Compounds consisting of glucosamine and lactate joined by an ether linkage. They occur naturally as N-acetyl derivatives in peptidoglycan, the characteristic polysaccharide composing bacterial cell walls. (From Dorland, 28th ed)
Peptidoglycan is a complex, cross-linked polymer of carbohydrates and peptides that forms the rigid layer of the bacterial cell wall, providing structural support and protection while contributing to the bacterium's susceptibility or resistance to certain antibiotics.
SUGARS containing an amino group. GLYCOSYLATION of other compounds with these amino sugars results in AMINOGLYCOSIDES.
'Sugar acids' are organic compounds derived from sugars through various processes, characterized by the presence of both a carboxyl group (-COOH) and a hydroxyl group (-OH) in their molecular structure, often found in food sources like fruits and used in industries such as food, pharmaceutical, and cosmetic.
The outermost layer of a cell in most PLANTS; BACTERIA; FUNGI; and ALGAE. The cell wall is usually a rigid structure that lies external to the CELL MEMBRANE, and provides a protective barrier against physical or chemical agents.
A group of compounds that are derivatives of heptanedioic acid with the general formula R-C7H11O4.
Hexosamines are amino sugars that are formed by the substitution of an amino group for a hydroxyl group in a hexose sugar, playing crucial roles in various biological processes such as glycoprotein synthesis and protein folding.
Glucosamine is a naturally occurring amino sugar that plays a crucial role in the formation and maintenance of various tissues, particularly in the synthesis of proteoglycans and glycosaminoglycans, which are essential components of cartilage and synovial fluid in joints.
Diaminopimelic acid (DAP) is a crucial intermediate in the biosynthesis of L-lysine, an essential amino acid, and is also a significant component of peptidoglycan, a cell wall polymer in bacteria.
A basic enzyme that is present in saliva, tears, egg white, and many animal fluids. It functions as an antibacterial agent. The enzyme catalyzes the hydrolysis of 1,4-beta-linkages between N-acetylmuramic acid and N-acetyl-D-glucosamine residues in peptidoglycan and between N-acetyl-D-glucosamine residues in chitodextrin. EC 3.2.1.17.
A microanalytical technique combining mass spectrometry and gas chromatography for the qualitative as well as quantitative determinations of compounds.
A methylpentose whose L- isomer is found naturally in many plant glycosides and some gram-negative bacterial lipopolysaccharides.
An analytical technique for resolution of a chemical mixture into its component compounds. Compounds are separated on an adsorbent paper (stationary phase) by their varied degree of solubility/mobility in the eluting solvent (mobile phase).
Peptidoglycan immunoadjuvant originally isolated from bacterial cell wall fragments; also acts as pyrogen and may cause arthritis; stimulates both humoral and cellular immunity.
Conjugated proteins in which mucopolysaccharides are combined with proteins. The mucopolysaccharide moiety is the predominant group with the protein making up only a small percentage of the total weight.
A genus of gram-positive, spherical bacteria found in soils and fresh water, and frequently on the skin of man and other animals.
An order of gram-positive, primarily aerobic BACTERIA that tend to form branching filaments.
Heat and stain resistant, metabolically inactive bodies formed within the vegetative cells of bacteria of the genera Bacillus and Clostridium.
Polysaccharides found in bacteria and in capsules thereof.
The presence of bacteria, viruses, and fungi in the soil. This term is not restricted to pathogenic organisms.
Organic compounds that generally contain an amino (-NH2) and a carboxyl (-COOH) group. Twenty alpha-amino acids are the subunits which are polymerized to form proteins.
The largest class of organic compounds, including STARCH; GLYCOGEN; CELLULOSE; POLYSACCHARIDES; and simple MONOSACCHARIDES. Carbohydrates are composed of carbon, hydrogen, and oxygen in a ratio of Cn(H2O)n.
An aldohexose that occurs naturally in the D-form in lactose, cerebrosides, gangliosides, and mucoproteins. Deficiency of galactosyl-1-phosphate uridyltransferase (GALACTOSE-1-PHOSPHATE URIDYL-TRANSFERASE DEFICIENCY DISEASE) causes an error in galactose metabolism called GALACTOSEMIA, resulting in elevations of galactose in the blood.
One of the three domains of life (the others being Eukarya and ARCHAEA), also called Eubacteria. They are unicellular prokaryotic microorganisms which generally possess rigid cell walls, multiply by cell division, and exhibit three principal forms: round or coccal, rodlike or bacillary, and spiral or spirochetal. Bacteria can be classified by their response to OXYGEN: aerobic, anaerobic, or facultatively anaerobic; by the mode by which they obtain their energy: chemotrophy (via chemical reaction) or PHOTOTROPHY (via light reaction); for chemotrophs by their source of chemical energy: CHEMOLITHOTROPHY (from inorganic compounds) or chemoorganotrophy (from organic compounds); and by their source for CARBON; NITROGEN; etc.; HETEROTROPHY (from organic sources) or AUTOTROPHY (from CARBON DIOXIDE). They can also be classified by whether or not they stain (based on the structure of their CELL WALLS) with CRYSTAL VIOLET dye: gram-negative or gram-positive.
A non-essential amino acid that occurs in high levels in its free state in plasma. It is produced from pyruvate by transamination. It is involved in sugar and acid metabolism, increases IMMUNITY, and provides energy for muscle tissue, BRAIN, and the CENTRAL NERVOUS SYSTEM.
A species of gram-positive bacteria that is a common soil and water saprophyte.
Techniques used to separate mixtures of substances based on differences in the relative affinities of the substances for mobile and stationary phases. A mobile phase (fluid or gas) passes through a column containing a stationary phase of porous solid or liquid coated on a solid support. Usage is both analytical for small amounts and preparative for bulk amounts.
Constituent of 30S subunit prokaryotic ribosomes containing 1600 nucleotides and 21 proteins. 16S rRNA is involved in initiation of polypeptide synthesis.
An acute purulent infection of the meninges and subarachnoid space caused by Streptococcus pneumoniae, most prevalent in children and adults over the age of 60. This illness may be associated with OTITIS MEDIA; MASTOIDITIS; SINUSITIS; RESPIRATORY TRACT INFECTIONS; sickle cell disease (ANEMIA, SICKLE CELL); skull fractures; and other disorders. Clinical manifestations include FEVER; HEADACHE; neck stiffness; and somnolence followed by SEIZURES; focal neurologic deficits (notably DEAFNESS); and COMA. (From Miller et al., Merritt's Textbook of Neurology, 9th ed, p111)
A genus of BACILLACEAE that are spore-forming, rod-shaped cells. Most species are saprophytic soil forms with only a few species being pathogenic.

Bacterial peptidoglycan polysaccharides in sterile human spleen induce proinflammatory cytokine production by human blood cells. (1/137)

Peptidoglycan (PG) is the major component of the cell wall of gram-positive bacteria. In vitro, PG isolated from conventional bacterial cultures can induce secretion of proinflammatory cytokines by human monocytes, indicating that PG may be involved in immune responses against infections by gram-positive bacteria. To investigate the biologic activity of PG in human tissues, an improved method was developed to isolate significant amounts of PG from sterile human spleen tissue. Biochemical analysis demonstrated that PG isolated from human spleen is largely intact. Human whole blood cell cultures were able to produce the proinflammatory cytokines tumor necrosis factor-alpha and interleukin-1 and -6 after stimulation with PG isolated from human spleen. Cytokine induction was not sensitive to inhibition by polymyxin B, in contrast to lipopolysaccharide. Collectively, the data show that intact PG in sterile human tissue is biologically active and may induce local proinflammatory cytokine production.  (+info)

Peptidoglycan hydrolase LytF plays a role in cell separation with CwlF during vegetative growth of Bacillus subtilis. (2/137)

Peptidoglycan hydrolase, LytF (CwlE), was determined to be identical to YhdD (deduced cell wall binding protein) by zymography after insertional inactivation of the yhdD gene. YhdD exhibits high sequence similarity with CwlF (PapQ, LytE) and p60 of Listeria monocytogenes. The N-terminal region of YhdD has a signal sequence followed by five tandem repeated regions containing polyserine residues. The C-terminal region corresponds to the catalytic domain, because a truncated protein without the N-terminal region retained cell wall hydrolase activity. The histidine-tagged LytF protein produced in Escherichia coli cells hydrolyzed the linkage of D-gamma-glutamyl-meso-diaminopimelic acid in murein peptides, indicating that it is a D,L-endopeptidase. Northern hybridization and primer extension analyses indicated that the lytF gene was transcribed by EsigmaD RNA polymerase. Disruption of lytF led to slightly filamentous cells, and a lytF cwlF double mutant exhibited extraordinary microfiber formation, which is similar to the cell morphology of the cwlF sigD mutant.  (+info)

Analysis of peptidoglycan structure from vegetative cells of Bacillus subtilis 168 and role of PBP 5 in peptidoglycan maturation. (3/137)

The composition and fine structure of the vegetative cell wall peptidoglycan from Bacillus subtilis were determined by analysis of its constituent muropeptides. The structures of 39 muropeptides, representing 97% of the total peptidoglycan, were elucidated. About 99% analyzed muropeptides in B. subtilis vegetative cell peptidoglycan have the free carboxylic group of diaminopimelic acid amidated. Anhydromuropeptides and products missing a glucosamine at the nonreducing terminus account for 0.4 and 1.5%, respectively, of the total muropeptides. These two types of muropeptides are suggested to end glycan strands. An unexpected feature of B. subtilis muropeptides was the occurrence of a glycine residue in position 5 of the peptide side chain on monomers or oligomers, which account for 2.7% of the total muropeptides. This amount is, however, dependent on the composition of the growth media. Potential attachment sites for anionic polymers to peptidoglycan occur on dominant muropeptides and account for 2.1% of the total. B. subtilis peptidoglycan is incompletely digested by lysozyme due to de-N-acetylation of glucosamine, which occurs on 17.3% of muropeptides. The cross-linking index of the polymer changes with the growth phase. It is highest in late stationary phase, with a value of 33.2 or 44% per muramic acid residue, as determined by reverse-phase high-pressure liquid chromatography or gel filtration, respectively. Analysis of the muropeptide composition of a dacA (PBP 5) mutant shows a dramatic decrease of muropeptides with tripeptide side chains and an increase or appearance of muropeptides with pentapeptide side chains in monomers or oligomers. The total muropeptides with pentapeptide side chains accounts for almost 82% in the dacA mutant. This major low-molecular-weight PBP (DD-carboxypeptidase) is suggested to play a role in peptidoglycan maturation.  (+info)

Expression of the Staphylococcus aureus UDP-N-acetylmuramoyl- L-alanyl-D-glutamate:L-lysine ligase in Escherichia coli and effects on peptidoglycan biosynthesis and cell growth. (4/137)

The monomer units in the Escherichia coli and Staphylococcus aureus cell wall peptidoglycans differ in the nature of the third amino acid in the L-alanyl-gamma-D-glutamyl-X-D-alanyl-D-alanine side chain, where X is meso-diaminopimelic acid or L-lysine, respectively. The murE gene from S. aureus encoding the UDP-N-acetylmuramoyl-L-alanyl-D-glutamate: L-lysine ligase was identified and cloned into plasmid vectors. Induction of its overexpression in E. coli rapidly results in abnormal morphological changes and subsequent cell lysis. A reduction of 28% in the peptidoglycan content was observed in induced cells, and analysis of the peptidoglycan composition and structure showed that ca. 50% of the meso-diaminopimelic acid residues were replaced by L-lysine. Lysine was detected in both monomer and dimer fragments, but the acceptor units from the latter contained exclusively meso-diaminopimelic acid, suggesting that no transpeptidation could occur between the epsilon-amino group of L-lysine and the alpha-carboxyl group of D-alanine. The overall cross-linking of the macromolecule was only slightly decreased. Detection and analysis of meso-diaminopimelic acid- and L-lysine-containing peptidoglycan precursors confirmed the presence of L-lysine in precursors containing amino acids added after the reaction catalyzed by the MurE ligase and provided additional information about the specificity of the enzymes involved in these latter processes.  (+info)

Spore peptidoglycan structure in a cwlD dacB double mutant of Bacillus subtilis. (5/137)

Bacillus subtilis cwlD and dacB mutants produce spore peptidoglycan (PG) with increased cross-linking but with little change in spore core hydration compared to the wild type. A cwlD dacB double mutant produced spores with a two- to fourfold greater increase in PG cross-linking and novel muropeptides containing glycine residues but no significant changes in spore resistance or core hydration.  (+info)

Modulation of the immune response by a synthetic adjuvant and analogs. (6/137)

N-Acetylmuramyl-L-alanyl-D-isoglutamine increases the humoral immune response of mice when given in aqueous media instead of the usual water-in-oil emulsions. Moreover, this compound is adjuvant active even by the oral route. In view of studying the relation between chemical structure and biological activity, several synthetic analogs were tested. The immune response could be modulated according to chemical modifications, and the synthetic analog with D- in place of L-alanine was shown to inhibit the immune response.  (+info)

Biosynthesis of peptidoglycan in Pseudomonas aeruginosa. 1. The incorporation of peptidoglycan into the cell wall. (7/137)

Ether-treated cells of Pseudomonas aeruginosa catalyze the formation of crosslinked peptidoglycan from the two nucleotide precursors uridinediphospho-N-acetylglucosamine and uridinediphospho-N-acetylmuramyl-L-alanyl-D-gamma-glutamyl-meso-diaminopimelyl-D- alanyl-D-alanine. The main enzymatic reactions of biosynthesis were similar to those found in Escherichia coli. Part of the reaction products were soluble in 4% sodium dodecylsulfate whereas the other part was covalently bound to the preexisting cell wall peptidoglycan sacculus. The incorporation into cell wall is carried out by a transpeptidation reaction in which the nascent peptidoglycan functions mainly as the donor and the preexisting one as acceptor. The detergent-soluble peptidoglycan is composed of partially crosslinked peptidoglycan strands as well as low-molecular-weight peptidoglycan fragments. Pulse-chase biosynthesis experiments show that the detergent-soluble peptidoglycan is an intermediate that eventually becomes covalently bound to the wall. The DD-carboxypeptidase activity of P. aeruginosa is membrane-bound and does not hydrolyse C-terminal D-alanine residues from the L-lysine-containing nucleotide-precursor analogue. An LD-carboxypeptidase was also detected in P. aeruginosa.  (+info)

Bacterial cell wall-induced arthritis: chemical composition and tissue distribution of four Lactobacillus strains. (8/137)

To study what determines the arthritogenicity of bacterial cell walls, cell wall-induced arthritis in the rat was applied, using four strains of Lactobacillus. Three of the strains used proved to induce chronic arthritis in the rat; all were Lactobacillus casei. The cell wall of Lactobacillus fermentum did not induce chronic arthritis. All arthritogenic bacterial cell walls had the same peptidoglycan structure, whereas that of L. fermentum was different. Likewise, all arthritogenic cell walls were resistant to lysozyme degradation, whereas the L. fermentum cell wall was lysozyme sensitive. Muramic acid was observed in the liver, spleen, and lymph nodes in considerably larger amounts after injection of an arthritogenic L. casei cell wall than following injection of a nonarthritogenic L. fermentum cell wall. The L. casei cell wall also persisted in the tissues longer than the L. fermentum cell wall. The present results, taken together with those published previously, underline the possibility that the chemical structure of peptidoglycan is important in determining the arthritogenicity of the bacterial cell wall.  (+info)

Muramic acids are not a medical condition or diagnosis. They are actually a type of chemical compound that is found in the cell walls of certain bacteria. Specifically, muramic acid is a derivative of amino sugars and forms a part of peptidoglycan, which is a major component of bacterial cell walls.

Peptidoglycan provides structural support and protection to bacterial cells, helping them maintain their shape and resist osmotic pressure. Muramic acids are unique to bacteria and are not found in the cell walls of human or animal cells, making them potential targets for antibiotic drugs that can selectively inhibit bacterial growth without harming host cells.

Peptidoglycan is a complex biological polymer made up of sugars and amino acids that forms a crucial component of the cell walls of bacteria. It provides structural support and protection to bacterial cells, contributing to their shape and rigidity. Peptidoglycan is unique to bacterial cell walls and is not found in the cells of other organisms, such as plants, animals, or fungi.

The polymer is composed of linear chains of alternating units of N-acetylglucosamine (NAG) and N-acetylmuramic acid (NAM), which are linked together by glycosidic bonds. The NAM residues contain short peptide side chains, typically consisting of four amino acids, that cross-link adjacent polysaccharide chains, forming a rigid layer around the bacterial cell.

The composition and structure of peptidoglycan can vary between different species of bacteria, which is one factor contributing to their diversity. The enzymes responsible for synthesizing and degrading peptidoglycan are important targets for antibiotics, as inhibiting these processes can weaken or kill the bacterial cells without affecting host organisms.

Amino sugars, also known as glycosamine or hexosamines, are sugar molecules that contain a nitrogen atom as part of their structure. The most common amino sugars found in nature are glucosamine and galactosamine, which are derived from the hexose sugars glucose and galactose, respectively.

Glucosamine is an essential component of the structural polysaccharide chitin, which is found in the exoskeletons of arthropods such as crustaceans and insects, as well as in the cell walls of fungi. It is also a precursor to the glycosaminoglycans (GAGs), which are long, unbranched polysaccharides that are important components of the extracellular matrix in animals.

Galactosamine, on the other hand, is a component of some GAGs and is also found in bacterial cell walls. It is used in the synthesis of heparin and heparan sulfate, which are important anticoagulant molecules.

Amino sugars play a critical role in many biological processes, including cell signaling, inflammation, and immune response. They have also been studied for their potential therapeutic uses in the treatment of various diseases, such as osteoarthritis and cancer.

Sugar acids are a type of organic acid that are derived from sugars through the process of hydrolysis or oxidation. They have complex structures and can be found in various natural sources such as fruits, vegetables, and honey. In the medical field, sugar acids may be used in the production of pharmaceuticals and other chemical products.

Some common examples of sugar acids include:

* Gluconic acid, which is derived from glucose and has applications in the food industry as a preservative and stabilizer.
* Lactic acid, which is produced by fermentation of carbohydrates and is used in the production of various pharmaceuticals, foods, and cosmetics.
* Citric acid, which is found in citrus fruits and is widely used as a flavoring agent, preservative, and chelating agent in food, beverages, and personal care products.

It's worth noting that while sugar acids have important applications in various industries, they can also contribute to tooth decay and other health problems when consumed in excess. Therefore, it's important to consume them in moderation as part of a balanced diet.

A cell wall is a rigid layer found surrounding the plasma membrane of plant cells, fungi, and many types of bacteria. It provides structural support and protection to the cell, maintains cell shape, and acts as a barrier against external factors such as chemicals and mechanical stress. The composition of the cell wall varies among different species; for example, in plants, it is primarily made up of cellulose, hemicellulose, and pectin, while in bacteria, it is composed of peptidoglycan.

I'm sorry for any confusion, but "Pimelic Acids" is not a recognized medical term or concept in physiology, pathology, or pharmacology. It appears to be a term used in chemistry and biochemistry, referring to a specific type of organic compound known as a dicarboxylic acid with a seven-carbon backbone.

In biochemistry, pimelic acid may be involved in various metabolic processes, such as the synthesis of certain amino acids and lipids. However, it is not typically considered a medical term or diagnostic marker in clinical settings. If you're looking for information related to a specific medical condition or treatment, I would be happy to help if you could provide more context!

Hexosamines are amino sugars that are formed by the substitution of an amino group (-NH2) for a hydroxyl group (-OH) in a hexose sugar. The most common hexosamine is N-acetylglucosamine (GlcNAc), which is derived from glucose. Other hexosamines include galactosamine, mannosamine, and fucosamine.

Hexosamines play important roles in various biological processes, including the formation of glycosaminoglycans, proteoglycans, and glycoproteins. These molecules are involved in many cellular functions, such as cell signaling, cell adhesion, and protein folding. Abnormalities in hexosamine metabolism have been implicated in several diseases, including diabetes, cancer, and neurodegenerative disorders.

Glucosamine is a natural compound found in the body, primarily in the fluid around joints. It is a building block of cartilage, which is the tissue that cushions bones and allows for smooth joint movement. Glucosamine can also be produced in a laboratory and is commonly sold as a dietary supplement.

Medical definitions of glucosamine describe it as a type of amino sugar that plays a crucial role in the formation and maintenance of cartilage, ligaments, tendons, and other connective tissues. It is often used as a supplement to help manage osteoarthritis symptoms, such as pain, stiffness, and swelling in the joints, by potentially reducing inflammation and promoting cartilage repair.

There are different forms of glucosamine available, including glucosamine sulfate, glucosamine hydrochloride, and N-acetyl glucosamine. Glucosamine sulfate is the most commonly used form in supplements and has been studied more extensively than other forms. While some research suggests that glucosamine may provide modest benefits for osteoarthritis symptoms, its effectiveness remains a topic of ongoing debate among medical professionals.

Diaminopimelic acid (DAP) is a biochemical compound that is an important intermediate in the biosynthesis of several amino acids and the cell wall of bacteria. It is a derivative of the amino acid lysine, and is a key component of the peptidoglycan layer of bacterial cell walls. Diaminopimelic acid is not commonly found in proteins of higher organisms, making it a useful marker for the identification and study of bacterial cell wall components and biosynthetic pathways.

Muramidase, also known as lysozyme, is an enzyme that hydrolyzes the glycosidic bond between N-acetylmuramic acid and N-acetylglucosamine in peptidoglycan, a polymer found in bacterial cell walls. This enzymatic activity plays a crucial role in the innate immune system by contributing to the destruction of invading bacteria. Muramidase is widely distributed in various tissues and bodily fluids, such as tears, saliva, and milk, and is also found in several types of white blood cells, including neutrophils and monocytes.

Gas Chromatography-Mass Spectrometry (GC-MS) is a powerful analytical technique that combines the separating power of gas chromatography with the identification capabilities of mass spectrometry. This method is used to separate, identify, and quantify different components in complex mixtures.

In GC-MS, the mixture is first vaporized and carried through a long, narrow column by an inert gas (carrier gas). The various components in the mixture interact differently with the stationary phase inside the column, leading to their separation based on their partition coefficients between the mobile and stationary phases. As each component elutes from the column, it is then introduced into the mass spectrometer for analysis.

The mass spectrometer ionizes the sample, breaks it down into smaller fragments, and measures the mass-to-charge ratio of these fragments. This information is used to generate a mass spectrum, which serves as a unique "fingerprint" for each compound. By comparing the generated mass spectra with reference libraries or known standards, analysts can identify and quantify the components present in the original mixture.

GC-MS has wide applications in various fields such as forensics, environmental analysis, drug testing, and research laboratories due to its high sensitivity, specificity, and ability to analyze volatile and semi-volatile compounds.

Rhamnose is a naturally occurring sugar or monosaccharide, that is commonly found in various plants and some fruits. It is a type of deoxy sugar, which means it lacks one hydroxyl group (-OH) compared to a regular hexose sugar. Specifically, rhamnose has a hydrogen atom instead of a hydroxyl group at the 6-position of its structure.

Rhamnose is an essential component of various complex carbohydrates and glycoconjugates found in plant cell walls, such as pectins and glycoproteins. It also plays a role in bacterial cell wall biosynthesis and is used in the production of some antibiotics.

In medical contexts, rhamnose may be relevant to research on bacterial infections, plant-derived medicines, or the metabolism of certain sugars. However, it is not a commonly used term in clinical medicine.

Paper chromatography is a type of chromatography technique that involves the separation and analysis of mixtures based on their components' ability to migrate differently upon capillary action on a paper medium. This simple and cost-effective method utilizes a paper, typically made of cellulose, as the stationary phase. The sample mixture is applied as a small spot near one end of the paper, and then the other end is dipped into a developing solvent or a mixture of solvents (mobile phase) in a shallow container.

As the mobile phase moves up the paper by capillary action, components within the sample mixture separate based on their partition coefficients between the stationary and mobile phases. The partition coefficient describes how much a component prefers to be in either the stationary or mobile phase. Components with higher partition coefficients in the mobile phase will move faster and further than those with lower partition coefficients.

Once separation is complete, the paper is dried and can be visualized under ultraviolet light or by using chemical reagents specific for the components of interest. The distance each component travels from the origin (point of application) and its corresponding solvent front position are measured, allowing for the calculation of Rf values (retardation factors). Rf is a dimensionless quantity calculated as the ratio of the distance traveled by the component to the distance traveled by the solvent front.

Rf = (distance traveled by component) / (distance traveled by solvent front)

Paper chromatography has been widely used in various applications, such as:

1. Identification and purity analysis of chemical compounds in pharmaceuticals, forensics, and research laboratories.
2. Separation and detection of amino acids, sugars, and other biomolecules in biological samples.
3. Educational purposes to demonstrate the principles of chromatography and separation techniques.

Despite its limitations, such as lower resolution compared to high-performance liquid chromatography (HPLC) and less compatibility with volatile or nonpolar compounds, paper chromatography remains a valuable tool for quick, qualitative analysis in various fields.

Acetylmuramyl-Alanyl-Isoglutamine is a chemical compound that is a component of bacterial cell walls. It is also known as N-acetylmuramic acid-L-alanine-γ-D-glutamyl-meso-diaminopimelic acid, which is its more detailed and complete chemical name.

This compound is a key building block of peptidoglycan, a complex polymer that provides structural rigidity to bacterial cell walls. Specifically, Acetylmuramyl-Alanyl-Isoglutamine is a part of the peptide subunit that links individual peptidoglycan strands together, forming a cross-linked network that helps protect bacteria from external stresses and osmotic pressure.

In addition to its structural role, Acetylmuramyl-Alanyl-Isoglutamine has been shown to have immunostimulatory properties, and it is being investigated as a potential vaccine adjuvant to enhance the immune response to other antigens.

Mucoproteins are a type of complex protein that contain covalently bound carbohydrate chains, also known as glycoproteins. They are found in various biological tissues and fluids, including mucous secretions, blood, and connective tissue. In mucous secretions, mucoproteins help to form a protective layer over epithelial surfaces, such as the lining of the respiratory and gastrointestinal tracts, by providing lubrication, hydration, and protection against pathogens and environmental insults.

The carbohydrate chains in mucoproteins are composed of various sugars, including hexoses, hexosamines, and sialic acids, which can vary in length and composition depending on the specific protein. These carbohydrate chains play important roles in the structure and function of mucoproteins, such as modulating their solubility, stability, and interactions with other molecules.

Mucoproteins have been implicated in various physiological and pathological processes, including inflammation, immune response, and tissue repair. Abnormalities in the structure or function of mucoproteins have been associated with several diseases, such as mucopolysaccharidoses, a group of inherited metabolic disorders caused by deficiencies in enzymes that break down glycosaminoglycans (GAGs), which are long, unbranched carbohydrate chains found in mucoproteins.

"Micrococcus" is a genus of Gram-positive, catalase-positive, aerobic bacteria that are commonly found in pairs or tetrads. They are typically spherical in shape and range from 0.5 to 3 micrometers in diameter. Micrococci are ubiquitous in nature and can be found on the skin and mucous membranes of humans and animals, as well as in soil, water, and air.

Micrococci are generally considered to be harmless commensals, but they have been associated with a variety of infections in immunocompromised individuals, including bacteremia, endocarditis, and pneumonia. They can also cause contamination of medical equipment and supplies, leading to nosocomial infections.

It's worth noting that the taxonomy of this genus has undergone significant revisions in recent years, and many species previously classified as Micrococcus have been reassigned to other genera. As a result, the medical significance of this genus is somewhat limited.

Actinomycetales is an order of Gram-positive bacteria that are characterized by their filamentous morphology and branching appearance, resembling fungi. These bacteria are often found in soil and water, and some species can cause diseases in humans and animals. The name "Actinomycetales" comes from the Greek words "actis," meaning ray or beam, and "mykes," meaning fungus.

The order Actinomycetales includes several families of medical importance, such as Mycobacteriaceae (which contains the tuberculosis-causing Mycobacterium tuberculosis), Corynebacteriaceae (which contains the diphtheria-causing Corynebacterium diphtheriae), and Actinomycetaceae (which contains the actinomycosis-causing Actinomyces israelii).

Actinomycetales are known for their complex cell walls, which contain a unique type of lipid called mycolic acid. This feature makes them resistant to many antibiotics and contributes to their ability to cause chronic infections. They can also form resistant structures called spores, which allow them to survive in harsh environments and contribute to their ability to cause disease.

Overall, Actinomycetales are important both as beneficial soil organisms and as potential pathogens that can cause serious diseases in humans and animals.

I believe there might be a slight confusion in your question. Bacteria do not produce spores; instead, it is fungi and other types of microorganisms that produce spores for reproduction and survival purposes. Spores are essentially reproductive cells that are resistant to heat, radiation, and chemicals, allowing them to survive under harsh conditions.

If you meant to ask about endospores, those are produced by some bacteria as a protective mechanism during times of stress or nutrient deprivation. Endospores are highly resistant structures containing bacterial DNA, ribosomes, and some enzymes. They can survive for long periods in extreme environments and germinate into vegetative cells when conditions improve.

Here's the medical definition of endospores:

Endospores (also called bacterial spores) are highly resistant, dormant structures produced by certain bacteria belonging to the phyla Firmicutes and Actinobacteria. They contain a core of bacterial DNA, ribosomes, and some enzymes surrounded by a protective layer called the spore coat. Endospores can survive under harsh conditions for extended periods and germinate into vegetative cells when favorable conditions return. Common examples of endospore-forming bacteria include Bacillus species (such as B. anthracis, which causes anthrax) and Clostridium species (such as C. difficile, which can cause severe diarrhea).

Bacterial polysaccharides are complex carbohydrates that consist of long chains of sugar molecules (monosaccharides) linked together by glycosidic bonds. They are produced and used by bacteria for various purposes such as:

1. Structural components: Bacterial polysaccharides, such as peptidoglycan and lipopolysaccharide (LPS), play a crucial role in maintaining the structural integrity of bacterial cells. Peptidoglycan is a major component of the bacterial cell wall, while LPS forms the outer layer of the outer membrane in gram-negative bacteria.
2. Nutrient storage: Some bacteria synthesize and store polysaccharides as an energy reserve, similar to how plants store starch. These polysaccharides can be broken down and utilized by the bacterium when needed.
3. Virulence factors: Bacterial polysaccharides can also function as virulence factors, contributing to the pathogenesis of bacterial infections. For example, certain bacteria produce capsular polysaccharides (CPS) that surround and protect the bacterial cells from host immune defenses, allowing them to evade phagocytosis and persist within the host.
4. Adhesins: Some polysaccharides act as adhesins, facilitating the attachment of bacteria to surfaces or host cells. This is important for biofilm formation, which helps bacteria resist environmental stresses and antibiotic treatments.
5. Antigenic properties: Bacterial polysaccharides can be highly antigenic, eliciting an immune response in the host. The antigenicity of these molecules can vary between different bacterial species or even strains within a species, making them useful as targets for vaccines and diagnostic tests.

In summary, bacterial polysaccharides are complex carbohydrates that serve various functions in bacteria, including structural support, nutrient storage, virulence factor production, adhesion, and antigenicity.

I apologize, but there seems to be a misunderstanding. "Soil microbiology" is not a medical term; rather, it is a branch of microbiology that deals with the study of microorganisms in soil. It involves understanding the diversity, ecology, and biochemistry of bacteria, fungi, algae, protozoa, and other microscopic life forms found in soil. This field has applications in agriculture, environmental science, and waste management but is not directly related to medical definitions or human health.

Amino acids are organic compounds that serve as the building blocks of proteins. They consist of a central carbon atom, also known as the alpha carbon, which is bonded to an amino group (-NH2), a carboxyl group (-COOH), a hydrogen atom (H), and a variable side chain (R group). The R group can be composed of various combinations of atoms such as hydrogen, oxygen, sulfur, nitrogen, and carbon, which determine the unique properties of each amino acid.

There are 20 standard amino acids that are encoded by the genetic code and incorporated into proteins during translation. These include:

1. Alanine (Ala)
2. Arginine (Arg)
3. Asparagine (Asn)
4. Aspartic acid (Asp)
5. Cysteine (Cys)
6. Glutamine (Gln)
7. Glutamic acid (Glu)
8. Glycine (Gly)
9. Histidine (His)
10. Isoleucine (Ile)
11. Leucine (Leu)
12. Lysine (Lys)
13. Methionine (Met)
14. Phenylalanine (Phe)
15. Proline (Pro)
16. Serine (Ser)
17. Threonine (Thr)
18. Tryptophan (Trp)
19. Tyrosine (Tyr)
20. Valine (Val)

Additionally, there are several non-standard or modified amino acids that can be incorporated into proteins through post-translational modifications, such as hydroxylation, methylation, and phosphorylation. These modifications expand the functional diversity of proteins and play crucial roles in various cellular processes.

Amino acids are essential for numerous biological functions, including protein synthesis, enzyme catalysis, neurotransmitter production, energy metabolism, and immune response regulation. Some amino acids can be synthesized by the human body (non-essential), while others must be obtained through dietary sources (essential).

Carbohydrates are a major nutrient class consisting of organic compounds that primarily contain carbon, hydrogen, and oxygen atoms. They are classified as saccharides, which include monosaccharides (simple sugars), disaccharides (double sugars), oligosaccharides (short-chain sugars), and polysaccharides (complex carbohydrates).

Monosaccharides, such as glucose, fructose, and galactose, are the simplest form of carbohydrates. They consist of a single sugar molecule that cannot be broken down further by hydrolysis. Disaccharides, like sucrose (table sugar), lactose (milk sugar), and maltose (malt sugar), are formed from two monosaccharide units joined together.

Oligosaccharides contain a small number of monosaccharide units, typically less than 20, while polysaccharides consist of long chains of hundreds to thousands of monosaccharide units. Polysaccharides can be further classified into starch (found in plants), glycogen (found in animals), and non-starchy polysaccharides like cellulose, chitin, and pectin.

Carbohydrates play a crucial role in providing energy to the body, with glucose being the primary source of energy for most cells. They also serve as structural components in plants (cellulose) and animals (chitin), participate in various metabolic processes, and contribute to the taste, texture, and preservation of foods.

Galactose is a simple sugar or monosaccharide that is a constituent of lactose, the disaccharide found in milk and dairy products. It's structurally similar to glucose but with a different chemical structure, and it plays a crucial role in various biological processes.

Galactose can be metabolized in the body through the action of enzymes such as galactokinase, galactose-1-phosphate uridylyltransferase, and UDP-galactose 4'-epimerase. Inherited deficiencies in these enzymes can lead to metabolic disorders like galactosemia, which can cause serious health issues if not diagnosed and treated promptly.

In summary, Galactose is a simple sugar that plays an essential role in lactose metabolism and other biological processes.

Bacteria are single-celled microorganisms that are among the earliest known life forms on Earth. They are typically characterized as having a cell wall and no membrane-bound organelles. The majority of bacteria have a prokaryotic organization, meaning they lack a nucleus and other membrane-bound organelles.

Bacteria exist in diverse environments and can be found in every habitat on Earth, including soil, water, and the bodies of plants and animals. Some bacteria are beneficial to their hosts, while others can cause disease. Beneficial bacteria play important roles in processes such as digestion, nitrogen fixation, and biogeochemical cycling.

Bacteria reproduce asexually through binary fission or budding, and some species can also exchange genetic material through conjugation. They have a wide range of metabolic capabilities, with many using organic compounds as their source of energy, while others are capable of photosynthesis or chemosynthesis.

Bacteria are highly adaptable and can evolve rapidly in response to environmental changes. This has led to the development of antibiotic resistance in some species, which poses a significant public health challenge. Understanding the biology and behavior of bacteria is essential for developing strategies to prevent and treat bacterial infections and diseases.

Alanine is an alpha-amino acid that is used in the biosynthesis of proteins. The molecular formula for alanine is C3H7NO2. It is a non-essential amino acid, which means that it can be produced by the human body through the conversion of other nutrients, such as pyruvate, and does not need to be obtained directly from the diet.

Alanine is classified as an aliphatic amino acid because it contains a simple carbon side chain. It is also a non-polar amino acid, which means that it is hydrophobic and tends to repel water. Alanine plays a role in the metabolism of glucose and helps to regulate blood sugar levels. It is also involved in the transfer of nitrogen between tissues and helps to maintain the balance of nitrogen in the body.

In addition to its role as a building block of proteins, alanine is also used as a neurotransmitter in the brain and has been shown to have a calming effect on the nervous system. It is found in many foods, including meats, poultry, fish, eggs, dairy products, and legumes.

'Bacillus subtilis' is a gram-positive, rod-shaped bacterium that is commonly found in soil and vegetation. It is a facultative anaerobe, meaning it can grow with or without oxygen. This bacterium is known for its ability to form durable endospores during unfavorable conditions, which allows it to survive in harsh environments for long periods of time.

'Bacillus subtilis' has been widely studied as a model organism in microbiology and molecular biology due to its genetic tractability and rapid growth. It is also used in various industrial applications, such as the production of enzymes, antibiotics, and other bioproducts.

Although 'Bacillus subtilis' is generally considered non-pathogenic, there have been rare cases of infection in immunocompromised individuals. It is important to note that this bacterium should not be confused with other pathogenic species within the genus Bacillus, such as B. anthracis (causative agent of anthrax) or B. cereus (a foodborne pathogen).

Chromatography is a technique used in analytical chemistry for the separation, identification, and quantification of the components of a mixture. It is based on the differential distribution of the components of a mixture between a stationary phase and a mobile phase. The stationary phase can be a solid or liquid, while the mobile phase is a gas, liquid, or supercritical fluid that moves through the stationary phase carrying the sample components.

The interaction between the sample components and the stationary and mobile phases determines how quickly each component will move through the system. Components that interact more strongly with the stationary phase will move more slowly than those that interact more strongly with the mobile phase. This difference in migration rates allows for the separation of the components, which can then be detected and quantified.

There are many different types of chromatography, including paper chromatography, thin-layer chromatography (TLC), gas chromatography (GC), liquid chromatography (LC), and high-performance liquid chromatography (HPLC). Each type has its own strengths and weaknesses, and is best suited for specific applications.

In summary, chromatography is a powerful analytical technique used to separate, identify, and quantify the components of a mixture based on their differential distribution between a stationary phase and a mobile phase.

Ribosomal RNA (rRNA) is a type of RNA that combines with proteins to form ribosomes, which are complex structures inside cells where protein synthesis occurs. The "16S" refers to the sedimentation coefficient of the rRNA molecule, which is a measure of its size and shape. In particular, 16S rRNA is a component of the smaller subunit of the prokaryotic ribosome (found in bacteria and archaea), and is often used as a molecular marker for identifying and classifying these organisms due to its relative stability and conservation among species. The sequence of 16S rRNA can be compared across different species to determine their evolutionary relationships and taxonomic positions.

Pneumococcal meningitis is a specific type of bacterial meningitis, which is an inflammation of the membranes covering the brain and spinal cord (meninges). It is caused by the bacterium Streptococcus pneumoniae, also known as pneumococcus. This bacterium is commonly found in the upper respiratory tract and middle ear fluid of healthy individuals. However, under certain circumstances, it can invade the bloodstream and reach the meninges, leading to meningitis.

Pneumococcal meningitis is a serious and potentially life-threatening condition that requires immediate medical attention. Symptoms may include sudden onset of fever, severe headache, stiff neck, nausea, vomiting, confusion, and sensitivity to light (photophobia). In some cases, it can also lead to complications such as hearing loss, brain damage, or even death if not treated promptly and effectively.

Treatment typically involves the use of antibiotics that are effective against pneumococcus, such as ceftriaxone or vancomycin. In some cases, corticosteroids may also be used to reduce inflammation and prevent complications. Prevention measures include vaccination with the pneumococcal conjugate vaccine (PCV13) or the pneumococcal polysaccharide vaccine (PPSV23), which can help protect against pneumococcal infections, including meningitis.

'Bacillus' is a genus of rod-shaped, gram-positive bacteria that are commonly found in soil, water, and the gastrointestinal tracts of animals. Many species of Bacillus are capable of forming endospores, which are highly resistant to heat, radiation, and chemicals, allowing them to survive for long periods in harsh environments. The most well-known species of Bacillus is B. anthracis, which causes anthrax in animals and humans. Other species of Bacillus have industrial or agricultural importance, such as B. subtilis, which is used in the production of enzymes and antibiotics.

Muramic acid is an amino sugar acid. In terms of chemical composition, it is the ether of lactic acid and glucosamine. It ... "Muramic acid - Compound Summary". PubChem. v t e (Chemical articles with multiple compound IDs, Multiple chemicals in an ... Sugar acids, Amino sugars, All stub articles, Amine stubs). ... occurs naturally as N-acetylmuramic acid in peptidoglycan, ...
If you cant find the CoA of interest, please click Certificates/SDS and search for what you are looking for ...
Determination of silver nanoparticles potency by release of muramic acid from Staphylococcus aureus ... Determination of silver nanoparticles potency by release of muramic acid from Staphylococcus aureus. Status : Published (Under ... a test method for evaluating potency of silver nanoparticles to cell wall degradation of Staphylococcus aureus and muramic acid ...
Like us, they have no muramic acid in their cell walls and they use methionine as their initiator tRNA, whereas bacteria use ...
Microbial exposure of rural school children, as assessed by levels of N-acetyl-muramic acid in mattress dust, and its ...
... pyrophosphate bridge links the pyruvate-containing secondary cell wall polymer of Paenibacillus alvei CCM 2051 to muramic acid ... Mayer, VMT; Hottmann, I; Figl, R; Altmann, F; Mayer, C; Schaffer, C Peptidoglycan-type analysis of the N-acetylmuramic acid ... Hottmann, I; Mayer, VMT; Tomek, MB; Friedrich, V; Calvert, MB; Titz, A; Schaffer, C; Mayer, C N-Acetylmuramic Acid (MurNAc) ... Schäffer, C; Kählig, H; Christian, R; Schulz, G; Zayni, S; Messner, P The diacetamidodideoxyuronic-acid-containing glycan chain ...
... muramic acid, pathogens like Toxoplasma gondii and Helicobacter pylori, and possibly mould components.56 The reaction of the ... as well as metabolites of arachidonic acid.2 These cytokines recruit and activate neutrophils, resulting in local and systemic ...
... and decreased the accumulation of keto acids and ultraviolet-absorbing materials in the medium. It was concluded that the side ... 6-Aminopenicillanic acid and cloxacillin were about equal to benzylpenicillin in toxicity; triphenylmethylpenicillin and 2- ... Collins J. F., Richmond M. H. 1962; A structural similarity between N-acetyl-muramic acid and penicillin as a basis for ... Hugo W. B., Russell A. D. 1960; Action of 6-aminopenicillanic acid on Gram negative bacteria. Nature, Lond. 188:875 ...
Synonyms: 1-Benzyl-N-Acetyl-4,6-O-benzylidenemuramic Acid, AC1OCDK9, ALPHA-BENZYL-4,6-O-BENZYLIDENE-MURAMIC ACID, SureCN6833949 ... AC-A-BENZYL-4,6-O-BENZYLIDENE-MURAMIC ACID (9 suppliers). IUPAC Name: 2-[[(4aR,6S,7R,8R,8aS)-7-acetamido-2-phenyl-6- ... IUPAC Name: (2S)-2-acetamido-4-methylpent-4-enoic acid , CAS Registry Number: 88547-24-4. Synonyms: Ac-4,5-dehydro-leu-oh, Ac-4 ... benzoic acid, HY-124500, CS-0086700 Molecular Formula: C37H36ClF5N2O5S. Molecular Weight: 751.200 [g/mol]. ...
... cell wall muramic acid, and very carefully done acridine orange direct counts (AODC).135 Reported detection limits are in the ... "Microsecond Time-scale Discrimination Among Polycytidylic Acid, Polyadenylic Acid, and Polyuridylic Acid as Homopolymers or as ... Phospholipid Fatty Acid Analysis The presence of an intact membrane is a well-established measure of viability. Viable microbes ... Each protein coded for by a gene has a specific molecular weight, based on the linear structure of the amino acids of the ...
Muramic acid: an alternating amino sugar acid that occurs as N-acetylmuramic acid in peptidoglycan ... Acid-fast staining. * Description: a method that stains mycolic acid, which is contained in the cell wall of acid-fast bacteria ... Role of lipoteichoic acid in infection and inflammation. . Lancet Infect Dis. 2002. ; 2. (3). : p.171-179. .doi:. 10.1016/s1473 ... Lipoteichoic acid (LTA): a cell wall component present in all gram‑positive bacteria that is anchored in the cytoplasmatic ...
Muramic acid. Present. Absent. SHAPE & ARRANGEMENT:. Shape & Arrangement of Bacterial Cells. *Cocci: Oval/Spherical shape *In ... N-acetyl muramic acid (NAM), N-acetyl glucosamine (NAG). *Gram Negative Bacteria: ...
N-acetyl_muramic_acid. *2-acetamido-3-O-(D-1-carboxyethyl)-2-deoxy-D-glucose ...
Cell Wall Lacks Muramic Acid. Giemsa Stain. Inclusion Bodies. Treatment. Azithromycin (Preferred). Doxycycline. ...
Cell wall containing muramic acid. *Salmonella typhi can be isolated at different times from______?*Feaces ...
The daptomycin-nonsusceptible VISAS cell wall demonstrated a reduction in muramic acid O-acetylation, a phenotypic parameter ... The daptomycin-nonsusceptible VISAS cell wall demonstrated a reduction in muramic acid O-acetylation, a phenotypic parameter ... The daptomycin-nonsusceptible VISAS cell wall demonstrated a reduction in muramic acid O-acetylation, a phenotypic parameter ... The daptomycin-nonsusceptible VISAS cell wall demonstrated a reduction in muramic acid O-acetylation, a phenotypic parameter ...
In the medical field, muramic acids are a type of amino acid that are found in the peptidoglycan layer of bacterial cell walls ... In summary, muramic acids are a key component of the peptidoglycan layer of bacterial cell walls and play an important role in ... Muramic acids are the building blocks of bacterial cell walls, and their presence can be targeted for the development of ... Muramic acids are important components of the peptidoglycan layer because they play a role in the cross-linking of the polymer ...
N-Acetyl Muramic acid and N-Acetyl Glucosamine. Fungi Cell Wall. * *Cell wall is made up of chitin ...
Hydrolyzes peptide side chain and cleaves muramic acid- glucosamine polymer. Lysis of staphulococci. ... an important precursor for the synthesis of folic acid and nucleic acids in bacteria inhibited by sulfonamides. ... Alteration of metabolic pathway: e.g. some sulfonamide-resistant bacteria do not require para-aminobenzoic acid (PABA), ...
Their cell wall contains muramic acid and diaminopimelic acid. *Both contain a mucilaginous sheath around the cells. ...
Cell walls and filaments include mucolic acid and muramic acid.. *shorter generation time than other bacteria ...
Chlamydia trachomatishas penicillin-binding proteins but not detectable muramic acid. J Bacteriol ... Upstream stimulatory factor binding to the E-box at −65 is required for insulin regulation of the fatty acid synthase promoter ... including promoting the transcription of fatty acid synthase in response to insulin regulation (41), interfering with Ras ...
... to determine the amount of muramic acid (MurA), glucosamine (GluN), and galactosamine (GalN). Briefly, the soils were acid ... We determined acid unhydrolyzable residue (AUR) and cellulose contents in the roots using the ANKOM Acid Detergent Fiber and ... Gas chromatographic determination of muramic acid, glucosamine, mannosamine, and galactosamine in soils. Soil Biology and ... and agitated for 1 hour in acid detergent solution containing 93.2% water, 4.8% sulfuric acid, and 2% cetyltrimethylammonium ...
Die Pravalenz Trachomatis has penicillin-binding proteins but not detectable muramic acid. Cortisol stimulates Lipocortin ... A volte i cromosomi del padre non si dividono correttamente e potresti finire per Valproic acid during pregnancy and limb ... excess amount of acid in the body). Table 2 Characteristics of Of life. Lumacaftor; Ivacaftor: (Major) If erythromcyin and ... Fusidic acid, https://www.immanueleu.org/bbs/board.ph ... d%3D138939 See Kellan striding up the garden walk. auf die ...
Nanotechnologies - Determination of silver nanoparticles potency by release of muramic acid from Staphylococcus aureus ... Specification of characteristics and measurement methods for nanostructured magnetic beads for nucleic acid extraction ...
Nanotechnologies - Determination of silver nanoparticles potency by release of muramic acid from Staphylococcus aureus ... Specification of characteristics and measurement methods for nanostructured magnetic beads for nucleic acid extraction ...
The content of muramic acid is between 2-5% of the total dry weight. Cell wall contains muramic acid, which is between 16-20% ... There is few variety of amino acid in the cell wall.. *Cell wall contains muramic acid, which is between 16-20% of the total ... Cell wall contains muramic acid, which is between 16-20% of the total dry weight. ... Teichoic acid is absent in the cell wall. Teichoic acid is very much present in the cell wall. ...
Structure and biological importance of amino sugars, deoxy sugars, sugar acids, neuraminic and muramic acid.. Module-II ... Structure and biological importance of amino sugars, deoxy sugars, sugar acids, neuraminic and muramic acid. ... Fatty acids - Nomenclature of saturated and unsaturated fatty acids. Physiological properties of fatty acids. Acylglycerols: ... Module-III Amino acids: Structure and classification of amino acids based on polarity. Reactions of the amino groups with HNO2 ...

No FAQ available that match "muramic acids"

No images available that match "muramic acids"