended to store most drugs in a cool, dry place, away from direct sunlight.

2. Keeping drugs out of reach of children and pets: Medications should be stored in a secure location, such as a locked cabinet or medicine chest, to prevent accidental ingestion or harm to young children and animals.

3. Following storage instructions on drug labels and packaging: Some medications require specific storage conditions, such as refrigeration or protection from freezing. Always follow the storage instructions provided by the manufacturer or pharmacist.

4. Regularly inspecting drugs for signs of degradation or expiration: Check medications for changes in color, consistency, or odor, and discard any that have expired or show signs of spoilage.

5. Storing drugs separately from one another: Keep different medications separate to prevent cross-contamination, incorrect dosing, or accidental mixing of incompatible substances.

6. Avoiding storage in areas with high humidity or temperature fluctuations: Bathrooms, kitchens, and garages are generally not ideal for storing medications due to their exposure to moisture, heat, and temperature changes.

Proper drug storage is crucial for maintaining the safety, efficacy, and stability of medications. Improper storage can lead to reduced potency, increased risk of adverse effects, or even life-threatening situations. Always consult a healthcare professional or pharmacist for specific storage instructions and recommendations.

Phagocytosis is the process by which certain cells in the body, known as phagocytes, engulf and destroy foreign particles, bacteria, or dead cells. This mechanism plays a crucial role in the immune system's response to infection and inflammation. Phagocytes, such as neutrophils, monocytes, and macrophages, have receptors on their surface that recognize and bind to specific molecules (known as antigens) on the target particles or microorganisms.

Once attached, the phagocyte extends pseudopodia (cell extensions) around the particle, forming a vesicle called a phagosome that completely encloses it. The phagosome then fuses with a lysosome, an intracellular organelle containing digestive enzymes and other chemicals. This fusion results in the formation of a phagolysosome, where the engulfed particle is broken down by the action of these enzymes, neutralizing its harmful effects and allowing for the removal of cellular debris or pathogens.

Phagocytosis not only serves as a crucial defense mechanism against infections but also contributes to tissue homeostasis by removing dead cells and debris.

Virosomes are artificially created structures that consist of viral envelopes, which have been stripped of their genetic material, combined with liposomes. They maintain the ability to fuse with cell membranes and can be used as delivery systems for vaccines or drugs, as they can carry foreign proteins or nucleic acids into cells. This makes them useful in the development of novel vaccine strategies and targeted therapy.

Polysorbates are a type of nonionic surfactant (a compound that lowers the surface tension between two substances, such as oil and water) commonly used in pharmaceuticals, foods, and cosmetics. They are derived from sorbitol and reacted with ethylene oxide to create a polyoxyethylene structure. The most common types of polysorbates used in medicine are polysorbate 20, polysorbate 40, and polysorbate 60, which differ in the number of oxyethylene groups in their molecular structure.

Polysorbates are often added to pharmaceutical formulations as emulsifiers, solubilizers, or stabilizers. They help to improve the solubility and stability of drugs that are otherwise insoluble in water, allowing for better absorption and bioavailability. Polysorbates can also prevent the aggregation and precipitation of proteins in injectable formulations.

In addition to their use in pharmaceuticals, polysorbates are also used as emulsifiers in food products such as ice cream, salad dressings, and baked goods. They help to mix oil and water-based ingredients together and prevent them from separating. In cosmetics, polysorbates are used as surfactants, solubilizers, and stabilizers in a variety of personal care products.

It is important to note that some people may have allergic reactions to polysorbates, particularly those with sensitivities to sorbitol or other ingredients used in their production. Therefore, it is essential to carefully consider the potential risks and benefits of using products containing polysorbates in individuals who may be at risk for adverse reactions.

Viral proteins are the proteins that are encoded by the viral genome and are essential for the viral life cycle. These proteins can be structural or non-structural and play various roles in the virus's replication, infection, and assembly process. Structural proteins make up the physical structure of the virus, including the capsid (the protein shell that surrounds the viral genome) and any envelope proteins (that may be present on enveloped viruses). Non-structural proteins are involved in the replication of the viral genome and modulation of the host cell environment to favor viral replication. Overall, a thorough understanding of viral proteins is crucial for developing antiviral therapies and vaccines.

In the context of medical definitions, 'carbon' is not typically used as a standalone term. Carbon is an element with the symbol C and atomic number 6, which is naturally abundant in the human body and the environment. It is a crucial component of all living organisms, forming the basis of organic compounds, such as proteins, carbohydrates, lipids, and nucleic acids (DNA and RNA).

Carbon forms strong covalent bonds with various elements, allowing for the creation of complex molecules that are essential to life. In this sense, carbon is a fundamental building block of life on Earth. However, it does not have a specific medical definition as an isolated term.

Hyperlipidemias are a group of disorders characterized by an excess of lipids (fats) or lipoproteins in the blood. These include elevated levels of cholesterol, triglycerides, or both. Hyperlipidemias can be inherited (primary) or caused by other medical conditions (secondary). They are a significant risk factor for developing cardiovascular diseases, such as atherosclerosis and coronary artery disease.

There are two main types of lipids that are commonly measured in the blood: low-density lipoprotein (LDL) cholesterol, often referred to as "bad" cholesterol, and high-density lipoprotein (HDL) cholesterol, known as "good" cholesterol. High levels of LDL cholesterol can lead to the formation of plaques in the arteries, which can narrow or block them and increase the risk of heart attack or stroke. On the other hand, high levels of HDL cholesterol are protective because they help remove LDL cholesterol from the bloodstream.

Triglycerides are another type of lipid that can be measured in the blood. Elevated triglyceride levels can also contribute to the development of cardiovascular disease, particularly when combined with high LDL cholesterol and low HDL cholesterol levels.

Hyperlipidemias are typically diagnosed through a blood test that measures the levels of various lipids and lipoproteins in the blood. Treatment may include lifestyle changes, such as following a healthy diet, getting regular exercise, losing weight, and quitting smoking, as well as medication to lower lipid levels if necessary.

Polyethyleneimine (PEI) is not a medical term per se, but a chemical compound that is used in various medical and biomedical applications. Therefore, I will provide you with a chemical definition of PEI:

Polyethyleneimine (PEI) is a synthetic polymer consisting of repeating units of ethylene imine (-CH2-CH2-NH-). It is available in various forms, including linear and branched structures, depending on the synthesis method. The amine groups in PEI can be protonated (positively charged) under acidic conditions, making it a cationic polymer. This property allows PEI to interact strongly with negatively charged molecules such as DNA, RNA, and cell membranes, which is the basis for its use in gene delivery, drug delivery, and as a flocculant in water treatment.

Biological models, also known as physiological models or organismal models, are simplified representations of biological systems, processes, or mechanisms that are used to understand and explain the underlying principles and relationships. These models can be theoretical (conceptual or mathematical) or physical (such as anatomical models, cell cultures, or animal models). They are widely used in biomedical research to study various phenomena, including disease pathophysiology, drug action, and therapeutic interventions.

Examples of biological models include:

1. Mathematical models: These use mathematical equations and formulas to describe complex biological systems or processes, such as population dynamics, metabolic pathways, or gene regulation networks. They can help predict the behavior of these systems under different conditions and test hypotheses about their underlying mechanisms.
2. Cell cultures: These are collections of cells grown in a controlled environment, typically in a laboratory dish or flask. They can be used to study cellular processes, such as signal transduction, gene expression, or metabolism, and to test the effects of drugs or other treatments on these processes.
3. Animal models: These are living organisms, usually vertebrates like mice, rats, or non-human primates, that are used to study various aspects of human biology and disease. They can provide valuable insights into the pathophysiology of diseases, the mechanisms of drug action, and the safety and efficacy of new therapies.
4. Anatomical models: These are physical representations of biological structures or systems, such as plastic models of organs or tissues, that can be used for educational purposes or to plan surgical procedures. They can also serve as a basis for developing more sophisticated models, such as computer simulations or 3D-printed replicas.

Overall, biological models play a crucial role in advancing our understanding of biology and medicine, helping to identify new targets for therapeutic intervention, develop novel drugs and treatments, and improve human health.

"Swine" is a common term used to refer to even-toed ungulates of the family Suidae, including domestic pigs and wild boars. However, in a medical context, "swine" often appears in the phrase "swine flu," which is a strain of influenza virus that typically infects pigs but can also cause illness in humans. The 2009 H1N1 pandemic was caused by a new strain of swine-origin influenza A virus, which was commonly referred to as "swine flu." It's important to note that this virus is not transmitted through eating cooked pork products; it spreads from person to person, mainly through respiratory droplets produced when an infected person coughs or sneezes.

Desiccation is a medical term that refers to the process of extreme dryness or the state of being dried up. It is the removal of water or moisture from an object or tissue, which can lead to its dehydration and preservation. In medicine, desiccation may be used as a therapeutic technique for treating certain conditions, such as drying out wet wounds or preventing infection in surgical instruments. However, desiccation can also have harmful effects on living tissues, leading to cell damage or death.

In a broader context, desiccation is also used to describe the process of drying up of an organ, tissue, or body part due to various reasons such as exposure to air, heat, or certain medical conditions that affect moisture regulation in the body. For example, diabetic patients may experience desiccation of their skin due to decreased moisture production and increased evaporation caused by high blood sugar levels. Similarly, people living in dry climates or using central heating systems may experience desiccation of their mucous membranes, leading to dryness of the eyes, nose, and throat.

Ventilation, in the context of medicine and physiology, refers to the process of breathing, which is the exchange of air between the lungs and the environment. It involves both inspiration (inhaling) and expiration (exhaling). During inspiration, air moves into the lungs, delivering oxygen to the alveoli (air sacs) where gas exchange occurs. Oxygen is taken up by the blood and transported to the body's cells, while carbon dioxide, a waste product, is expelled from the body during expiration.

In a medical setting, ventilation may also refer to the use of mechanical devices, such as ventilators or respirators, which assist or replace the breathing process for patients who are unable to breathe effectively on their own due to conditions like respiratory failure, sedation, neuromuscular disorders, or injuries. These machines help maintain adequate gas exchange and prevent complications associated with inadequate ventilation, such as hypoxia (low oxygen levels) and hypercapnia (high carbon dioxide levels).

"Green Chemistry Technology," also known as "Sustainable Chemistry," refers to the design of chemical products and processes that reduce or eliminate the use and generation of hazardous substances. It aims to minimize negative impacts on human health and the environment, while maximizing economic benefits. This is achieved through the application of principles such as preventing waste, designing safer chemicals, using renewable feedstocks, and minimizing energy use. Green Chemistry Technology involves the development and implementation of novel chemical reactions, catalysts, and processes that are inherently safer and more environmentally benign than traditional methods.

A laser is not a medical term per se, but a physical concept that has important applications in medicine. The term "LASER" stands for "Light Amplification by Stimulated Emission of Radiation." It refers to a device that produces and amplifies light with specific characteristics, such as monochromaticity (single wavelength), coherence (all waves moving in the same direction), and high intensity.

In medicine, lasers are used for various therapeutic and diagnostic purposes, including surgery, dermatology, ophthalmology, and dentistry. They can be used to cut, coagulate, or vaporize tissues with great precision, minimizing damage to surrounding structures. Additionally, lasers can be used to detect and measure physiological parameters, such as blood flow and oxygen saturation.

It's important to note that while lasers are powerful tools in medicine, they must be used by trained professionals to ensure safe and effective treatment.

Viral interference is a phenomenon where the replication of one virus is inhibited or blocked by the presence of another virus. This can occur when two different viruses infect the same cell and compete for the cell's resources, such as nucleotides, energy, and replication machinery. As a result, the replication of one virus may be suppressed, allowing the other virus to predominate.

This phenomenon has been observed in both in vitro (laboratory) studies and in vivo (in the body) studies. It has been suggested that viral interference may play a role in the outcome of viral coinfections, where an individual is infected with more than one virus at the same time. Viral interference can also be exploited as a potential strategy for antiviral therapy, where one virus is used to inhibit the replication of another virus.

It's important to note that not all viruses interfere with each other, and the outcome of viral coinfections can depend on various factors such as the specific viruses involved, the timing and sequence of infection, and the host's immune response.

Hypertriglyceridemia is a medical condition characterized by an elevated level of triglycerides in the blood. Triglycerides are a type of fat (lipid) found in your blood that can increase the risk of developing heart disease, especially when levels are very high.

In general, hypertriglyceridemia is defined as having triglyceride levels greater than 150 milligrams per deciliter (mg/dL) of blood. However, the specific definition of hypertriglyceridemia may vary depending on individual risk factors and medical history.

Hypertriglyceridemia can be caused by a variety of factors, including genetics, obesity, physical inactivity, excessive alcohol consumption, and certain medications. In some cases, it may also be a secondary consequence of other medical conditions such as diabetes or hypothyroidism. Treatment for hypertriglyceridemia typically involves lifestyle modifications such as dietary changes, increased exercise, and weight loss, as well as medication if necessary.

Cereals, in a medical context, are not specifically defined. However, cereals are generally understood to be grasses of the family Poaceae that are cultivated for the edible components of their grain (the seed of the grass). The term "cereal" is derived from Ceres, the Roman goddess of agriculture and harvest.

The most widely consumed cereals include:

1. Wheat
2. Rice
3. Corn (Maize)
4. Barley
5. Oats
6. Millet
7. Sorghum
8. Rye

Cereals are a significant part of the human diet, providing energy in the form of carbohydrates, as well as protein, fiber, vitamins, and minerals. They can be consumed in various forms, such as whole grains, flour, flakes, or puffed cereals. Some people may have allergies or intolerances to specific cereals, like celiac disease, an autoimmune disorder that requires a gluten-free diet (wheat, barley, and rye contain gluten).

A viral RNA (ribonucleic acid) is the genetic material found in certain types of viruses, as opposed to viruses that contain DNA (deoxyribonucleic acid). These viruses are known as RNA viruses. The RNA can be single-stranded or double-stranded and can exist as several different forms, such as positive-sense, negative-sense, or ambisense RNA. Upon infecting a host cell, the viral RNA uses the host's cellular machinery to translate the genetic information into proteins, leading to the production of new virus particles and the continuation of the viral life cycle. Examples of human diseases caused by RNA viruses include influenza, COVID-19 (SARS-CoV-2), hepatitis C, and polio.

I believe there may be some confusion in your question. "Rabbits" is a common name used to refer to the Lagomorpha species, particularly members of the family Leporidae. They are small mammals known for their long ears, strong legs, and quick reproduction.

However, if you're referring to "rabbits" in a medical context, there is a term called "rabbit syndrome," which is a rare movement disorder characterized by repetitive, involuntary movements of the fingers, resembling those of a rabbit chewing. It is also known as "finger-chewing chorea." This condition is usually associated with certain medications, particularly antipsychotics, and typically resolves when the medication is stopped or adjusted.

Zirconium is not a medical term, but it is a chemical element with the symbol Zr and atomic number 40. It is a gray-white, strong, corrosion-resistant transition metal that is used primarily in nuclear reactors, as an opacifier in glazes for ceramic cookware, and in surgical implants such as artificial joints due to its biocompatibility.

In the context of medical devices or implants, zirconium alloys may be used for their mechanical properties and resistance to corrosion. For example, zirconia (a form of zirconium dioxide) is a popular material for dental crowns and implants due to its durability, strength, and natural appearance.

However, it's important to note that while zirconium itself is not considered a medical term, there are various medical applications and devices that utilize zirconium-based materials.

Blood protein electrophoresis (BPE) is a laboratory test that separates and measures the different proteins in the blood, such as albumin, alpha-1 globulins, alpha-2 globulins, beta globulins, and gamma globulins. This test is often used to help diagnose or monitor conditions related to abnormal protein levels, such as multiple myeloma, macroglobulinemia, and other plasma cell disorders.

In this test, a sample of the patient's blood is placed on a special gel and an electric current is applied. The proteins in the blood migrate through the gel based on their electrical charge and size, creating bands that can be visualized and measured. By comparing the band patterns to reference ranges, doctors can identify any abnormal protein levels or ratios, which may indicate underlying medical conditions.

It's important to note that while BPE is a useful diagnostic tool, it should be interpreted in conjunction with other clinical findings and laboratory tests for accurate diagnosis and management of the patient's condition.

I'm sorry for any confusion, but "Food Technology" is not a term that has a widely recognized medical definition. It is a multidisciplinary field involving aspects of food science, chemical engineering, and nutrition, among others, which deals with the production, preservation, and packaging of food products to make them safe, nutritious, and appealing.

However, if you're asking about how certain food technologies or food components might have medical implications, I could provide some information on that front. For example, there are various food technologies used in the processing and preparation of foods that can affect their nutritional content, safety, and potential health benefits or risks. Some examples include:

* Fortification: adding essential nutrients to foods to prevent deficiencies (e.g., adding folic acid to bread and cereals)
* Pasteurization: heating food to kill harmful bacteria and extend shelf life (e.g., milk, juice, and some prepared foods)
* Irradiation: exposing food to low levels of radiation to reduce or eliminate pathogens and extend shelf life (e.g., spices, herbs, and some fruits and vegetables)
* Food additives: substances added to food for various purposes, such as preservation, coloring, flavoring, or texturizing (e.g., artificial sweeteners, food dyes, and emulsifiers)

Each of these technologies and components can have potential medical implications, both positive and negative, depending on the specific application and individual factors. For example, fortification can help prevent nutrient deficiencies and improve public health, while certain food additives or processing methods may be associated with adverse health effects in some people.

If you have a more specific question about how a particular food technology or component might relate to medical issues, I'd be happy to try to provide more information based on the available evidence!

In the context of medicine, physical processes refer to the mechanical, physiological, and biochemical functions and changes that occur within the body. These processes encompass various systems and components, including:

1. Cellular processes: The functions and interactions of cells, such as metabolism, signaling, replication, and protein synthesis.
2. Tissue processes: The development, maintenance, repair, and regeneration of various tissues in the body, like muscle, bone, and nerve tissues.
3. Organ systems processes: The functioning of different organ systems, such as the cardiovascular system (heart and blood vessels), respiratory system (lungs), digestive system (stomach, intestines), nervous system (brain, spinal cord), endocrine system (glands and hormones), renal system (kidneys), and reproductive system.
4. Biomechanical processes: The physical forces and movements that affect the body, such as muscle contractions, joint motion, and bodily mechanics during exercise or injury.
5. Homeostatic processes: The maintenance of a stable internal environment within the body, despite external changes, through various regulatory mechanisms, like temperature control, fluid balance, and pH regulation.
6. Pathophysiological processes: The dysfunctional or abnormal physical processes that occur during diseases or medical conditions, such as inflammation, oxidative stress, cell death, or tissue degeneration.

Understanding these physical processes is crucial for diagnosing and treating various medical conditions, as well as promoting overall health and well-being.

Aluminum silicates are a type of mineral compound that consist of aluminum, silicon, and oxygen in their chemical structure. They are often found in nature and can be categorized into several groups, including kaolinite, illite, montmorillonite, and bentonite. These minerals have various industrial and commercial uses, including as fillers and extenders in products like paper, paint, and rubber. In the medical field, certain types of aluminum silicates (like bentonite) have been used in some medicinal and therapeutic applications, such as detoxification and gastrointestinal disorders. However, it's important to note that the use of these minerals in medical treatments is not widely accepted or supported by extensive scientific evidence.

Dietary fiber, also known as roughage, is the indigestible portion of plant foods that makes up the structural framework of the plants we eat. It is composed of cellulose, hemicellulose, pectin, gums, lignins, and waxes. Dietary fiber can be classified into two categories: soluble and insoluble.

Soluble fiber dissolves in water to form a gel-like material in the gut, which can help slow down digestion, increase feelings of fullness, and lower cholesterol levels. Soluble fiber is found in foods such as oats, barley, fruits, vegetables, legumes, and nuts.

Insoluble fiber does not dissolve in water and passes through the gut intact, helping to add bulk to stools and promote regular bowel movements. Insoluble fiber is found in foods such as whole grains, bran, seeds, and the skins of fruits and vegetables.

Dietary fiber has numerous health benefits, including promoting healthy digestion, preventing constipation, reducing the risk of heart disease, controlling blood sugar levels, and aiding in weight management. The recommended daily intake of dietary fiber is 25-38 grams per day for adults, depending on age and gender.

"Gene products, GAG" refer to the proteins that are produced by the GAG (Group-specific Antigen) gene found in retroviruses, such as HIV (Human Immunodeficiency Virus). These proteins play a crucial role in the structure and function of the viral particle or virion.

The GAG gene encodes for a polyprotein that is cleaved by a protease into several individual proteins, including matrix (MA), capsid (CA), and nucleocapsid (NC) proteins. These proteins are involved in the formation of the viral core, which encloses the viral RNA genome and associated enzymes required for replication.

The MA protein is responsible for binding to the host cell membrane during viral entry, while the CA protein forms the capsid shell that surrounds the viral RNA and NC protein. The NC protein binds to the viral RNA and helps to package it into the virion during assembly. Overall, GAG gene products are essential for the life cycle of retroviruses and are important targets for antiretroviral therapy in HIV-infected individuals.

An Atmosphere Exposure Chamber (AEC) is a controlled environment chamber that is designed to expose materials, products, or devices to specific atmospheric conditions for the purpose of testing their durability, performance, and safety. These chambers can simulate various environmental factors such as temperature, humidity, pressure, and contaminants, allowing researchers and manufacturers to evaluate how these factors may affect the properties and behavior of the materials being tested.

AECs are commonly used in a variety of industries, including automotive, aerospace, electronics, and medical devices, to ensure that products meet regulatory requirements and industry standards for performance and safety. For example, an AEC might be used to test the durability of a new aircraft material under extreme temperature and humidity conditions, or to evaluate the performance of a medical device in a contaminated environment.

The design and operation of AECs are subject to various regulations and standards, such as those established by organizations like the International Organization for Standardization (ISO), the American Society for Testing and Materials (ASTM), and the Society of Automotive Engineers (SAE). These standards ensure that AECs are designed and operated in a consistent and controlled manner, allowing for accurate and reliable test results.

In medicine, "absorption" refers to the process by which substances, including nutrients, medications, or toxins, are taken up and assimilated into the body's tissues or bloodstream after they have been introduced into the body via various routes (such as oral, intravenous, or transdermal).

The absorption of a substance depends on several factors, including its chemical properties, the route of administration, and the presence of other substances that may affect its uptake. For example, some medications may be better absorbed when taken with food, while others may require an empty stomach for optimal absorption.

Once a substance is absorbed into the bloodstream, it can then be distributed to various tissues throughout the body, where it may exert its effects or be metabolized and eliminated by the body's detoxification systems. Understanding the process of absorption is crucial in developing effective medical treatments and determining appropriate dosages for medications.

In the context of medical terminology, "solutions" refers to a homogeneous mixture of two or more substances, in which one substance (the solute) is uniformly distributed within another substance (the solvent). The solvent is typically the greater component of the solution and is capable of dissolving the solute.

Solutions can be classified based on the physical state of the solvent and solute. For instance, a solution in which both the solvent and solute are liquids is called a liquid solution or simply a solution. A solid solution is one where the solvent is a solid and the solute is either a gas, liquid, or solid. Similarly, a gas solution refers to a mixture where the solvent is a gas and the solute can be a gas, liquid, or solid.

In medical applications, solutions are often used as vehicles for administering medications, such as intravenous (IV) fluids, oral rehydration solutions, eye drops, and topical creams or ointments. The composition of these solutions is carefully controlled to ensure the appropriate concentration and delivery of the active ingredients.

HDL2 (High-Density Lipoprotein 2) is a type of lipoprotein that plays a role in the transportation and metabolism of cholesterol in the body. HDL particles are responsible for picking up excess cholesterol from tissues and cells throughout the body and transporting it back to the liver, where it can be broken down and removed from the body. This process is known as reverse cholesterol transport.

HDL2 is one of the subclasses of HDL particles, which are classified based on their size, density, and composition. HDL2 particles are larger and denser than other HDL subclasses, such as HDL3. They have a higher proportion of cholesteryl esters to phospholipids and apolipoproteins compared to other HDL subclasses.

Elevated levels of HDL2 have been associated with a lower risk of cardiovascular disease, while low levels of HDL2 have been linked to an increased risk of heart disease. However, the exact role of HDL2 in cardiovascular health and disease is still being studied and understood.

Silicon compounds refer to chemical substances that contain the element silicon (Si) combined with other elements. Silicon is a Group 14 semimetal in the periodic table, and it often forms compounds through covalent bonding. The most common silicon compound is silicon dioxide (SiO2), also known as silica, which is found in nature as quartz, sand, and other minerals.

Silicon can form compounds with many other elements, including hydrogen, oxygen, halogens, sulfur, nitrogen, and carbon. For example:

* Silanes (SiHn) are a series of silicon-hydrogen compounds where n ranges from 1 to 6.
* Silicones are synthetic polymers made up of alternating silicon and oxygen atoms with organic groups attached to the silicon atoms.
* Silicates are a class of minerals that contain silicon, oxygen, and one or more metal cations. They have a wide range of structures and uses, including as building materials, ceramics, and glass.
* Siloxanes are a group of compounds containing alternating silicon-oxygen bonds with organic groups attached to the silicon atoms.

Silicon compounds have various applications in industry, medicine, and daily life. For instance, silicones are used in medical devices such as breast implants, contact lenses, and catheters due to their biocompatibility and flexibility. Silicates are found in pharmaceuticals, cosmetics, and food additives. Silicon-based materials are also used in dental restorations, bone cement, and drug delivery systems.

In medical terms, "gels" are semi-solid colloidal systems in which a solid phase is dispersed in a liquid medium. They have a viscous consistency and can be described as a cross between a solid and a liquid. The solid particles, called the gel network, absorb and swell with the liquid component, creating a system that has properties of both solids and liquids.

Gels are widely used in medical applications such as wound dressings, drug delivery systems, and tissue engineering due to their unique properties. They can provide a moist environment for wounds to heal, control the release of drugs over time, and mimic the mechanical properties of natural tissues.

Cell survival refers to the ability of a cell to continue living and functioning normally, despite being exposed to potentially harmful conditions or treatments. This can include exposure to toxins, radiation, chemotherapeutic drugs, or other stressors that can damage cells or interfere with their normal processes.

In scientific research, measures of cell survival are often used to evaluate the effectiveness of various therapies or treatments. For example, researchers may expose cells to a particular drug or treatment and then measure the percentage of cells that survive to assess its potential therapeutic value. Similarly, in toxicology studies, measures of cell survival can help to determine the safety of various chemicals or substances.

It's important to note that cell survival is not the same as cell proliferation, which refers to the ability of cells to divide and multiply. While some treatments may promote cell survival, they may also inhibit cell proliferation, making them useful for treating diseases such as cancer. Conversely, other treatments may be designed to specifically target and kill cancer cells, even if it means sacrificing some healthy cells in the process.

Composite resins, also known as dental composites or filling materials, are a type of restorative material used in dentistry to restore the function, integrity, and morphology of missing tooth structure. They are called composite resins because they are composed of a combination of materials, including a resin matrix (usually made of bisphenol A-glycidyl methacrylate or urethane dimethacrylate) and filler particles (commonly made of silica, quartz, or glass).

The composite resins are widely used in modern dentistry due to their excellent esthetic properties, ease of handling, and ability to bond directly to tooth structure. They can be used for a variety of restorative procedures, including direct and indirect fillings, veneers, inlays, onlays, and crowns.

Composite resins are available in various shades and opacities, allowing dentists to match the color and translucency of natural teeth closely. They also have good wear resistance, strength, and durability, making them a popular choice for both anterior and posterior restorations. However, composite resins may be prone to staining over time and may require more frequent replacement compared to other types of restorative materials.

Acrylates are a group of chemical compounds that are derived from acrylic acid. They are commonly used in various industrial and commercial applications, including the production of plastics, resins, paints, and adhesives. In the medical field, acrylates are sometimes used in the formation of dental restorations, such as fillings and dentures, due to their strong bonding properties and durability.

However, it is important to note that some people may have allergic reactions or sensitivities to acrylates, which can cause skin irritation, allergic contact dermatitis, or other adverse effects. Therefore, medical professionals must use caution when working with these materials and ensure that patients are informed of any potential risks associated with their use.

Buccal administration refers to the route of delivering a medication or drug through the buccal mucosa, which is the lining of the inner cheek in the mouth. This route allows for the medication to be absorbed directly into the bloodstream, bypassing the gastrointestinal tract and liver metabolism, which can result in faster onset of action and potentially higher bioavailability.

Buccal administration can be achieved through various forms of dosage forms such as lozenges, tablets, films, or sprays that are placed in contact with the buccal mucosa for a certain period of time until they dissolve or disintegrate and release the active ingredient. This route is commonly used for medications that require a rapid onset of action, have poor oral bioavailability, or are irritating to the gastrointestinal tract.

It's important to note that buccal administration may not be appropriate for all medications, as some drugs may be inactivated by saliva or may cause local irritation or discomfort. Therefore, it's essential to consult with a healthcare professional before using any medication through this route.

Dextrans are a type of complex glucose polymers that are formed by the action of certain bacteria on sucrose. They are branched polysaccharides consisting of linear chains of α-1,6 linked D-glucopyranosyl units with occasional α-1,3 branches.

Dextrans have a wide range of applications in medicine and industry. In medicine, dextrans are used as plasma substitutes, volume expanders, and anticoagulants. They are also used as carriers for drugs and diagnostic agents, and in the manufacture of immunoadsorbents for the removal of toxins and pathogens from blood.

Dextrans can be derived from various bacterial sources, but the most common commercial source is Leuconostoc mesenteroides B-512(F) or L. dextranicum. The molecular weight of dextrans can vary widely, ranging from a few thousand to several million Daltons, depending on the method of preparation and purification.

Dextrans are generally biocompatible and non-toxic, but they can cause allergic reactions in some individuals. Therefore, their use as medical products requires careful monitoring and testing for safety and efficacy.

In the context of medical terminology, "hardness" is not a term that has a specific or standardized definition. It may be used in various ways to describe the firmness or consistency of a tissue, such as the hardness of an artery or tumor, but it does not have a single authoritative medical definition.

In some cases, healthcare professionals may use subjective terms like "hard," "firm," or "soft" to describe their tactile perception during a physical examination. For example, they might describe the hardness of an enlarged liver or spleen by comparing it to the feel of their knuckles when gently pressed against the abdomen.

However, in other contexts, healthcare professionals may use more objective measures of tissue stiffness or elasticity, such as palpation durometry or shear wave elastography, which provide quantitative assessments of tissue hardness. These techniques can be useful for diagnosing and monitoring conditions that affect the mechanical properties of tissues, such as liver fibrosis or cancer.

Therefore, while "hardness" may be a term used in medical contexts to describe certain physical characteristics of tissues, it does not have a single, universally accepted definition.

Cholesteryl ester transfer proteins (CETP) are a group of plasma proteins that play a role in the transport and metabolism of lipids, particularly cholesteryl esters and triglycerides, between different lipoprotein particles in the bloodstream. These proteins facilitate the transfer of cholesteryl esters from high-density lipoproteins (HDL) to low-density lipoproteins (LDL) and very low-density lipoproteins (VLDL), while simultaneously promoting the transfer of triglycerides in the opposite direction, from VLDL and LDL to HDL.

The net effect of CETP activity is a decrease in HDL cholesterol levels and an increase in LDL and VLDL cholesterol levels. This shift in lipoprotein composition can contribute to the development of atherosclerosis and cardiovascular disease, as lower HDL cholesterol levels and higher LDL cholesterol levels are associated with increased risk for these conditions.

Inhibition of CETP has been investigated as a potential strategy for increasing HDL cholesterol levels and reducing the risk of cardiovascular disease. However, clinical trials with CETP inhibitors have shown mixed results, and further research is needed to determine their safety and efficacy in preventing cardiovascular events.

A cell membrane, also known as the plasma membrane, is a thin semi-permeable phospholipid bilayer that surrounds all cells in animals, plants, and microorganisms. It functions as a barrier to control the movement of substances in and out of the cell, allowing necessary molecules such as nutrients, oxygen, and signaling molecules to enter while keeping out harmful substances and waste products. The cell membrane is composed mainly of phospholipids, which have hydrophilic (water-loving) heads and hydrophobic (water-fearing) tails. This unique structure allows the membrane to be flexible and fluid, yet selectively permeable. Additionally, various proteins are embedded in the membrane that serve as channels, pumps, receptors, and enzymes, contributing to the cell's overall functionality and communication with its environment.

Magnetic Resonance Spectroscopy (MRS) is a non-invasive diagnostic technique that provides information about the biochemical composition of tissues, including their metabolic state. It is often used in conjunction with Magnetic Resonance Imaging (MRI) to analyze various metabolites within body tissues, such as the brain, heart, liver, and muscles.

During MRS, a strong magnetic field, radio waves, and a computer are used to produce detailed images and data about the concentration of specific metabolites in the targeted tissue or organ. This technique can help detect abnormalities related to energy metabolism, neurotransmitter levels, pH balance, and other biochemical processes, which can be useful for diagnosing and monitoring various medical conditions, including cancer, neurological disorders, and metabolic diseases.

There are different types of MRS, such as Proton (^1^H) MRS, Phosphorus-31 (^31^P) MRS, and Carbon-13 (^13^C) MRS, each focusing on specific elements or metabolites within the body. The choice of MRS technique depends on the clinical question being addressed and the type of information needed for diagnosis or monitoring purposes.

Gel chromatography is a type of liquid chromatography that separates molecules based on their size or molecular weight. It uses a stationary phase that consists of a gel matrix made up of cross-linked polymers, such as dextran, agarose, or polyacrylamide. The gel matrix contains pores of various sizes, which allow smaller molecules to penetrate deeper into the matrix while larger molecules are excluded.

In gel chromatography, a mixture of molecules is loaded onto the top of the gel column and eluted with a solvent that moves down the column by gravity or pressure. As the sample components move down the column, they interact with the gel matrix and get separated based on their size. Smaller molecules can enter the pores of the gel and take longer to elute, while larger molecules are excluded from the pores and elute more quickly.

Gel chromatography is commonly used to separate and purify proteins, nucleic acids, and other biomolecules based on their size and molecular weight. It is also used in the analysis of polymers, colloids, and other materials with a wide range of applications in chemistry, biology, and medicine.

"Animal nutritional physiological phenomena" is not a standardized medical or scientific term. However, it seems to refer to the processes and functions related to nutrition and physiology in animals. Here's a breakdown of the possible components:

1. Animal: This term refers to non-human living organisms that are multicellular, heterotrophic, and have a distinct nervous system.
2. Nutritional: This term pertains to the nourishment and energy requirements of an animal, including the ingestion, digestion, absorption, transportation, metabolism, and excretion of nutrients.
3. Physiological: This term refers to the functions and processes that occur within a living organism, including the interactions between different organs and systems.
4. Phenomena: This term generally means an observable fact or event.

Therefore, "animal nutritional physiological phenomena" could refer to the observable events and processes related to nutrition and physiology in animals. Examples of such phenomena include digestion, absorption, metabolism, energy production, growth, reproduction, and waste elimination.

Chemical fractionation is a process used in analytical chemistry to separate and isolate individual components or fractions from a mixture based on their chemical properties. This technique typically involves the use of various chemical reactions, such as precipitation, extraction, or chromatography, to selectively interact with specific components in the mixture and purify them.

In the context of medical research or clinical analysis, chemical fractionation may be used to isolate and identify individual compounds in a complex biological sample, such as blood, urine, or tissue. For example, fractionating a urine sample might involve separating out various metabolites, proteins, or other molecules based on their solubility, charge, or other chemical properties, allowing researchers to study the individual components and their roles in health and disease.

It's worth noting that while chemical fractionation can be a powerful tool for analyzing complex mixtures, it can also be time-consuming and technically challenging, requiring specialized equipment and expertise to perform accurately and reliably.

I'm sorry for any confusion, but "Polyurethanes" are not a medical term. They are a type of polymer that is used in a variety of industrial and consumer products, including foam cushions, insulation, and packaging materials. Polyurethanes are created through a chemical reaction between diisocyanates and polyols. While they have many applications in the medical field, such as in the production of medical devices and equipment, they are not a medical term themselves.

Ultrasonics is a branch of physics and acoustics that deals with the study and application of sound waves with frequencies higher than the upper limit of human hearing, typically 20 kilohertz or above. In the field of medicine, ultrasonics is commonly used in diagnostic and therapeutic applications through the use of medical ultrasound.

Diagnostic medical ultrasound, also known as sonography, uses high-frequency sound waves to produce images of internal organs, tissues, and bodily structures. A transducer probe emits and receives sound waves that bounce off body structures and reflect back to the probe, creating echoes that are then processed into an image. This technology is widely used in various medical specialties, such as obstetrics and gynecology, cardiology, radiology, and vascular medicine, to diagnose a range of conditions and monitor the health of organs and tissues.

Therapeutic ultrasound, on the other hand, uses lower-frequency sound waves to generate heat within body tissues, promoting healing, increasing local blood flow, and reducing pain and inflammation. This modality is often used in physical therapy and rehabilitation settings to treat soft tissue injuries, joint pain, and musculoskeletal disorders.

In summary, ultrasonics in medicine refers to the use of high-frequency sound waves for diagnostic and therapeutic purposes, providing valuable information about internal body structures and facilitating healing processes.

I'm sorry for any confusion, but "physical phenomena" is not a term typically used in medical definitions. It is a broader term that refers to observable events or processes in the natural world that can be explained by physical laws and principles. This might include things like gravity, electromagnetism, or motion.

If you're looking for medical definitions related to physical phenomena, you might consider terms like "physical examination," which refers to the process of evaluating a patient's health status using observation, palpation, percussion, and auscultation to assess various body systems. Or, you might consider "physiological response," which refers to the body's natural reaction to a stimulus or change in environment.

If you meant something different by "physical phenomena" in a medical context, could you please provide more context or clarify your question? I'm here to help!

The liver is a large, solid organ located in the upper right portion of the abdomen, beneath the diaphragm and above the stomach. It plays a vital role in several bodily functions, including:

1. Metabolism: The liver helps to metabolize carbohydrates, fats, and proteins from the food we eat into energy and nutrients that our bodies can use.
2. Detoxification: The liver detoxifies harmful substances in the body by breaking them down into less toxic forms or excreting them through bile.
3. Synthesis: The liver synthesizes important proteins, such as albumin and clotting factors, that are necessary for proper bodily function.
4. Storage: The liver stores glucose, vitamins, and minerals that can be released when the body needs them.
5. Bile production: The liver produces bile, a digestive juice that helps to break down fats in the small intestine.
6. Immune function: The liver plays a role in the immune system by filtering out bacteria and other harmful substances from the blood.

Overall, the liver is an essential organ that plays a critical role in maintaining overall health and well-being.

Gastrointestinal transit refers to the movement of food, digestive secretions, and waste products through the gastrointestinal tract, from the mouth to the anus. This process involves several muscles and nerves that work together to propel the contents through the stomach, small intestine, large intestine, and rectum.

The transit time can vary depending on factors such as the type and amount of food consumed, hydration levels, and overall health. Abnormalities in gastrointestinal transit can lead to various conditions, including constipation, diarrhea, and malabsorption. Therefore, maintaining normal gastrointestinal transit is essential for proper digestion, nutrient absorption, and overall health.

Technetium Tc 99m Sulfur Colloid is a radioactive tracer used in medical imaging procedures, specifically in nuclear medicine. It is composed of tiny particles of sulfur colloid that are labeled with the radioisotope Technetium-99m. This compound is typically injected into the patient's body, where it accumulates in certain organs or tissues, depending on the specific medical test being conducted.

The radioactive emissions from Technetium Tc 99m Sulfur Colloid are then detected by a gamma camera, which produces images that can help doctors diagnose various medical conditions, such as liver disease, inflammation, or tumors. The half-life of Technetium-99m is approximately six hours, which means that its radioactivity decreases rapidly and is eliminated from the body within a few days.

Chromium is an essential trace element that is necessary for human health. It is a key component of the glucose tolerance factor, which helps to enhance the function of insulin in regulating blood sugar levels. Chromium can be found in various foods such as meat, fish, whole grains, and some fruits and vegetables. However, it is also available in dietary supplements for those who may not get adequate amounts through their diet.

The recommended daily intake of chromium varies depending on age and gender. For adults, the adequate intake (AI) is 20-35 micrograms per day for women and 35-50 micrograms per day for men. Chromium deficiency is rare but can lead to impaired glucose tolerance, insulin resistance, and increased risk of developing type 2 diabetes.

It's important to note that while chromium supplements are marketed as a way to improve insulin sensitivity and blood sugar control, there is limited evidence to support these claims. Moreover, excessive intake of chromium can have adverse effects on health, including liver and kidney damage, stomach irritation, and hypoglycemia. Therefore, it's recommended to consult with a healthcare provider before taking any dietary supplements containing chromium.

Nephelometry and turbidimetry are methods used in clinical laboratories to measure the amount of particles, such as proteins or cells, present in a liquid sample. The main difference between these two techniques lies in how they detect and quantify the particles.

1. Nephelometry: This is a laboratory method that measures the amount of light scattered by suspended particles in a liquid medium at a 90-degree angle to the path of the incident light. When light passes through a sample containing particles, some of the light is absorbed, while some is scattered in various directions. In nephelometry, a light beam is shone into the sample, and a detector measures the intensity of the scattered light at a right angle to the light source. The more particles present in the sample, the higher the intensity of scattered light, which correlates with the concentration of particles in the sample. Nephelometry is often used to measure the levels of immunoglobulins, complement components, and other proteins in serum or plasma.

2. Turbidimetry: This is another laboratory method that measures the amount of light blocked or absorbed by suspended particles in a liquid medium. In turbidimetry, a light beam is shone through the sample, and the intensity of the transmitted light is measured. The more particles present in the sample, the more light is absorbed or scattered, resulting in lower transmitted light intensity. Turbidimetric measurements are typically reported as percent transmittance, which is the ratio of the intensity of transmitted light to that of the incident light expressed as a percentage. Turbidimetry can be used to measure various substances, such as proteins, cells, and crystals, in body fluids like urine, serum, or plasma.

In summary, nephelometry measures the amount of scattered light at a 90-degree angle, while turbidimetry quantifies the reduction in transmitted light intensity due to particle presence. Both methods are useful for determining the concentration of particles in liquid samples and are commonly used in clinical laboratories for diagnostic purposes.

Silanes are a group of chemical compounds that contain silicon and hydrogen. The general formula for silanes is Si_xH_(2x+2), where x is a positive integer. Silanes are named after their parent compound, silane (SiH4), which contains one silicon atom and four hydrogen atoms.

Silanes are colorless and highly flammable gases at room temperature. They are typically prepared by the reaction of metal silicides with acids or by the reduction of halogenated silanes. Silanes have a variety of industrial applications, including as intermediates in the production of silicon-based materials such as semiconductors and polymers.

In medical contexts, silanes are not typically used directly. However, some silane-containing compounds have been investigated for their potential therapeutic uses. For example, some organosilanes have been shown to have antimicrobial properties and may be useful as disinfectants or in the development of medical devices. Other silane-containing materials have been studied for their potential use in drug delivery systems or as imaging agents in diagnostic procedures.

It is important to note that some silanes can be hazardous if not handled properly, and they should only be used by trained professionals in a controlled environment. Exposure to silanes can cause irritation to the eyes, skin, and respiratory tract, and prolonged exposure can lead to more serious health effects.

"Random allocation," also known as "random assignment" or "randomization," is a process used in clinical trials and other research studies to distribute participants into different intervention groups (such as experimental group vs. control group) in a way that minimizes selection bias and ensures the groups are comparable at the start of the study.

In random allocation, each participant has an equal chance of being assigned to any group, and the assignment is typically made using a computer-generated randomization schedule or other objective methods. This process helps to ensure that any differences between the groups are due to the intervention being tested rather than pre-existing differences in the participants' characteristics.

Gelatin is not strictly a medical term, but it is often used in medical contexts. Medically, gelatin is recognized as a protein-rich substance that is derived from collagen, which is found in the skin, bones, and connective tissue of animals. It is commonly used in the production of various medical and pharmaceutical products such as capsules, wound dressings, and drug delivery systems due to its biocompatibility and ability to form gels.

In a broader sense, gelatin is a translucent, colorless, flavorless food ingredient that is derived from collagen through a process called hydrolysis. It is widely used in the food industry as a gelling agent, thickener, stabilizer, and texturizer in various foods such as candies, desserts, marshmallows, and yogurts.

It's worth noting that while gelatin has many uses, it may not be suitable for vegetarians or those with dietary restrictions since it is derived from animal products.

'Medicago sativa' is the scientific name for a plant species more commonly known as alfalfa. In a medical context, alfalfa is often considered a herbal supplement and its medicinal properties include being a source of vitamins, minerals, and antioxidants. It has been used in traditional medicine to treat a variety of conditions such as kidney problems, asthma, arthritis, and high cholesterol levels. However, it's important to note that the effectiveness of alfalfa for these uses is not conclusively established by scientific research and its use may have potential risks or interactions with certain medications. Always consult a healthcare provider before starting any new supplement regimen.

A chemical model is a simplified representation or description of a chemical system, based on the laws of chemistry and physics. It is used to explain and predict the behavior of chemicals and chemical reactions. Chemical models can take many forms, including mathematical equations, diagrams, and computer simulations. They are often used in research, education, and industry to understand complex chemical processes and develop new products and technologies.

For example, a chemical model might be used to describe the way that atoms and molecules interact in a particular reaction, or to predict the properties of a new material. Chemical models can also be used to study the behavior of chemicals at the molecular level, such as how they bind to each other or how they are affected by changes in temperature or pressure.

It is important to note that chemical models are simplifications of reality and may not always accurately represent every aspect of a chemical system. They should be used with caution and validated against experimental data whenever possible.

Fluorescence microscopy is a type of microscopy that uses fluorescent dyes or proteins to highlight and visualize specific components within a sample. In this technique, the sample is illuminated with high-energy light, typically ultraviolet (UV) or blue light, which excites the fluorescent molecules causing them to emit lower-energy, longer-wavelength light, usually visible light in the form of various colors. This emitted light is then collected by the microscope and detected to produce an image.

Fluorescence microscopy has several advantages over traditional brightfield microscopy, including the ability to visualize specific structures or molecules within a complex sample, increased sensitivity, and the potential for quantitative analysis. It is widely used in various fields of biology and medicine, such as cell biology, neuroscience, and pathology, to study the structure, function, and interactions of cells and proteins.

There are several types of fluorescence microscopy techniques, including widefield fluorescence microscopy, confocal microscopy, two-photon microscopy, and total internal reflection fluorescence (TIRF) microscopy, each with its own strengths and limitations. These techniques can provide valuable insights into the behavior of cells and proteins in health and disease.

There is often a need for a certain average particle size for the ensemble of particles. The particle size of a spherical ... particle size Weight-based particle size equals the diameter of the sphere that has the same weight as a given particle. Useful ... volume of particle Area-based particle size Area-based particle size equals the diameter of the sphere that has the same ... see also grain size). There are several methods for measuring particle size and particle size distribution. Some of them are ...
... , particle size measurement, or simply particle sizing, is the collective name of the technical ... or mean size of the particles in a powder or liquid sample. Particle size analysis is part of particle science, and it is ... The particle size measurement is typically achieved by means of devices, called Particle Size Analyzers (PSA), which are based ... Having properly sized particles allow aggregate companies to create long-lasting roads and other products. Particle size ...
... to describe particle size distributions. It is still widely used in mineral processing to describe particle size distributions ... Particle size Sauter mean diameter - mathematical description of average particle size, based on an idealized sphere De ... particles above a certain size, and "passes" particles below that size, is universally used in presenting PSD data of all kinds ... In granulometry, the particle-size distribution (PSD) of a powder, or granular material, or particles dispersed in fluid, is a ...
Particle size describes the size of particles. Particle size may also refer to: Grain size (also called particle size), the ... Particle size distribution Particle (disambiguation) This disambiguation page lists articles associated with the title Particle ... size. If an internal link led you here, you may wish to change the link to point directly to the intended article. (Short ...
... analytical procedures such as particle size analysis. Particles are characterized by their individual size and shape, and by ... The space between particles in bulk means that the bulk density is less than the density of individual particles. The way in ... Particle technology is the "science and technology related to the handling and processing of particles and powders." This ... increasing size by flocculation, granulation, powder compaction, tableting, crystallization particle separation, such as ...
Owing to their size, UFPs are considered to be respirable particles. Contrary to the behaviour of inhaled PM10 and PM2.5, ... Ultrafine particles (UFPs) are particulate matter of nanoscale size (less than 0.1 μm or 100 nm in diameter). Regulations do ... W.G. Kreyling; M. Semmler-Behnke; W. Möller (2006). "Ultrafine particle-lung interactions: does size matter?". Journal of ... The important detail is the definition of size, stated: "The lower and upper sizes considered within this document are 7 nm and ...
The size distribution of particles to be collected is source specific. For example, particles produced by mechanical means ( ... This mechanism enables certain scrubbers to effectively remove the very tiny particles (less than 0.1 µm). In the particle size ... and submicrometre particles. The most critical sized particles are those in the 0.1 to 0.5 micrometres range because they are ... and a decrease in liquid-droplet size. However, collection by diffusion increases as particle size decreases. ...
2006). "Volume-exclusion effects in tethered-particle experiments: bead size matters". Physical Review Letters. 96 (8): 088306 ... Tethered particle motion (TPM) is a biophysical method that is used for studying various polymers such as DNA and their ... Both techniques give us the coordinate of the end-to-end vector in a resolution better than pixel size. Usually, the whole ... the pixel size on the camera may reduce the resolution of the measure. In order to extract the exact bead's position (that ...
Vision based particle sizing units obtain two dimensional images that are analyzed by computer software to obtain particle size ... Vision based particle sizing units obtain two dimensional images that are analyzed by computer software to obtain particle size ... Vision based systems are also used to measure dry particle size. With a vision based system quick and efficient particle sizing ... Remote particle counters can have a particle size detection range from 0.1 to 100 micrometres and may feature one of a variety ...
... the sharper is particle minimal size cutoff. During the heterogeneous nucleation process in the nucleation chamber, particles ... A condensation particle counter or CPC is a particle counter that detects and counts aerosol particles by first enlarging them ... This is of special importance because particles sized down from 50 nm are generally undetectable with conventional optical ... This amount grows (vapor pressure decreases) along with decrease in particle size, the critical diameter for which condensation ...
The aggregating suspension is forced through a narrow capillary particle counter and the size of each aggregate is being ... This dependence may reflect different particle properties or different ion affinities to the particle surface. Since particles ... At higher particle concentrations, the growing clusters may interlink, and form a particle gel. Such a gel is an elastic solid ... The larger the cluster size, the faster their settling velocity. Therefore, aggregating particles sediment and this mechanism ...
The relative size of a scattering particle is defined by its size parameter x, which is the ratio of its characteristic ... Scattering from any spherical particles with arbitrary size parameter is explained by the Mie theory. Mie theory, also called ... Light scattering by particles is the process by which small particles (e.g. ice crystals, dust, atmospheric particulates, ... so long as the size and critical dimensions of a particle are much larger than the wavelength of light. The light can be ...
Rudorf, Sofia; Joachim O. Radler (2012). "Self-assembly of stable monomolecular nucleic acid lipid particles with a size of 30 ... Stable nucleic acid lipid particles (SNALPs) are microscopic particles approximately 120 nanometers in diameter, smaller than ... The SNALPs ranged from 71 - 84 nm in size and were composed of synthetic cholesterol, phospholipid DSPC, PEG lipid PEGC-DMA, ... The SNALPs (around 81 nm in size here) were formulated by spontaneous vesiculation from a mixture of cholesterol, dipalmitoyl ...
... whereas particle damping is used to imply multiple auxiliary masses of small size in a cavity. The principle behind particle ... Through analyses, one can find the right kind, size and consistency of particles for the given application. Therefore, they are ... Particle damping is the use of particles moving freely in a cavity to produce a damping effect. Active and passive damping ... The discrete element method makes use of particle mechanics, whereby individual particles are modeled with 6-degrees of freedom ...
Hot particles contained in far-traveled nuclear fallout range in size from 10 nanometers to 20 micrometers, whereas those ... Due to their small size, hot particles may be swallowed, inhaled or enter the body by other means. Once lodged in the body, ... Hot particles at Dounreay Nuclear Monitor Danesi, Pier Roberto (19 May 2014). "Hot Particles & the Coldwar". IAEA Bulletin. 40 ... Health Effects of Alpha-emitting Particles in the Respiratory Tract: Report of Ad Hoc Committee on 'Hot Particles' of the ...
Sivarupan, T.; Taylor, J. A.; Cáceres, C. H. (2014). Effect of Si and Cu Content on the Size of Intermetallic Phase Particles ... Effect of Si and Cu Content on the Size of Intermetallic Phase Particles in Al-Si-Cu-Mg-Fe Alloys. pp. 137-143. doi:10.1002/ ... "Effect of Si Content on the Size of Fe-Rich Intermetallic Particles in Al-xSi-0.8Fe Alloys". Materials Science Forum. 765: 107- ... The size of these phases depends on the secondary dendrite arm spacing, as well as the Si content of the alloy, of the primary ...
... whereas homogeneous particles are only surface-active. Twenty years later, a plethora of Janus particles of different sizes, ... A Janus particle size of 200 nm was found to deposit on the surface of fibers and were very efficient for the design of water- ... Variety of janus particles in sizes 10µm to 53µm in diameter are currently commercially available from Cospheric, who holds a ... Zwitterionic Janus particles do not behave like classical dipoles, since their size is much larger than the distance at which ...
Spraytec droplet size system Mastersizer laser diffraction systems Zetasizer particle size systems Wavelength Dispersive X-ray ... "Insitec Dry Particle Size Analyzersy". AZO Materials. "Particle Testing Authority (PTA) A Division Of Micromeritics Instrument ... Kwak, Byung-Man; Lee, Ji Eun; Ahn, Jang-Hyuk; Jeon, Tae-Hong (June 2009). "Laser diffraction particle sizing by wet dispersion ... "Entry-Level Particle Size and Zeta Potential Analyzer with Enhanced Capabilitiesy". AZO Materials. "Using Differential Scanning ...
Particle size < 5 μm. droplet transmission - small and usually wet particles that stay in the air for a short period of time. ... The size of the particles for droplet infections are > 5 μm. Organisms spread by droplet transmission include respiratory ... They infect others via the upper and lower respiratory tracts." The size of the particles for airborne infections need to be < ... Particle size > 5 μm. direct physical contact - touching an infected individual, including sexual contact indirect physical ...
The Brownian motion becomes progressively less prominent, as the particles grow in size or the viscosity of the medium ... As a result, the sol particles show random or zig-zag movements. This random or zig-zag motion of the colloidal particles in a ... Colloidal particles in a sol are continuously bombarded by the molecules of the dispersion medium on all sides. The impacts are ... Such random motion is visible under ultramicroscopes and for bigger particles even under ordinary microscopes. ...
On the other hand, the resolution of optical microscopy requires that the particle size investigated exceeds at least 100 nm. ... Particle deposition is the spontaneous attachment of particles to surfaces. The particles in question are normally colloidal ... For small particles and low salt, the diffuse layer will extend far beyond the particle, and thus create an exclusion zone ... particles, while the surfaces involved may be planar, curved, or may represent particles much larger in size than the ...
Particles are defined here per particle size analysis as particulate solids, and thereby not including atomic or sub-atomic ... The measurements that can be made include particle size, particle shape (morphology or shape analysis and grayscale or color, ... is a particle analysis technique that uses flow microscopy to quantify particles contained in a solution based on size. This ... If it is desired to look at a very wide range of particle size, this may mean that the sample would have to be fractionated ...
Also, the integration time step needs to be controlled because it will affect the resulting shape/size of the particle. Another ... Patchy particles range in valency from two (Janus particles) or higher. Patchy particles of valency three or more experience ... A third type of aggregation volume-bias move takes a particle I bonded to particle J and inserts it into a third particle. ... The placement of these patches on the surface of a particle promotes bonding with patches on other particles. Patchy particles ...
Particle size distribution. Distribution of silicate and aluminate phases. Reactivity of hydrating phases. Gypsum/hemihydrates ... Emulsion polymers are supplied as suspensions of polymer particles. They contain about 50% solids. Such particles can ... usually below 40 μm in average particle size, enable hydraulic cement slurries as low as 8 PpG (960 Kg/m^3) Gaseous extenders ... The smaller size of the Cl− ions causes a greater tendency to diffuse into the C-S-H membrane. Eventually the C-S-H membrane ...
Particle size: ≤20mm. Note: These indexes are the lowest requirements for the coal. Oil burner Gas burner Pulverized coal-fired ...
This produces silt particles whose size of 10-30 microns is determined by Moss defects. Production of silt-sized grains from ... It also corresponds to a Tanner gap in the distribution of particle sizes in sediments: Particles between 120 and 30 microns in ... Since most clay mineral particles are smaller than 2 microns, while most detrital particles between 2 and 63 microns in size ... Glacial loess has a typical particle size of about 25 microns. Desert loess contains either larger or smaller particles, with ...
As for sizing, the particles should be small enough so that response time of the particles to the motion of the fluid is ... Thus the particle size needs to be balanced to scatter enough light to accurately visualize all particles within the laser ... Due to the small size of the particles, the particles motion is dominated by stokes drag and settling or rising affects. In a ... When the particle concentration is so low that it is possible to follow an individual particle it is called Particle tracking ...
As the film thickness is reduced, the film becomes more and more orange peeled in texture due to the particle size and glass ... Most powder coatings have a particle size in the range of 2 to 50 μm, a softening temperature Tg around 80 °C, a melting ... The most important properties to consider are chemical composition and density; particle shape and size; and impact resistance ... combines the advantages of powder coatings and liquid coatings by dispersing very fine powders of 1-5 µm sized particles into ...
Particle size and formulation. Physicochemical factors. Drugs given by enteral administration may be subjected to significant ...
... has occurred if the apparent particle size is determined to be beyond the typical size range for colloidal particles. The ... There is an upper size-limit for the diameter of colloidal particles because particles larger than 1 μm tend to sediment, and ... it backscattered by the colloidal particles. The backscattering intensity is directly proportional to the average particle size ... If the apparent size of the particles increases due to them clumping together via aggregation, it will result in slower ...
NIOSH and MSHA conducted a joint survey to determine the range of coal particle sizes found in dust samples collected from ... Draft NIOSH document, "Recent Coal Dust Particle Size Surveys and the Implications for Mine Explosions;" 10/1/09 [PDF - 33,636 ... Subject: This report gives the results of recent coal dust particle size surveys and large-scale explosion tests and how this ... Given the results of the recent coal dust particle size survey and large-scale explosion tests, NIOSH recommends a new standard ...
There is often a need for a certain average particle size for the ensemble of particles. The particle size of a spherical ... particle size Weight-based particle size equals the diameter of the sphere that has the same weight as a given particle. Useful ... volume of particle Area-based particle size Area-based particle size equals the diameter of the sphere that has the same ... see also grain size). There are several methods for measuring particle size and particle size distribution. Some of them are ...
Paving the Way for New Drugs through Particle Perfection Do particles hold the power to pave the way for new drugs? In this ... such as particle size, zeta potential, and molecular weight. ... head of science and applications at Particle Works to find out ... Study demonstrates that age and exercise increases aerosol particle emission Researchers evaluated the impact of age, body mass ...
Significance and Use 3.1 When evaluating the particle size information, if the procedures of the data processing are not ... Standard Practice for Reporting Particle Size Characterization Data. Standard Practice for Reporting Particle Size ... 3.3 Reported particle size measurement is a function of both the actual particle dimension and shape factor as well as the ... Standard Practice for Reporting Particle Size Characterization Data Standard E1617 Standard Practice for Reporting Particle ...
500 measures nanoparticle and microparticle size, zeta potential, molecular mass and transmittance in dispersions and solutions ... Particle Size Analyzers. Particle Analysis at the Touch of a Button. Although particle systems can be complex, measuring them ... With Litesizer DIA 500, measure particle size and get shape information of Millions of particles in just a few seconds. In just ... Since the Litesizer DIA 500 is based on dynamic image analysis, it offers particle shape information alongside particle sizing ...
Particle size distribution and number concentration measurements have been made in the diluted exhaust of a medium-duty, ... Particle size distribution and number concentration measurements have been made in the diluted exhaust of a medium-duty, ... Citation: Abdul-Khalek, I., Kittelson, D., and Brear, F., "The Influence of Dilution Conditions on Diesel Exhaust Particle Size ... The Influence of Dilution Conditions on Diesel Exhaust Particle Size Distribution Measurements 1999-01-1142. ...
Catalysts, Catalysts & Chemicals, Ceramics, Ceramics, Clay, Geological & Soil Science, Mining & Materials, Particle Size, Sea ... Additive Manufacturing, API, Excipients, Metal Powders, Particle Size, Pharmaceuticals, Powder Flow, Powder Rheology, Powdered ...
... we reported the use of magnetic particles as temperature indicators in magnetic resonance imaging thermometry (tMRI). ... Earlier studies used micrometer sized ferrite particles in a proof-of-concept demonstration. However, such large particles ... Scanning transmission electron microscopy and X-ray diffraction showed that particles are crystalline and within a size range ... www.nist.gov/publications/nano-sized-ferrite-particles-magnetic-resonance-imaging-thermometry ...
Particle size of these components has a direct effect on mouth feel, flavor, and consistency of the final product. ... Bean paste is a milled bean product containing large sections of the seed coat along with varying sizes of ground cotyledons, ... Particle Size Analysis of Pinto Bean Paste Particle size of these components has a direct effect on mouth feel, flavor, and ... Particle size of these components has a direct effect on mouth feel, flavor, and consistency of the final product. To ensure a ...
Products » Particle Characterization » Particle Size Method Development and Validation Particle Size Method Development and ... In this webinar, guest speaker Joost Strasters will discuss particle size method development and validation in support of ...
... and particle size distribution in an infant upper airway cast model in order to determine the optimal particle size for ... and particle size distribution in an infant upper airway cast model in order to determine the optimal particle size for ... Particles available as LD for all simulated breathing pattern showed a particle size distribution with a MMAD of 2.4 microm and ... In vitro determination of the optimal particle size for nebulized aerosol delivery to infants J Aerosol Med. 2005 Summer;18(2): ...
Particle Sizing and Tracking. Facility: Materials Synthesis and CharacterizationCategory: Solution Based and Biomolecular ... Due to the instruments particle tracking methods, it is particularly useful for measurements in low particle concentration and ... Nuclear & Particle Physics *Collider-Accelerator *Physics *RIKEN BNL Research Center *Electron-Ion Collider ... The LM10 allows rapid analysis of the size distribution and concentration of different types of nanoparticles from tens of ...
Explore the LS 13 320 XR particle size analyzer and laser diffraction instrument for detection of multiple particle sizes in a ... Features of the LS 13 320 XR Particle Size Analyzer. Expanded the measurement range for a wider array of particle analysis. The ... For time savings during operating hours in QC or R&D laboratories LS 13 320 XR particle size analysis software enables ... Air Particle Counters for Cleanroom and Environmental Monitoring * Instruments *Air Particle Counters for Cleanroom and ...
Particle size analysis - Image analysis methods - Part 1: Static image analysis methods ... Particle size analysis. Image analysis methods. Part 1: Static image analysis methods. Status : Published (Under review) This ... ISO 13322-1:2014 is applicable to the analysis of images for the purpose of determining particle size distributions where the ... The particles are appropriately dispersed and fixed in the object plane of the instrument. The field of view may sample the ...
Spray theory is applied to develop a relation between spray size droplets and particle size after the drying phenomena takes ... 371c) Particle Size Control Using Model Predictive Control for a Spray Drying Process. Conference ... Consequently, particle size equations are then used to develop a mathematical model that can be implemented into a model ... Particle Size Control Using Model Predictive Control for a Spray Drying Process Christian Barreto-Hernández and Carlos ...
Robust, Reliable, Real-Time Particle Sizing. Malvern Insitec systems deliver the online continuous particle size analysis ... Insitec Wet particle size analyzers use laser diffraction technology to measure particles in the size range 0.1 to 2500 µm in ... on-line particle size analysis for automated milling control This video shows how Malvern Instruments Insitec particle size ... Insitec Dry particle size analyzers use laser diffraction technology to measure particles in the size range 0.1 to 2500 µm. ...
The averaged particle sizes, the standard deviation, and histograms of the particle sizes distributions were determined using ... The obtained particle sizes in Figure 4 were slightly smaller at low OH−/Pt as compared to the size reported for the reduction ... The size of the particles obtained from the reduction of Pt(acac)2 in presence of Na(acac) are consistent with the sizes ... The particles continued to grow, and quite broad particle size distributions were obtained after 90 min, see Figure 3. At an OH ...
Control microscopic particle motion with our findings for microfluidics applications. ... Discover the impact of beam size on directional flow of micro particles in fluid systems. ... Controlling the Flow of Microscopic Particles-The Role of Beam Size () Jitendra Bhatt, Ashok Kumar, Saiyed Nisar Ali Jaaffrey, ... J. Bhatt, A. Kumar, S. Jaaffrey and R. Singh, "Controlling the Flow of Microscopic Particles-The Role of Beam Size," Optics and ...
... a provider of particle size engineering technologies, with the aim of improving its early stage tech offering. ... Catalent to tap particle size engineering industry with Micron buy. By Zachary Brennan 17-Nov-2014. - Last updated on 17-Nov- ... as well as other particle size engineering techniques, enables effective and cost-efficient particle reduction of crystalline ... Particle size is inherently linked to dissolution and absorption rates of APIs within the body, which are both fundamental to ...
Step Size Optimization of LMS Algorithm Using Particle Swarm Optimization Algorithm in System Identification System ... LMS algorithm computes the filter coefficients and PSO search the optimal step-size adaptively. Because step-size influences on ... This paper combines Particle Swarm Optimization Algorithm and LMS algorithm to describe the application of a Particle Swarm ...
Single particle light interaction methods - Part 2: Light scattering liquid-borne particle counter ... The typical size range of particles measured by this method is between 0,1 µm and 10 µm in particle size. ... as well as the measurement of number and size distribution of particles in various liquids. The measured particle size using ... Determination of particle size distribution - Single particle light interaction methods - Part 2: Light scattering liquid-borne ...
Know the future scenario, forecast, and current trends in particle size analysis. ... The research insight on particle size analysis market highlights the growth strategies of the companies. ... The global particle size analysis market is projected to reach USD 596 million by 2028 from USD 446 million in 2023, at a CAGR ... In 2022, a higher share of the particle size analysis market was held by Spectris (UK), Danaher (US), and HORIBA (Japan). ...
The ASTM standard will set out a general approach to the particle size distribution measurement of powders, suspensions, or ... New Particle Size Distribution Measurement Standard Proposed. Article-New Particle Size Distribution Measurement Standard ... Particle size distribution is an important factor in the manufacture of many products, from cement to perfume. A proposed ASTM ... Applications in which particle size distribution is used to control final performance, saving time, yield, and money, include, ...
Future studies of LDL size should account for the strong inverse correlation of LDL subclasses. ... LDL particle subclasses, LDL particle size, and carotid atherosclerosis in the Multi-Ethnic Study of Atherosclerosis (MESA) ... size is associated with greater atherosclerotic risk did not adequately control for small and large LDL particle correlation. ... Future studies of LDL size should account for the strong inverse correlation of LDL subclasses. ...
... cm in size while the particles on the surface have a size distribution of a power-law form with shallower slopes at small sizes ... The slope of the size distribution outside the crater at small sizes differs from the slope of the size distribution on the ... We examine the size distribution of particles inside and outside an artificial impact crater (the SCI crater) based on the ... Thus, the particle size distributions inside and outside the SCI crater reveal that the subsurface layer beneath the SCI impact ...
... are two commonly used tools to measure particle and pore sizes and shapes at the nano scale. ... Nanoparticle size, size distribution, and particle shape are the key pieces of information obtained from SAXS. Samples may ... XRD / SAXS determine particle and pore sizes. Physical and chemical properties of nanoparticles and nanocrystalline materials ... Crystallite size is performed by measuring the broadening of a particular X-ray diffraction (XRD) peak in a diffraction pattern ...
LIQUID PARTICLE SIZE ANALYZERS. CANTY particle sizing analyzers have been engineered to offer the user a means by which a ... PHARMAFLOW PARTICLE SIZING SYSTEM. The Canty PHARMAFLOW™ has been engineered to analyze small volume samples for particle size ... Categories: Particle Sizing, Products Tags: LAB, PARTICLE SIZING, PAT, PHARMAFLOW, TA11500-1002 ... 2D particle size, shape and distribution. • Small sample size analysis down to 5mL. • Syringe pump for easy sample circulation ...
  • 3.2 Particle size characterization information can be reported in three levels of detail in order to satisfy user's needs. (astm.org)
  • In this webinar, guest speaker Joost Strasters will discuss particle size method development and validation in support of NanoCrystal Colloidal Dispersion ® formulation characterization. (horiba.com)
  • The instrument provides characterization of nanoparticle sizes and diffusion in liquids. (bnl.gov)
  • ASTM's committee on particle and spray characterization ( E29 ) is developing the proposed standard. (powderbulksolids.com)
  • Magnetic property characterization is of utmost importance prior to utilization of labeled cells and magnetic particles in medical applications and biotechnology. (confex.com)
  • Comparison between this method and fluorescence flow cytometry confirms the instrument's characterization of magnetic particles and labeled cells. (confex.com)
  • 1.3 This practice does not concern particle concentration information. (astm.org)
  • Particle size distribution and number concentration measurements have been made in the diluted exhaust of a medium-duty, turbocharged, aftercooled, direct-injection Diesel engine using a unique variable residence time micro-dilution system that allows systematic variation of dilution and sampling conditions, and a scanning mobility particle sizer (SMPS). (sae.org)
  • The LM10 allows rapid analysis of the size distribution and concentration of different types of nanoparticles from tens of nanometers to microns. (bnl.gov)
  • Due to the instrument's particle tracking methods, it is particularly useful for measurements in low particle concentration and for complex populations of particles. (bnl.gov)
  • ISO 21501-2:2007 describes a calibration and verification method for a light scattering liquid-borne particle counter (LSLPC), which is used to measure the size and particle number concentration of particles suspended in liquid. (iso.org)
  • The Canty PHARMAFLOW™ has been engineered to analyze small volume samples for particle size, shape and concentration. (jmcanty.com)
  • It has been observed under certain flow conditions that there is a measured increase in fine particle concentration at the center of the circulating fluidized bed riser just below the exit to the cyclone. (osti.gov)
  • He developed an assay that allows the quantification of low density lipoprotein particle size and concentration (known to the wider world as LDL cholesterol) based on a technique which determines the size of the particle based on physics. (apple.com)
  • Unlike traditional light scattering techniques, TRPS simultaneously measures either the size and zeta potential of individual particles, or individual particle size and concentration. (izon.com)
  • We demonstrated promising results for the use of an integrated EBP biomarker panel together with particle concentration for diagnosis of COVID-19 as well as a robust method for protein identification in EBPs. (lu.se)
  • Using a portable aerosol monitor device that analyses the concentration of suspended fine particles in air, the study measured concentrations of 2.5 micron sized particles in enclosed places. (who.int)
  • These conditions include a very low ionic strength (the particles are weakly charged), a relatively high temperature, and a low particle concentration. (lu.se)
  • The average degree of polymerization could be adjusted by a variation of the particle concentration. (lu.se)
  • Nanoparticles or nanomaterials are increasingly important due to their unique physical and chemical properties, such as particle size, zeta potential, and molecular weight. (news-medical.net)
  • The Litesizer DLS series leverages light-scattering technology to determine particle size, zeta potential, transmittance, molecular mass, and the refractive index of nano- and microparticles in liquid dispersions. (anton-paar.com)
  • Besides the determination of particle size, the Litesizer™ particle analyzers also offer other analysis options such as the determination of zeta potential, molecular mass, transmittance, and refractive index. (anton-paar.com)
  • Optimum pH for CMP wastewater was at pH 6 with zeta potential value of −10 mV and mean particle size of 180 d.nm. (inderscience.com)
  • Meanwhile, for fluoride-containing wastewater the optimum pH obtained was at pH 9 with zeta potential of 10 mV and mean particle size of 5,214 d.nm. (inderscience.com)
  • These two streams were combined together at their respective optimum pH and resulted a zeta potential value of 0.55 mV and mean particle size of 12,590 d.nm. (inderscience.com)
  • Findings: According to our Zeta potential measurements, the particles indeed carry a weak negative charge, presumably due to ion specific adsorption. (lu.se)
  • The light scattering method described in ISO 21501-2:2007 is based on single particle measurements. (iso.org)
  • The newly integrated pH sensor module in the dispersion bath is connected to the Laser Particle Sizer, enabling continuous pH monitoring during measurements and automatic data transfer to the software for documentation. (labmate-online.com)
  • Each particle measured is compared to a set of known calibration particles, ensuring the accuracy and repeatability of measurements. (izon.com)
  • This is because the presence of larger particles skews measurements towards the large side, and DLS struggles to resolve particles if they are too similar in size. (izon.com)
  • In this video, Zhibin Guo, application engineer at Bettersize Instruments Ltd presents the next generation of particle sizing, with Bettersize's powerful 2-In-1 particle size and shape analyzer, Bettersizer S3 Plus. (selectscience.net)
  • With different techniques, the Litesizer DLS series, PSA series, and the Litesizer DIA 500 cover the measurement of particle sizes from the lower nanometer to the millimeter range. (anton-paar.com)
  • The proposed standard should allow anyone that has a laser diffraction instrument for the measurement of particle size distribution to develop methods in a scientifically logical manner providing repeatability, reproducibility, and robustness," says ASTM International member Alan Rawle. (powderbulksolids.com)
  • The possibility that the steric inversion can become an experimental tool for the measurement of particle densities and shapes, along with their distributions, is discussed. (rsc.org)
  • Recently it was speculated that ultrafine particles may translocate from deposition sites in the lungs to systemic circulation. (cdc.gov)
  • In additional studies, the biokinetics of ultrafine particles and soluble 192Ir was studied after administra- tion by either gavage or intratracheal instillation or intravenous injection. (cdc.gov)
  • Sieve shakers automate the agitation of particles in a sample for separation and size determination. (globalgilson.com)
  • Dynamic Light Scattering Analysis for the Determination of the Particle Size of Iron-Carbohydrate Complexes. (bvsalud.org)
  • This light scattering intensity is then used to estimate the particle size distribution of colloidal particles. (izon.com)
  • Hypothesis: Colloidal particles that interact via a long-ranged repulsive barrier in combination with a very short-ranged attractive minimum can "polymerize" to form highly anisotropic structures. (lu.se)
  • With Litesizer DIA 500, you can also determine particle size and shape information while using either liquid, gravitational-fall, or compressed air dispersion units. (anton-paar.com)
  • Today, sieve analysis is used by scientists, civil engineers, and others to determine particle size distribution for many materials to meet QC/QA requirements. (globalgilson.com)
  • Article: Characterisation of nano-sized particles in chemical mechanical polishing wastewater Journal: International Journal of Environmental Engineering (IJEE) 2019 Vol.10 No.1 pp.33 - 46 Abstract: Treatment of chemical mechanical polishing (CMP) wastewater and fluoride-containing wastewater in semiconductor manufacturing are conventionally separated. (inderscience.com)
  • nano-sized particles in solution are not static, therefore light scattering intensity is not constant and fluctuations can be measured. (izon.com)
  • This is consistent with the claim that some particles are buried in fine particles of the subsurface origin included in ejecta from the SCI crater. (iac.es)
  • Thus, the particle size distributions inside and outside the SCI crater reveal that the subsurface layer beneath the SCI impact site is rich in fine particles with - 9 cm in size while the particles on the surface have a size distribution of a power-law form with shallower slopes at small sizes due to the deposition of fine ejecta from the subsurface layer. (iac.es)
  • Therefore, it is necessary to evaluate and control the emission of air pollutants such as fine particles (i.e. (witpress.com)
  • However, such large particles cannot be administered intravenously for in-vivo use. (nist.gov)
  • Another major benefit of acquiring PIDS data is that simple interpretation of raw data can quickly confirm if small particles are actually present, as large particles don't exhibit the differential signal shown by small particles. (beckman.com)
  • Compared to large particles, small particles will diffuse more quickly in solution, causing more rapid fluctuations in the intensity of light scattering. (izon.com)
  • State all numerical values in terms of SI units unless specific instrumentation software reports particle size information, including percentiles, indices, and distributions as tabulations and graphs using alternate units. (astm.org)
  • ISO 13322-1:2014 is applicable to the analysis of images for the purpose of determining particle size distributions where the velocity of the particles against the axis of the optical system of the imaging device is zero. (iso.org)
  • PSA instruments are the only particle size analyzers on the market that can be configured with fully integrated liquid and dry dispersion modes in one instrument. (anton-paar.com)
  • Control all particle size analyzers in the portfolio with this software. (anton-paar.com)
  • Engineered to withstand the rigors of the process environment, Insitec Dry particle size analyzers use laser diffraction technology to measure particles in the size range 0.1 to 2500 µm. (dksh.com)
  • CANTY particle sizing analyzers have been engineered to offer the user a means by which a liquid is analyzed while under varying pressures, temperatures and flow rates. (jmcanty.com)
  • The PSA series uses laser diffraction (LD) technology to measure the size of particles in both liquid dispersions and dry powders in the micro- and millimeter range. (anton-paar.com)
  • Scanning transmission electron microscopy and X-ray diffraction showed that particles are crystalline and within a size range of 10-30 nm. (nist.gov)
  • A proposed ASTM International standard ( WK45240 ) will set out a general approach to the particle size distribution measurement of powders, suspensions, or slurries using an appropriate wet or dry methodology by the laser diffraction technique. (powderbulksolids.com)
  • Crystallite size is performed by measuring the broadening of a particular X-ray diffraction (XRD) peak in a diffraction pattern associated with a particular planar reflection from within the crystal unit cell. (rigaku.com)
  • There is often a need for a certain average particle size for the ensemble of particles. (wikipedia.org)
  • This formula is only valid when all particles have the same density. (wikipedia.org)
  • D = 2 3 W 4 π d g 3 {\displaystyle D=2{\sqrt[{3}]{\frac {3W}{4\pi dg}}}} where D {\displaystyle D} : diameter of representative sphere W {\displaystyle W} : weight of particle d {\displaystyle d} : density of particle g {\displaystyle g} : gravitational constant Aerodynamic particle size Hydrodynamic or aerodynamic particle size equals the diameter of the sphere that has the same drag coefficient as a given particle. (wikipedia.org)
  • It was found that the directional flow depends upon the size of optical trap, the number density of particles in the solution and the time after the trap was created. (scirp.org)
  • Previous studies showing that smaller low-density lipoprotein (LDL) size is associated with greater atherosclerotic risk did not adequately control for small and large LDL particle correlation. (nih.gov)
  • Particle size is a notion introduced for comparing dimensions of solid particles (flecks), liquid particles (droplets), or gaseous particles (bubbles). (wikipedia.org)
  • 1.2 This practice applies to particle size measurement methods, devices, detail levels, and data formats for dry powders, and wet suspensions of solids, gels, or emulsion droplets. (astm.org)
  • Spray theory is applied to develop a relation between spray size droplets and particle size after the drying phenomena takes place. (aiche.org)
  • There are several methods for measuring particle size and particle size distribution. (wikipedia.org)
  • Technology such as dynamic image analysis (DIA) can make particle size distribution analyses much easier. (wikipedia.org)
  • The notion of particle size distribution reflects this polydispersity. (wikipedia.org)
  • We investigated the in vitro influence of breathing patterns on lung dose (LD) and particle size distribution in an infant upper airway cast model in order to determine the optimal particle size for nebulized aerosol delivery to infants. (nih.gov)
  • Particles available as LD for all simulated breathing pattern showed a particle size distribution with a MMAD of 2.4 microm and a geometric standard deviation (GSD) of 1.56. (nih.gov)
  • And with advanced automodality, no knowledge about particle size distribution (e.g., multiple fractions, narrow distribution) is needed prior to measurement in order to obtain a correct result. (beckman.com)
  • The intensity vs. scattering angle information from PIDS signals is incorporated into the standard algorithm from the intensity vs. scattering angle data from laser light scattering to give a continuous size distribution. (beckman.com)
  • Micronization, as well as other particle size engineering techniques, enables effective and cost-efficient particle reduction of crystalline formulations which can aid solubility of compounds and improve the uniform distribution of API within formulations. (outsourcing-pharma.com)
  • Instruments that conform to ISO 21501-2:2007 are used for the evaluation of the cleanliness of pure water and chemicals, as well as the measurement of number and size distribution of particles in various liquids. (iso.org)
  • The ASTM standard will set out a general approach to the particle size distribution measurement of powders, suspensions, or slurries. (powderbulksolids.com)
  • Particle size distribution is an important factor in the manufacture of many products, from cement to perfume. (powderbulksolids.com)
  • We examine the size distribution of particles inside and outside an artificial impact crater (the SCI crater) based on the images taken by the optical navigation camera onboard the Hayabusa2 spacecraft. (iac.es)
  • The circumferential variation in particle size distribution inside the SCI crater is recognized and we interpret that major circumferential variation is caused by the large boulders inside the SCI crater that existed prior to the impact. (iac.es)
  • The size distribution inside the SCI crater also shows that the subsurface layer beneath the SCI impact site had a large number of particles with a characteristic size of - 9 cm, which is consistent with the previous evaluations. (iac.es)
  • On the other hand, the size distribution outside the SCI crater exhibits the radial variation, implying that the deposition of ejecta from the SCI crater is involved. (iac.es)
  • The slope of the size distribution outside the crater at small sizes differs from the slope of the size distribution on the surface of Ryugu by approximately 1 or slightly less. (iac.es)
  • Finally, we discuss a process responsible for this difference in particle size distribution between the surface and the subsurface layers. (iac.es)
  • Rigaku NANOPIX mini is the world's first benchtop small angle X-ray scattering (SAXS) system that is engineered to deliver automatic nanoparticle size distribution analysis for both quality control (QC) and research and development (R&D) applications. (rigaku.com)
  • Nanoparticle size, size distribution, and particle shape are the key pieces of information obtained from SAXS. (rigaku.com)
  • Canty InFlow technology images the fluid to capture color and particle size, shape and distribution if desired. (jmcanty.com)
  • In addition, multiparametric analysis software displaying 23 parameters per event provides magnetic particle or cell quality information by calculating the size distribution, overall susceptibility, effective magnetic volume, etc. and displaying parameters in multiple dimensions. (confex.com)
  • Houze, R. A., P. V. Hobbs, and P. H. Herzegh, 1979: Size distribution of precipitation particles in frontal clouds. (ametsoc.org)
  • Tunable Resistive Pulse Sensing (TRPS) offers an alternative route, and a clearer window into your true particle size distribution. (izon.com)
  • Figure 1: Particle size distribution of lipid nanoparticles, as measured using different techniques. (izon.com)
  • Although DLS data can be converted into a volume-based or number-based size distribution using sophisticated data processing techniques, the approach is often not sufficiently sensitive or accurate for this to be particularly insightful. (izon.com)
  • Dynamic light scattering (DLS) has emerged as a fundamental method to determine intact particle size and distribution. (bvsalud.org)
  • However, challenges still remain regarding the standardization of methodologies across laboratories , specific modifications required for individual iron - carbohydrate products, and how the size distribution can be best described. (bvsalud.org)
  • Herein, we detail a robust and easily reproducible protocol to measure the size and size distribution of the iron - carbohydrate complex, iron sucrose , using the Z-average and polydispersity index. (bvsalud.org)
  • Particle per exhaled volume (PEV) and size distribution profiles were compared. (lu.se)
  • RESULTS: Significant increases in PEV and changes in size distribution profiles of EBPs was seen in COV-POS and COV-NEG compared to healthy controls. (lu.se)
  • This line of research can yield low-cost and real time particle size analysis. (wikipedia.org)
  • Typically used in sieve analysis, as shape hypothesis (sieve's mesh size as the sphere diameter). (wikipedia.org)
  • There is an international standard on presenting various characteristic particle sizes, the ISO 9276 (Representation of results of particle size analysis). (wikipedia.org)
  • Since the Litesizer DIA 500 is based on dynamic image analysis, it offers particle shape information alongside particle sizing. (anton-paar.com)
  • Expanded the measurement range for a wider array of particle analysis. (beckman.com)
  • Enhanced Polarization Intensity Differential Scattering (PIDS) technology enables more precise raw data detection and increased detector sensitivity of vertical and horizontal polarized scattered light for sub-μm particle size analysis-a measurement quality previously unavailable. (beckman.com)
  • For time savings during operating hours in QC or R&D laboratories LS 13 320 XR particle size analysis software enables customized SOM creation. (beckman.com)
  • Malvern Insitec systems deliver the online continuous particle size analysis needed for efficient, cost-effective monitoring and control of industrial processes. (dksh.com)
  • The global particle size analysis market is projected to reach USD 596 million by 2028 from USD 446 million in 2023, at a CAGR of 6.0% from 2023 to 2028. (marketsandmarkets.com)
  • These competitors have utilized various strategies to increase their market share in the particle size analysis market, including acquisitions, agreements, partnerships, and product releases. (marketsandmarkets.com)
  • In 2022, a higher share of the particle size analysis market was held by Spectris (UK), Danaher (US), and HORIBA (Japan). (marketsandmarkets.com)
  • With its diversified growth approaches and a strong focus on meeting customer needs, the company is anticipated to experience significant growth in the particle size analysis market. (marketsandmarkets.com)
  • Horiba, Ltd. is a major player in the global particle size analysis market. (marketsandmarkets.com)
  • In the scientific segment, company offers particle size analysis products. (marketsandmarkets.com)
  • It offers microscopic, non-destructive viewing and provides particle size analysis with two dimensional results when used in conjunction with the CantyVisionClient™ Software. (jmcanty.com)
  • The purpose of this paper is to develop a generalized treatment for the retention (steric) inversion phenomenon in field-flow fractionation (FFF) and to examine the implications of this inversion on particle analysis by FFF. (rsc.org)
  • The inversion phenomenon can complicate particle size analysis for particle populations with diameters that span the inversion diameter, d i (≈ 1 µm). (rsc.org)
  • Part I: Treatment of bimodal size spectra and case study analysis. (ametsoc.org)
  • Proteomic analysis of exhaled breath particles (EBPs) in contrast, are non-invasive, sample directly from the pathological source and presents as a novel explorative and diagnostical tool. (lu.se)
  • Recently, we reported the use of magnetic particles as temperature indicators in magnetic resonance imaging thermometry (tMRI). (nist.gov)
  • In this method, the brightness of the MR image changes with temperature due to a temperature-dependent magnetic field inhomogeneity caused by the dipolar field of the magnetic particles. (nist.gov)
  • A particle tracking velocimeter is employed to directly measure the magnetophoretic mobility, size and other morphology parameters of magnetic particles and labeled cells. (confex.com)
  • The trajectories of magnetic particles in a uniform isodynamic magnetic field are recorded using a high-definition camera/microscope system for image collection. (confex.com)
  • Physical and chemical properties of nanoparticles and nanocrystalline materials are strongly influenced by their particle size, shape and structural strain, including rheology, surface area, cation exchange capacity, solubility, reflectivity, etc. (rigaku.com)
  • It is proposed that positively charged particles present in fluoride-containing wastewater become adsorbed on the surface of silica nanoparticles in CMP wastewater in which act as nuclei and enhances flocculation since repulsive force of both wastewater is decreased. (inderscience.com)
  • Tunable Resistive Pulse Sensing (TRPS) is a high-resolution technique for measuring nanoparticles, specifically designed to analyse particles in the size range of 40 nm to 11 µm. (izon.com)
  • Particles of any solid substance, generally under 30 microns in size, often noted as PM30. (bvsalud.org)
  • Insitec systems measure particles in the size range 0.1 micron to 2.5 mm. (dksh.com)
  • Last week CDMO Catalent acquired Micron Technologies, a provider of particle size engineering technologies, with the aim of improving its early stage tech offering. (outsourcing-pharma.com)
  • Catalent will add Micron Technologies' particle size engineering capabilities to increase its partnerships with more pharma companies at the earliest stages of the development process. (outsourcing-pharma.com)
  • Sizing down to 0.7 micron is possible with the high magnification optics and high intensity light source. (jmcanty.com)
  • therefore the measured particle size is equivalent to the calibration particles in pure water. (iso.org)
  • Useful as hypothesis in centrifugation and decantation, or when the number of particles can be estimated (to obtain average particle's weight as sample weight divided by the number of particles in the sample). (wikipedia.org)
  • This could lead to accumulation and potentially adverse reactions in critical organs such as liver, heart, and even brain, consistent with the hypothesis that ultrafine insoluble particles may play a role in the onset of cardiovas- cular diseases, as growing evidence from epidemiological studies suggests. (cdc.gov)
  • Due to the nature of this single-particle approach, TRPS provides a level of insight that is unattainable with DLS, which is a bulk analytical technique that characterises multiple particles at once (Figure 1). (izon.com)
  • This practice does not pertain to liquid particles. (astm.org)
  • Passarelli, R. E., 1978: Theoretical and observational study of snow-sized spectra and snow flake aggregation. (ametsoc.org)
  • With Litesizer DIA 500, measure particle size and get shape information of Millions of particles in just a few seconds. (anton-paar.com)
  • The Laser Particle Sizer ANALYSETTE 22 NeXT with wet dispersion unit. (labmate-online.com)
  • The Fritsch A-22 NeXT Nano , a Laser Particle Sizer, excels in accuracy and sensitivity, covering a wide measuring range from 0.01 to 3800 μm. (labmate-online.com)
  • These results show that experimental dilution conditions must be reported in detail if particle number concentrations are to be compared and interpreted. (sae.org)
  • In the present study, the NP size resulting from the thermal reduction of the precursors H 2 PtCl 6 , H 2 Pt(OH) 6 , or Pt(acac) 2 in presence of the bases NaOH or Na(acac) at different concentrations is studied. (mdpi.com)
  • In all methods the size is an indirect measure, obtained by a model that transforms, in abstract way, the real particle shape into a simple and standardized shape, like a sphere (the most usual) or a cuboid (when minimum bounding box is used), where the size parameter (ex. (wikipedia.org)
  • 3.3 Reported particle size measurement is a function of both the actual particle dimension and shape factor as well as the particular physical or chemical properties of the particle being measured. (astm.org)
  • It was found that the shape and size of phosphor particles play important role for the phosphorescence properties. (hindawi.com)
  • The shape and size of the phosphor particles may depend on the crystal type and particle size of the starting materials as well as the method of preparation. (hindawi.com)
  • When the particle size reaches the nanoscale, new properties are appeared like the blue shift of emission intensity [ 9 ]. (hindawi.com)
  • It can be suggested that stable combustion should be performed under suitable conditions to control air pollutants emitted from biomass fuel, although small-size combustors are still not regulated to control PM 2.5 emission. (witpress.com)
  • Although particle systems can be complex, measuring them doesn't have to be. (anton-paar.com)
  • When it comes to measuring particle size in the field of nanomedicine, how do TRPS and DLS compare? (izon.com)
  • Measuring nanoparticle size is fundamental to biotherapeutic development. (izon.com)
  • The WHO Regional Office for the Eastern Mediterranean collaborated with the Johns Hopkins Bloomberg School of Public Health's Institute for Global Tobacco Control and the Roswell Park Cancer Institute (United States) to conduct a pilot study measuring second-hand smoke particles in selected public places in the capital cities of 11 countries of the Region: Bahrain, Djibouti, Egypt, Islamic Republic of Iran, Iraq, Jordan, Lebanon, Oman, Pakistan, Sudan and Yemen. (who.int)
  • The particle size of a spherical object can be unambiguously and quantitatively defined by its diameter. (wikipedia.org)
  • The above quantitative definition of particle size cannot be applied to non-spherical particles. (wikipedia.org)
  • There are several ways of extending the above quantitative definition to apply to non-spherical particles. (wikipedia.org)
  • X. C. Yao, Z. L. Li, H. L. Guo, B. Y. Cheng and D. Z. Zhang, "Effects of Spherical Aberration on Optical Trapping Forces for Rayleigh Particles," Chinese Physics Letters, Vol. 18, No. 3, 2001, pp. 432-434. (scirp.org)
  • E. Fallman and O. Axner, "Influence of a Glass-Water Interface on the On-Axis Trapping of Micrometer-Sized Spherical Objects by Optical Tweezers," Applied Optics, Vol. 42, No. 19, 2003, pp. 3915-3926. (scirp.org)
  • Another complexity in defining particle size in a fluid medium appears for particles with sizes below a micrometre. (wikipedia.org)
  • We suggest controlling the motion of microscopic particles in a fluid by varying a simple parameter like beam size for microfluidics applications. (scirp.org)
  • A proper vibration setting creates a fluid, moving bed of the sample material, evenly distributing material across the mesh as it lifts and reorients particles to ensure the maximum number of passing opportunities. (globalgilson.com)
  • The occurrence of segregation in the gravitational flow of particles on the surface of Ryugu is plausible. (iac.es)
  • Researchers evaluated the impact of age, body mass index, and gender on aerosol particles. (news-medical.net)
  • Volume-based particle size Volume-based particle size equals the diameter of the sphere that has the same volume as a given particle. (wikipedia.org)
  • D = 2 3 V 4 π 3 {\displaystyle D=2{\sqrt[{3}]{\frac {3V}{4\pi }}}} where D {\displaystyle D} : diameter of representative sphere V {\displaystyle V} : volume of particle Area-based particle size Area-based particle size equals the diameter of the sphere that has the same surface area as a given particle. (wikipedia.org)
  • D = 4 A π 2 {\displaystyle D={\sqrt[{2}]{\frac {4A}{\pi }}}} where D {\displaystyle D} : diameter of representative sphere A {\displaystyle A} : surface area of particle In some measures the size (a length dimension in the expression) can't be obtained, only calculated as a function of another dimensions and parameters. (wikipedia.org)
  • Weight-based (spheroidal) particle size Weight-based particle size equals the diameter of the sphere that has the same weight as a given particle. (wikipedia.org)
  • One alternative is to shift d i to one end of the particle diameter range through intentional variations in operating parameters. (rsc.org)
  • Size selective growth of palladium nano-particles 2-7 nm in diameter on the surface of carbon nano-onions (CNOs) (derived from catalytic cracking of methane) in water involves pretreating the CNOs with p -phosphonic acid calix[8]arene then H 2 PdCl 4 followed by dynamic thin film processing under hydrogen in a vortex fluidic device. (rsc.org)
  • This can be achieved by lowering the average particle diameter to 80-90 nm. (adhesivesmag.com)
  • The combination of a nonionic/anionic hydrophilic tail on Hitenol BC-10 (Figure 3) produces the desired particle diameter. (adhesivesmag.com)
  • The combination of small particle diameter and a polymerizable surfactant has produced latex with good blush resistance over a range of test conditions. (adhesivesmag.com)
  • PM 2.5 - particles below 2.5 µm in aerodynamic diameter) due to the poor combustion performance of small-size combustors. (witpress.com)
  • Ultrafine 192Ir radio-labeled iridium particles (15 and 80 nm count median diameter) generated by spark discharging were inhaled by young adult, healthy, male WKY rats ventilated for 1 h via an endotracheal tube. (cdc.gov)
  • Other FFF strategies for analysing particle populations that overlap d i are noted. (rsc.org)
  • In this report, we demonstrate the use of nanoscale Co0.3Zn0.7Fe2O4 ferrite particles as temperature sensors for tMRI. (nist.gov)
  • The appropriate sieve shaker agitation method is determined by the particle size, minimum size to be separated, wet or dry sieving, and sample characteristics such as resistance to agglomeration and static electric factors. (globalgilson.com)
  • Mechanical Sieve Shakers have motor-driven, or occasionally manually-driven mechanisms to agitate and reorient particles with orbital, circular, or rotational motions. (globalgilson.com)
  • Some mechanical shakers also use repetitive tapping of the sieve stack to further reorient particles, aid passage of near-size fines, and prevent blinding and dead spots on the mesh surface. (globalgilson.com)
  • Vibratory Sieve Shakers use quiet electromagnetic energy to agitate particles. (globalgilson.com)
  • An important criterion is that the particle size is large enough to admit structural analyses via confocal laser scanning microscopy (CLSM). (lu.se)
  • and C. M. R. Platt, 1984: A parameterization of the particle size spectrum of ice clouds in terms of ambient temperature and ice water content. (ametsoc.org)
  • The intensity of Brownian motion is affected by particle size (as well as other factors such as temperature) and affects how light is scattered by the particles in solution. (izon.com)
  • Furthermore, by ensuring that the ionic strength is very low, with a Debye length similar to the particle size, we could use temperature to control the hydrophobicity of the grafted PEG layer, and thus the strength of the short-ranged attraction. (lu.se)
  • Fritsch Laser Particle Sizers ANALYSETTE 22 NeXT adhere to a smart, modular concept, allowing customers to purchase only the necessary components and scale their sizing capabilities as needed. (labmate-online.com)
  • However, there is a lack of regulations or laws to control air pollution from these small-size combustors in Japan. (witpress.com)
  • As a result, the position of the particle surface becomes uncertain. (wikipedia.org)
  • If a 300-nm particle is stable with 1.75% surfactant, an 85-nm particle would require 6.2% surfactant based on just the surface area. (adhesivesmag.com)
  • During wk 1 after inhalation particles were predominantly cleared via air- ways into the gastrointestinal tract and feces. (cdc.gov)
  • Flow of micro particles and fluids is important in many microscopic systems. (scirp.org)
  • J. Bhatt, A. Kumar, S. Jaaffrey and R. Singh, "Controlling the Flow of Microscopic Particles-The Role of Beam Size," Optics and Photonics Journal , Vol. 2 No. 4, 2012, pp. 294-299. (scirp.org)
  • Each particle causes a momentary disruption in the electrical current of the pore, forming a blockade. (izon.com)
  • each particle is measured as it passes through the pore one at a time. (izon.com)
  • Experiments: In this work, we specifically synthesize poly (ethylene glycol) (PEG) chains, grafted onto poly(styrene) (PS) particles in aqueous solution, and adjust the conditions so that strongly anisotropic and isolated polymer-like clusters are formed. (lu.se)
  • Tietjen unveiled its new online particle size controller, OPC, which measures the particle size of free-flowing bulk solids inline, providing continuous, user-defined control of the grist spectrum between 160 and 6000 μm. (aquafeed.com)
  • Spray drying its more effective producing smaller and controllable particle size than its counterpart, jet-milling. (aiche.org)
  • Given the results of the recent coal dust particle size survey and large-scale explosion tests, NIOSH recommends a new standard of 80% total incombustible content be required in the intake airways of bituminous coal mines. (cdc.gov)
  • This report gives the results of recent coal dust particle size surveys and large-scale explosion tests and how this data impacts rock dusting requirements for underground coal mines. (cdc.gov)
  • Sample acquisition, handling and preparation can also affect the reported particle size results. (astm.org)
  • The use of a polymerizable surfactant improves the particle stability and reduces the amount of free hydrophilic material available. (adhesivesmag.com)
  • ross cutting saw bladesare designed for tear-free cutting across grain and sizing dry solid woods, timber products coated with plastics, paper and veneered timber products and laminated woods with producing smooth, free-free cuts. (phrmg.org)
  • Moreover, major players are constantly introducing technologically advanced products with improved efficiency that supports growth of the embolization particle market. (coherentmarketinsights.com)
  • The National Institute for Occupational Safety and Health (NIOSH) and MSHA conducted a joint survey to determine the range of coal particle sizes found in dust samples collected from intake and return airways of U.S. coal mines. (cdc.gov)
  • The typical size range of particles measured by this method is between 0,1 µm and 10 µm in particle size. (iso.org)
  • The system offers zoom and focus ability, variable lighting, and multiple objective lens packages to cover a range of sizes. (jmcanty.com)
  • When a particle becomes that small, the thickness of the interface layer becomes comparable with the particle size. (wikipedia.org)
  • board , parallel completely.no wrinkle.no burts.the surface's roughness RA is0.8um Past muster The size of sheet iron and cutting groove The side length of test piece tested by milscale is 0.75inch×0.75inch.the average thickness of test piece CX-430 is 0. (phrmg.org)
  • So far, small-size combustors have been characterized by their structural simplicity and low cost. (witpress.com)
  • The process of drying pharmaceuticals mixtures is always a challenge in terms of controlling particle size and optimizing control parameters. (aiche.org)
  • Because step-size influences on the stability and performance, so it is necessary to apply method that can control it. (techrepublic.com)